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ABSTRACT

Transform coding methods such as JPEG which op-
erate on small blocks tend to have poorer performance
than full-frame transform methods based on wavelet de-
compositions, but the memory requirements are much
lower. We present a method for ordering the wavelet
coefficient information in a compressed bit stream that
allows the image to be sequentially decoded, with lower
memory requirements than conventional wavelet de-
compression schemes. In addition, we introduce a hy-
brid filtering scheme that uses different horizontal and
vertical filters, each with different depths of wavelet
decomposition. This reduces the decoder memory re-
quirements by reducing the instantaneous number of
wavelet coefficients needed to perform inverse filtering.

1 INTRODUCTION

We consider applications in which an image or video
is to be transmitted in compressed format to an inex-
pensive output device, such as a low-end color printer or
a wireless hand-held videophone. For such devices, the
amount of on-board memory is a significant cost fac-
tor and affects the competitive positioning of the prod-
uct. An image or video compression algorithm which
provides excellent image reproduction quality with low
memory usage would be attractive in this situation.
Some existing compression algorithms already have low
memory requirements, but with inferior reproduction
quality. For example, in baseline sequential JPEG, the
image is processed in blocks of 8x8 pixels. The blocks
are processed in raster scan order, so a decoder needs
to buffer only 8 contiguous rows of an image at any one
time. After reconstructing a set of 8 lines, a decoder can
flush them out of memory and work on the next strip of
8 lines. However, many wavelet-based algorithms have
much better distortion vs. rate performance than does
JPEG. One of the most effective known image compres-
sion algorithms is wavelet zerotree coding, introduced
by Shapiro [1] and later refined by Said and Pearlman
[2]. It is a progressive transmission technique in which
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a low-resolution description of the image can be recon-
structed at the decoder using only a small fraction of
the bit stream, and the quality of the image contin-
ually improves as more of the compressed bit stream
arrives at the decoder. Shapiro’s technique, known as
Embedded Zerotree Wavelet (EZW) coding, and the
refinement due to Said and Pearlman, known as Set
Partitioning in Hierarchical Trees (SPIHT), are among
the many wavelet algorithms which provide excellent
compression performance, but which require a complete
image (at each transmission rate) to be reconstructed
before any particular part of the image can be printed
or displayed. The same difficulty also occurs with algo-
rithms based on full-frame Discrete Cosine Transforms.

In this paper, we introduce two new techniques which
work together to reduce memory requirements. First,
we alter the order of the transmitted information, so
that the encoder only sends to the decoder the min-
imal set of wavelet coefficients needed to compute a
given segment of an inverse wavelet transform and to
produce one output line of the image. The number of
coefficients involved in the given partial inverse trans-
form operation can be minimized by judicious selec-
tion of different filter lengths in the two spatial direc-
tions, and at different levels of hierarchical decomposi-
tion. We describe our memory-efficient coding scheme
in terms of an improvement to embedded zerotree al-
gorithms such as EZW and SPTHT. We use the SPIHT
zerotree approach purely as a quantization method -
we use a different wavelet transform and a different bit
stream ordering, and we omit their entropy coding step
to reduce complexity.

2 BIT-STREAM RE-ORDERING

One approach to reducing memory requirements is
to partition the image into horizontal strips, each con-
taining a small number of horizontal rows, and then to
compress each strip independently using an EZW-type
algorithm on the rectangular sub-images. In practice,
this technique yields much poorer compression perfor-
mance, due primarily to the fact that EZW and SPIHT



advantageously exploit the existence of multiple levels
of wavelet decomposition in the hierarchy, and thus save
many bits when large zerotrees of coefficients occur. In
contrast, strip-based EZW or SPIHT algorithms used
on narrow strips (e.g., 32 rows) have only a limited
number of decomposition levels available. Additionally,
partitioning the image into strips tends to cause unde-
sirable visible “blocking” artifacts at the boundaries of
the strips. With a strip-based decomposition, the over-
all PSNR performance can be improved by optimally
allocating bits among the strips. We tested such an op-
timal allocation, using standard Lagrangian methods
and found that the image quality is still poor and the
blocking artifacts between the strips remain visually
displeasing.

The boundaries of the strips can be made less visu-
ally noticeable by using overlapping strips, at the ex-
pense of increased rate. Figure 1 shows the distortion
vs. rate performance on the 512x512 color Lena image
when fairly large strips (64 rows) are compressed, and
bits are allocated optimally among them. The perfor-
mance for the original SPTHT coder is shown for com-
parison. The two lower curves display the results for the
cases where the strips are not overlapped, and where
they are overlapped by 4 rows on top and bottom. As
can be seen, compared to the original SPTHT coder, the
performance loss due to the more shallow zerotrees is
substantial [3].
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Figure 1: Comparison of the distortion-rate perfor-
mance for the full-image SPIHT algorithm, the strip-
based SPIHT algorithm on strips of 64 rows, and strip-
based SPIHT on overlapping strips.

A better approach is to maintain the full-frame

wavelet transform, but to rearrange the order of the
transmitted bit stream from EZW or SPIHT, so that a
reduced amount of memory is needed at any given time.
Even though a full-frame forward wavelet transform is
used to obtain the wavelet coefficients array, only a
small subset of the wavelet coefficients is required in
the inverse transform to obtain any given output row,
without further quantization loss. This process can be
described in terms of line-by-line reconstruction in the
spatial domain of the image. We seek the minimum set
of wavelet coefficients that must be received by the de-
coder in order to reconstruct a given single horizontal
row in the output image. After the decoder has received
that minimal set, and used it to reconstruct one partic-
ular row in the image, we then seek the minimum set
of additional wavelet coefficients that must be trans-
mitted by the encoder so that the following row can
be reconstructed. We also determine how much of the
currently stored set of coefficients can be purged from
memory. Coefficients that can be expunged are those
which are not needed in the reconstruction of any fu-
ture rows. This process is iterated for each row until
the entire image is reconstructed.

As an example, suppose the subband decomposition
operation consists of only a single level of decomposi-
tion using a 2-tap Haar wavelet filter. The coefficients
required in order to reconstruct the top row of the out-
put image are shown in Figure 2. If more levels of de-
composition are used, then the buffering requirements
at the decoder are increased. As shown in Figure 3, if
a two-level decomposition is performed, the decoder’s
inverse transform operation can be analyzed in terms
of one level of inverse wavelet transform (IWT) at a
time. A single row of coefficients is required from each
of the 4 smaller subbands; these allow reconstruction
of the top two rows of the LL; band. Using only the
top row from the LL; band, together with the top row
from each of the other subbands, allows a second round
of inverse wavelet filtering to reconstruct the top row
(and second row) of image pixels to be reconstructed.

Now consider the zerotree dependencies. With ze-
rotree structures defined as in EZW, each coefficient
in the lowest band (LL; band) has three children, one
in each of the three directional bands at that level of
decomposition. And each of those three children has a
2 x 2 block of children in the next lower directional sub-
band. This additional quantization information is not
needed in the inverse transform to reconstruct the top
row of pixels. However, with an EZW-style quantiza-
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Figure 2: The decoder performs an inverse wavelet
transform (IWT) operation to reconstruct the top row
(and the second row) of pixels, using only a single line
of coefficients from each of the four bands.
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Figure 3: The decoder performs one level of IWT to
reconstruct the top two rows of the LL; subband, us-
ing only a single line of coefficients from each of the
four smallest subbands. Another round of IWT allows
reconstruction of two rows of pixels.

tion, one cannot avoid the transmission and storage of
this additional information when the top row is recon-
structed. For this quantization method, the minimal
set of quantized coefficients received by the decoder (for
this decomposition level and choice of filter) is shown
in Figure 4. This minimal set of coefficients allows re-
construction of the top line of the image and is in fact
sufficient to enable the decoder to reconstruct the top
four lines of the image.
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Figure 4: Because of the zerotree dependencies, the de-
coder receives extra coefficients which are not required
in the inverse transform operation that yields the top
row. The extra coefficients allow four rows to be recon-
structed.

If the image is of size 512 X 512, the top four lines
contain 512 x 4 = 2048 pixels. With the Haar filter,
2048 coefficients are needed to reconstruct those 2048
pixels. With a four-level decomposition, the decoder
needs 1 line from each of the four smallest bands, and
2, 4, and 8 lines at the subsequent levels of the hier-
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archy, and then can reconstruct 16 rows. Again the
number of wavelet coefficients received equals the num-
ber of pixels reconstructed. The entire group can then
be purged from the decoder’s memory, followed by a
similar-sized group being received and decoded in or-
der to reconstruct the next set of 16 rows.

The situation is less favorable when longer filters are
used. For the 4-tap Daubechies filter, Figures 5 and 6
are analogous to Figures 2 and 4. These figures show
the minimal sets of coefficients needed by the decoder
to reconstruct a single row in the image, using one and
two levels of decomposition and zerotree quantization.
In Figure 5, two rows of coefficients are required from
each of the 4 subbands (a total of 4 x 512 = 2048 co-
efficients). The inverse wavelet transform operation on
those coefficients alone allows reconstruction of the top
row of the output image (512 pixels). To reconstruct
the second row, no additional coefficients are needed,
nor can we purge any of the coefficients from the first
row. To reconstruct the third row, one line can be
purged from each of the 4 subbands, and we need to re-
ceive a new line from the encoder from each of the 4 sub-
bands. The memory usage thus remains constant. This
forms a “sliding window” in which wavelet coefficients
enter the window, are used for a few rounds of inverse
filtering to reconstruct some rows, and then exit the
window. This sliding window for wavelet coefficients is
the main tool that we use in line-by-line wavelet cod-
ing. With a two-level decomposition, as depicted in
Figure 6, we need 2 rows from each of the 4 small sub-
bands, and therefore, because of the zerotree structure,
4 rows from each of the outer subbands. With these
coefficients, inverse transforming yields the first row of
the image (actually, we would obtain the first two rows,
but we are only concerned at this point with what is
required to reconstruct one row, and the requirements
are the same.)

One level

IWT

Figure 5: Wavelet coefficients required to reconstruct
top row, with a 4-tap filter.
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Figure 6: Wavelet coefficients from a 2-level decom-
position required to reconstruct top row, with a 4-tap
filter, when the coefficients are transmitted in zerotree
structures.

2.1 Implementation issues in the bit stream ordering

This process can be viewed as a re-ordering of the
SPIHT or EZW output bit stream. An ordinary SPTHT
encoder (without entropy coding) is used initially to en-
code the input image to the desired transmission rate.
The compressed bit stream is stored at the encoder.
Each bit of the stored image is associated with one of
the trees of coefficients. The encoder re-arranges the
progressively ordered bits so that the bits correspond-
ing to the top line of trees are transmitted first, followed
by the next line of trees, etc. Entropy coding can be
applied to this re-ordered bit stream.

A very small amount of header information is re-
quired. The bit streams corresponding to the succes-
sion of “minimal sets” of coefficients for the successive
rows arrive at the decoder in one continuous stream.
The decoder needs to know the beginning and end of
each set. This can be achieved by transmitting, at the
start of each set, a single number which informs the
decoder how many bits will be transmitted for that set
(row). The overhead is small, but it turns out that it
is not needed, as there is a more compact way for the
decoder to learn this information. This is accomplished
as follows. The encoder transmits one single header at
the beginning of the entire image, which describes the
threshold 7}, and the coordinates (x,y) of the coefficient
at which the encoding of the original algorithm (not re-
ordered) terminates. The decoder then evaluates, as it
decodes each row in the re-ordered bit stream, whether
the received bits correspond to a threshold of Ty, and, if
they do, whether the coefficient coordinates correspond
to a position that exceeds (x,y). If they do, then the
decoder deduces that the data corresponds to the next
TOW.

3 HyBRID FILTERING

The examples given above illustrate that more
wavelet coefficients are required to produce a single

output row when either the filter length increases, or
when the number of decomposition levels increases. For
example, with a 512x512 image undergoing a single
level of filtering with a 2-tap filter, only 2x512 = 1024
wavelet coefficients are required to produce an output
row (512 pixels). This constitutes 0.4% of the wavelet
coefficient array. With a full 6 levels of decomposi-
tion using the same short filter, 64 rows or 12.5% of
the array is involved in producing a single output row.
The decrease in SPIHT performance is very significant
when Haar filters are substituted for the 9-7 biorthog-
onal filters. With the filtering and zerotree structure
used in the SPIHT encoder, 100% of the coefficient ar-
ray is involved in producing a single output row. For
the color Lena image, Figure 7 shows the performance
reduction from decreasing the number of decomposition
levels while using the 9-7 biorthogonal filters. Figure 8
similarly shows the performance reduction from sub-
stituting a Haar filter for the 9-7 biorthogonal filters,
while maintaining the number of decomposition levels
at six.
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Figure 7: Comparison of the distortion-rate perfor-
mance for SPTHT with different numbers of decompo-
sition levels, ranging from 3 to 6.

The goal of this work has been to provide good
distortion vs. rate performance with limited decoder
buffering. The performance of EZW and SPIHT with
Haar filters and 3 or 4 levels of decomposition is very
poor however. The traditional wavelet/subband cod-
ing approach applies the same filtering in the horizontal
and vertical directions. For example, the SPIHT algo-
rithm uses 6 levels of decomposition with 9-7 biorthogo-
nal filters in both the horizontal and vertical directions.
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Figure 8: Comparison of the distortion-rate perfor-
mance for SPIHT (with six levels of decomposition),
with the 9-7 biorthogonal filters vs. the Haar filters.

In our scheme, large numbers of levels of decomposi-
tion in the vertical direction and long filter lengths in
the vertical direction, cause increased memory require-
ments. The filtering in the horizontal direction has no
effect on the memory requirements, since one horizontal
row always is reconstructed at one time. For printing
applications, this is useful because the order of recon-
structing lines will match the direction in which the pa-
per exits the printer. To satisfy (and exploit) these con-
straints, we introduce a hybrid filter— a wavelet trans-
form that uses either different numbers of decomposi-
tion levels or different filter lengths, or both, in the
different spatial directions.

As an example, we could perform the full 6 levels
of decomposition using the 9-7 filters in the horizontal
direction. In the vertical direction we could decom-
pose 3 levels with the 9-7 filters, and an additional 3
levels with the 2-tap Haar filters. The total number
of levels of decomposition in each direction would be
6 in this example, but the buffering would be much
less than if the 9-7 filters were used fully on both di-
rections. The total number of levels of decomposition
does not have to be the same in the two directions.
For example, one could perform the horizontal filtering
as before, whereas the vertical direction might consist
of 2 levels of decomposition with the 9-7 filters, and
3 levels of filtering with the Haar filters of length 2,
for a total of only 5. There exist many different possi-
bilities, each presenting its own trade-off between dis-
tortion, rate, and buffering requirements. A further
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generalization is to allow the transforms in the two di-
rections to be of completely different types. For exam-
ple, the horizontal transform might be a wavelet trans-
form, whereas the vertical transform might be a block
DCT. This would present still other possible trade-offs
between distortion-rate performance and buffering re-
quirements, as well as issues concerning visual artifacts
due to “blocking”.

3.1 Ezample with block diagram

Figure 9 shows a block diagram of the decoding
mechanism used with a hybrid filtering structure in the
vertical direction. The figure shows 6 levels of wavelet
reconstruction. The first 3 levels are performed using
Haar filters and the latter 3 levels use 9-7 biorthogonal
filters. It is assumed that all 6 levels of decomposition
in the horizontal direction use the 9-7 biorthogonal fil-
ters (which are not shown). In addition to the filters,
delay elements are shown (labelled “D”) preceding the
high pass filters (and the first low pass filter).

Once the filters’ memories are filled, to produce 64
new outputs (i.e., vertical lines) at the end of the filter
bank, one must provide 1 scalar input at L1 and H1,
2 inputs at H2, 4 at H3, 8 at H4, 16 at H5, and 32 at
H6. For some quantization schemes, only the memory
of these filter banks is necessary to completely decode
the image from the wavelet domain. For other types of
quantization, namely zero-tree encoding, we must make
use of the delay elements shown in Figure 9.

In EZW coding, information from different bit planes
must be temporarily stored until entire wavelet coeffi-
cients can be deduced. Once wavelet coefficients are
known, they can (in the proper order) by sent into the
filters and propagated through the filter bank to pro-
duce output image values. The “D” boxes represent
the process of accumulating bit plane information and
delaying the input until wavelet coefficients are fully
known (one by one). For EZW coding, for example,
the total memory requirements are the sum of the filter
memories and the sum of the delay memories. A sub-
stantial savings in memory over the usual full-image
EZW decoding can still be achieved.

In general, the memory requirements can be divided
into a portion required by the inverse filtering opera-
tions (to keep the filters’ memories filled), and an ad-
ditional portion required by the quantization scheme
(depicted by the boxes labeled D). Memoryless scalar
quantization (SQ) requires no extra storage, whereas
predictive SQ and a context-based adaptive entropy



coded SQ might require some extra coefficients to be
stored and used for prediction or context during recon-
struction. Zerotree-based schemes also require extra
storage beyond the amount required for the filters.
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Figure 9: Block diagram of hybrid filter wavelet decoder
for vertical direction.

4 ReEesuLTs AND CONCLUSIONS

The 24-bit color Lena image was compressed by
a factor of 100:1 down to 0.24 bpp by three differ-
ent versions of the coder. We display only the lu-
minance (Y) component of all images. Figure 10(a)
shows the Y component of the original image, and
Figure 10(b) shows the result of SPIHT compression.
The PSNR is 30.77 dB. Here we report a color PSNR
by first averaging the three component colors’ MSEs
to produce MSE,,, and then taking a logarithm as:
PSNR = 10log;(255% /M SE,,). In Figure 10(c) and
(d), the horizontal filtering is unchanged from that used
in the original SPIHT algorithm. In (c), the vertical fil-
tering uses 6 levels of decomposition with Haar filters,

and the PSNR drops to 29.60 dB. In (d), the vertical
filtering uses 3 levels of decomposition with the 9-7 fil-
ters, and an additional 3 levels with the Haar filters.
The PSNR is 30.64 dB. A numerical comparison of the
performance of various versions is given in Table 1.

Decomposition | Decomposition | PSNR
Levels with Levels with (dB)
9-7 filters Haar filters

6 0 30.77
5 1 30.76
4 2 30.73
3 3 30.64
2 4 30.42
1 5 30.05
0 6 29.60

Table 1: PSNR results for color Lena image at 0.24 bpp,
using the original SPIHT algorithm, and bit-stream re-
ordering with various hybrid filters.
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