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ABSTRACT

This paper reviews the progress of the 4.8 kb/s
speech coder project at UCSB for NASA’s Mobile Satel-
lite Experiment (MSAT-X) under the administration and
technical management of the Jet Propulsion Laboratory.
The purpose of MSAT-X is to develop the technologies
needed to make feasible a nationwide mobile communica-
tions system using a satellite as the relay station. The
UCSB project has led to two alternative coding algo-
rithms, both of which use vector quantization (VQ) and
offer a reasonably high quality of ’natural’ speech repro-
duction at 4.8 kb/s with a moderate coding delay and a
fairly high tolerance of transmission errors. A zero
redundancy error control technique for VQ is described.

1. Introduction

In 1984, a three year research project was initiated at
UC Santa Barbara (UCSB) to explore the feasibility of
speech coding at the rate of 4.8 kb/s while retaining "nearly
toll quality” and to implement a breadboard prototype that
can operate in real-time at this bit rate while handling the
rather severe conditions of a 5 kHz radio channel between a
land mobile vehicle and a satellite in geosynchronous orbit.
This project was sponsored by NASA and administered by
the Jet Propulsion Laboratory (JPL) as part of NASA’s
Mobile Satellite Experiment (MSAT-X).

This was indeed a challenging project requiring a sub-
stantial advance beyond the 1984 state-of-the-art in speech
coding. The prospect for meeting all of the demanding
objectives for the coder seemed rather doubtful from the
outset. Nevertheless, while cognizant of the high risk nature
of the project, JPL chose to go ahead and awarded two
separate three-year contracts for the speech coder work, one
to UCSB and one to Georgia Tech. This paper reviews the
progress and current status of the UCSB project. At this
stage, the prospects for successfully meeting the key objec-
tives are much higher than originally anticipated. Completion
of the project is expected at the end of 1987 when a hardware
prototype will be completed that can implement both of the
coding algorithms developed under the contract.

This work was performed for the Jet Propulsion Laboratory, California

Institute of Technology, sponsored by the National Aeronautics and
Space Administration.

1.1. Objectives

The speech coder must operate at a bit rate of 4.8 kb/s,
have a total coding delay of at most 50 ms, have negligible
degradation due to random bit errors with a somewhat bursty
character and average bit error probability of 1073, have
graceful degradation under short fades and rapid recovery
from long fades, achieve good speech performance in the
presence of typical vehicle acoustic background noise, and
ultimately be implementable in a small low-power package.

Our first and major concern was the voice quality objec-
tive. Although "near toll quality” was not quantitatively
defined, the intent was to achieve high intelligibility, the
absence of any obvious degradations that could be annoying
or uncomfortable to the listener, and an overall quality
approaching that of a good long-distance telephone call. An
important reference point is the widely used Dept. of Defense
LPC-10 coder at 2.4 kb/s which suffers from a lack of natur-
alness having a distinct 'buzzy’ quality, some loss of speaker
recognizability, and very high sensitivity to environmental
noise. Thus, we had two somewhat extreme reference points,
toll telephone quality on the one hand and LPC-10 on the
other hand. Perhaps the best coding algorithm available in
1984 that approached the quality objectives was adaptive
transform coding at 16 kb/s and due to its complexity the
only real-time implementation used a large array processor
with a mainframe host computer. On the other hand, increas-
ing the bit-rate of LPC to 4.8 kb/s was known to offer very
little improvement in quality over LPC-10.

The first indication that the objectives might be at all
feasible came in June 1984 at ICC in Amsterdam, when a
paper by Schroeder and Atal [1] was presented that intro-
duced a technique called stochastic coding (later called code
excited linear prediction (CELP) which demonstrated a
remarkably high quality that might be achievable at a pro-
jected rate of 4.8 kb/s. The catch was that the computer
simulation of this coder required the use of a Cray I and
operated in 125 times real-time. Furthermore, the bit-rate
was still a ’projected’ rate since the key filter parameters
were left unquantized and it was not known how to do this
quantization with the available bit allocation without severely
degrading the voice quality.

Another milestone was the emergence of effective
Multi-Pulse LPC coding algorithms which were beginning to
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show promise of achieving good quality at rates between 9.6
and 16 kb/s, albeit with a high complexity.

The focus of our prior work in speech coding at UCSB
was in the application of Vector Quantization techniques to
waveform coding. This work led to the development of
Adaptive Vector Predictive Coding, a VQ based generaliza-
tion of ADPCM. With this background we began our work
on the MSAT-X project in the fall of 1984.

2. Project History

Qur efforts in the first year of the project centered on
parallel studies of several approaches to speech coding using
VQ techniques. These included pitch synchronous transform
coding using hierarchical vector quantization [2], and vector
quantized Multi-Pulse LPC [3]. We quickly narrowed down
the candidates to two new coding approaches, Vector Adap-
tive Predictive Coding (VAPC) [4,5] and Vector Excitation
Coding (VXC) [6,7]. Both of these techniques continued to
remain promising as the algorithm and simulation studies pro-
gressed so that we have chosen to continue with both in
parallel and aim for a hardware prototype that can implement
either technique with suitable firmware. In this paper we
concentrate on presenting an overview of the two algorithms,
the use of a pseudo-Gray error control technique for VQ, and
briefly discuss the hardware implementation issues.

3. Vector Adaptive Predictive Coding (VAPC)

VAPC [4,5] is a new speech coding algorithm which
greatly improves the performance of conventional Adaptive
Predictive Coding (APC) [8] by using VQ techniques. Due
to the power of VQ, VAPC has been able to reduce the bit-
rate of APC from about 16 kb/s to 9.6 kb/s or 4.8 kb/s while
maintaining roughly the same speech quality as in the older
APC coders. In fact, VAPC evolved from Vector Predictive
Coding, or Vector DPCM [9], although it is now almost com-
pletely different from the original Vector DPCM scheme.

3.1. Coding Algorithm

The structure of our first version of VAPC is similar to
the APC coder in [8] except that the scalar quantizer and the
LPC predictor in APC are replaced by a vector quantizer and
a vector predictor, respectively [4]. The transmitter first uses
a long-term predictor, or "pitch predictor”, to remove the
redundancy in speech waveforms due to pitch quasi-
periodicity. A short-term vector predictor is then used to
remove the short-term redundancy remaining in the pitch-
prediction residual, and the final residual is quantized by a
gain-adaptive vector quantizer [10]. In the receiver, the
speech waveform is reconstructed by adding the short-term
and long-term prediction back to the quantized residual.

In order to exploit the noise masking effect using noise
spectral shaping, we replaced the short-term vector predictor
by the usual LPC predictor in a more recent version of
VAPC. To accommodate such a change, it was necessary to
modify the operation of the gain-adaptive vector quantizer
such that the codebook search is performed in a trial-and-
error fashion. The resulting computational complexity, how-
ever, is an order of magnitude higher than that of our earlier
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Figure 1. An efficient coder structure of VAPC

The speech analysis (not shown in Fig. 1) of 4.8 kb/s
VAPC is performed in the following way. For each frame of
20 ms, or 160 samples (8 kHz sampling rate), the pitch
period is first determined using a simple correlation-type pitch
detector. Then, without computing the unquantized optimal
three-tap pitch predictor, we directly search through the
pitch-predictor VQ codebook and pick the candidate pitch
predictor that minimizes the energy of the open-loop pitch-
prediction residual. With direct inverse filtering, such an
exhaustive search requires 2 million multiply-adds/second of
computation for a codebook size of 64. We have developed
a fast search scheme that also finds the same optimal pitch
predictor but is at least 20 times faster. Once the pitch
period and the quantized pitch predictor are determined, we
compute the open-loop pitch-prediction residual and perform
tenth-order LPC analysis on this residual. The LPC parame-
ters are quantized by a switched-adaptive interframe vector
predictive coding scheme [7]. Then, we use the quantized
LPC predictor to inverse filter the open-loop pitch prediction
residual and obtain the open-loop LPC prediction residual.
The rms value of this final residual is quantized to 5 bits and
the quantized value is used as the "gain" of gain-adaptive VQ
in encoding the entire frame. The pitch period, the pitch
predictor, the LPC predictor, and the gain constitute the side
information of VAPC.

An important feature of the efficient structure in Fig. 1
is the zero-state-response codebook, or ZSR codebook, which
is the key to complexity reduction. At 4.8 kb/s, we use a
vector dimension of 20 and a codebook size of 128 for pred-
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iction residual VQ. In a less efficient implementation of
VAPC, the coder has to filter each of the 128 gain-
normalized VQ codevectors for each input vector before a
nearest-neighbor search can begin. The filter used in such
filtering is a "weighted" LPC synthesis filler GW (z /A (z),
where G is the quantized residual gain, W(z) is a perceptual
weighting filter, and 1/A (z) is the LPC synthesis filter using
quantized LPC parameters. The repeated filtering of the 128
codevectors for each input vector is required because the
memory of the filter GW (z)/A(z) is different for each input
vector. By separating the effect of the filter memory, we can
perform the filtering of codevectors only once at the begin-
ning of each frame and use the filtered vectors throughout the
entire frame (see {4] for details).

The ZSR codebook is obtained in the following way.
We pick one codevector at a time from the gain-normalized
codebook of gain-adaptive VQ, set the memory of the filter
GW (z)/A(z) to zero, filter the codevector, and compute the
first 20 samples of the filter output. The resulting vector is a
codevector in the ZSR codebook, and this procedure is
repeated until all the 128 codevectors are exhausted.

After the speech analysis and the ZSR codebook com-
putation are finished, the transmitter in Fig. 1 operates as fol-
lows. For each input vector, the prediction generated by the
pitch predictor is first subtracted from the original speech
vector. The pitch-prediction residual vector is then filtered by
the weighting filter W(z). Then, the zero-input-response vec-
tor of the filter GW (z )/A (z), which is the ringing of the filter
from previously selected gain-normalized codevectors, is
computed and is subtracted from the weighted pitch-
prediction residual vector. The resulting vector is compared
with the 128 codevectors in the ZSR codebook. The index of
the nearest neighbor is sent to the receiver and is also used to
extract the corresponding codevector from the gain-

normalized codebook. The extracted codevector is used to
reset the memory of the filter GW(z)/A(z) (for computing

the next zero-input-response vector), and a scaled version of
it is also used to excite the LPC synthesis filter, whose output
is then used in pitch prediction of the following speech vec-
tors. The process continues until all eight 20-dimensional
vectors in a frame are encoded.

At the receiver, the side information and the VQ index
are first decoded. The decoded codevector is scaled up by
the gain G, and the resulting vector is used to excite the LPC
synthesis filter and the pitch synthesis filter to obtain the
reconstructed speech. An adaptive postfilter is then used to
enhance the quality of the reconstructed speech [5].

The adaptive postfilter has the following transfer func-
tion
_1 —f:(z/?)) a-

1-P@hy)

where P (z) is the LPC predictor obtained by performing LPC
analysis on the decoded speech, and the first-order filter sec-
tion (1 — uz!) is used to compensate for the muffling effect
of the postfilter. Typical values of y and & are 0.8 and 0.5,

respectively. The postfilter greatly improves the perceptual
quality of VAPC-coded speech without introducing significant

H(z) pz ), 0<8<y<,0<p< 1)

distortion, For clean speech, the postfilter has reduced the
coding noise to an essentially inaudible level. With
postfiltering, VAPC at 4.8 kb/s is capable of producing very
good communication quality speech which is natural-
sounding, clean, intelligible, and quite close to the original.

3.2. Effects of Noisy Speech and Channel Errors

The 4.8 kb/s VAPC coder has also been simulated using
noisy speech as the input. Unlike vocoders, VAPC does not
break down even at a high input noise level. For speech cor-
rupted by truck noise at an SNR as low as 6 dB, the coded
speech still maintains reasonably good intelligibility and qual-
ity. This is not surprising since VAPC is basically a
waveform coder, which is inherently robust to background
noise.

The effect of channel errors on speech quality has also
been simulated. The transmitter output bit stream is cor-
rupted by simulated channel errors that are generated by
JPL’s mobile satellite channel simulator. The average bit-
error rate is 10™, but the errors are quite bursty. During 30
seconds of speech utterance, there are about 12 to 15 error
bursts on average, but typically only 2 or 3 of them have
audible effect in the decoded speech even without error pro-
tection. Thus, VAPC appears to be reasonably robust to
channel errors. The VQ codebook addresses can be partially
protected from errors through the use of pseudo-Gray coding,
discussed in a later section. To further improve the robust-
ness of VAPC, we are currently investigating error protection
and interframe parameter smoothing schemes.

3.3. Real-Time Implementation

The VAPC and postfiltering algorithms have been
implemented in real-time hardware using the AT&T DSP32
floating-point DSP chip. The full-complexity VAPC algo-
rithm requires about 3.5 million multiply-adds/second of com-
putation to implement. With system overhead, the overall
complexity exceeds the capability of a 4-MIPS DSP32 chip.
As a first step, we used a single DSP32 chip (4 MIPS capa-
bility) to implement a simplified version of VAPC which has
a complexity of 3 million multiply-adds/second. The speech
coded by this real-time VAPC coder has a somewhat higher
level of coding noise than that obtained by computer simula-
tion of the full-complexity VAPC; however, the speech still
sounds very natural and is quite intelligible. We are currently
implementing the full-complexity VAPC algorithm using a
faster DSP32 chip which has an instruction cycle of 160 ns
rather than 250 ns; we expect the quality of coded speech
will be greatly enhanced after this is completed.

4. Vector Excitation Coding

Vector Excitation Coding (VXC) is a powerful new
technique for digital encoding of analog speech signals for
transmission or storage at medium and low bit rates. In a
generic VXC coder, a vocal-tract model is used in conjunc-
tion with a set of excitation vectors (codevectors) and a
perceptually-based error criterion to synthesize natural-
sounding speech. The original embodiment of this concept
was Code Excited Linear Prediction (CELP) {11, 12] in which
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Gaussian random variables are used for the codevector com-
ponents. CELP achieves very high reconstructed speech
quality at the cost of high computational complexity (around
40 million multiply/add operations per second for versions
utilizing efficient excitation codebook search procedures).
The specific coder described here, Pulse Vector Excitation
Coding (PVXC), achieves the same high reconstructed speech
quality as comparable schemes, but requires significantly less
computation. A variety of novel complexity reduction
methods have been developed and combined, reducing
optimal codevector selection computation to only 0.55 million
multiply/adds per second. This feature has facilitated the
implementation of a real-time 4.8 kb/s VXC coder using only
one programmable digital signal processor chip [7].

Although PVXC employs some features of Multi-Pulse
LPC (where excitation pulse amplitudes and locations are
determined from the input speech) and CELP (where
excitation vectors are selected from a fixed codebook), there
are several important differences between them. PVXC is
distinguished from other excitation coders by the use of a
precomputed and stored set of pulse-like (sparse) codevectors.
This form of vocal-tract model excitation is used together
with an efficient error minimization scheme in the codebook
search procedure. Finally, PVXC incorporates an excitation
codebook which has been optimized using an iterative train-
ing procedure to minimize the perceptually-weighted error
between original and reconstructed speech waveforms [7].

The coder is well-suited for operation in a mobile
environment. Simulation studies have shown that coder per-
formance is very robust to both white and vehicle noise-
corrupted input speech. Furthermore, simulations have shown .
that the coder is inherently robust to the effects of channel
errors.

4.1. PVXC Coding Algorithm

Fig. 2 presents the basic structure of a PVXC encoder
and decoder. The encoder shown is a conceptual description
only - details conceming the actual computation performed
are described later.

The original speech input s, is a vector with a dimen-
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Figure 2. Block diagram of the PVXC speech
coder

sion of k = 40 samples. The input vector s, is preprocessed
to generate Z,, which is subtracted from each member of a
ensemble of N weighted synthetic speech vectors {%;},
j € {1,...N}. The ensemble {Z;} is generated by filtering
pulse-like codevectors ¢; with two time-varying, cascaded
LPC synthesis filters H;(z) and H(z). H;(z) is a
conventional three-tap all-pole filter which generates the spec-
tral fine structure (due to pitch), and H,(z) consists of an
all-pole LPC synthesis filter in cascade with a pole/zero per-
ceptual weighting filter. The purpose of the weighting pro-
vided by W(z) and incorporated into H,(z) = H,(z)W (z) is
to shape the spectrum of the error signal so that it is similar
to the spectrum of s,, thereby masking distortion which
would otherwise be perceived by the human ear.

In synthesizing {2;}, each pulse codevector is scaled by
a variable gain G; which is determined by minimizing the
mean-squared error between the weighted synthetic speech
signal 2; and the weighted input speech vector z,. The gain
is optimized for each codevector according to:

>

<Zi,z,>
- Son
Gi= 5 5o @)
2 >
where < -, - > denotes a Euclidean inner product.

An exhaustive search is performed for every s, to deter-
mine the excitation vector ¢; which minimizes the squared
weighted Euclidean distortion || €; [|? between z, and Z;.
Once the optimal ¢; is selected, a codebook index which
identifies it is transmitted to the decoder together with the
associated gain. The parameters of H;(z) and H,(z) are
transmitted as side information once per input speech frame
(every 20 ms).

The complexity of a standard VXC encoder can be
reduced by removing the effect of synthesis filter memory on
the choice of an optimal codevector. This is performed (in
the encoder only) by finding the zero input response of the
cascaded synthesis filters H,(z) and H,(z) and then subtract-
ing this response from the weighted speech signal r, to pro-
duce the input vector to the codebook search z,. Once this
deterministic component has been removed, the initial
memory values in H,(z) and H;(z) can be set to zero, reduc-
ing the arithmetic operations required to synthesize {%}.
After the optimal codevector is selected, the filter memories
are updated for encoding the subsequent vector.

A more significant complexity reduction technique,
Sparse Vector Fast Search (SVFS) [6], exploits the fact that
when the initial memory in the long and short-term IR syn-
thesis filters is set to zero, the output can be expressed as a
matrix-vector product:

ij = Gj HCJ', 3

where 2; is a k-dimensional weighted synthetic speech vec-
tor, and H is a £ X k& lower triangular matrix whose elements
are from the impulse response h(m) of the combined long-

term, short-term, and weighting filters. Egq. (3) describes the
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finite-length output of three cascaded IIR filters as a convolu-
tion of two sequences of length k, scaled by a gain. If we
suitably choose each ¢; to have only N, pulses per vector
(the other components are zero), then Eq. (3) can be com-
puted very efficiently. Typically, N,/k is 0.1. Like Multi-
Pulse LPC, SVES exploits the fact that only about four
variable-height excitation pulses are required per pitch period
to synthesize natural-sounding speech.

An enhanced version of this technique [7] combines the
synthesis filter matrix formulation given above and pulse
excitation model with the autocorrelation fast-search tech-
nique [13] to achieve substantially less computation per code-
book search. When used with a designed pulse excitation
codebook of size 256 and dimension k = 40 (instead of the
more conventional Gaussian codebook of size 1024), the
enhanced method requires only 0.55 million multiply/adds per
second. This computational level, 800 times lower than that
required for a standard VXC coder, is achieved while incur-
ring only a slight drop in reconstructed speech quality.

4.2. Real-Time PVXC Implementation

In this section we briefly describe the features of a prel-
iminary version real-time 4.8 kb/s PVXC coder which we
have implemented using a single DSP32 floating-point digital
signal processor. The real-time coder hardware currently
consists of one general-purpose VMEbus/DSP32 development
board with multiprocessing capability [14]. The final proto-
type speech coder will be based on our own architecture con-
sisting primarily of three DSP32 chips and a microcontroller
(see Section 6).

The short-term prediction coefficients are differentially
encoded using a 27-bit switched-adaptive vector predictive
coding scheme [7]. The three Ilong-term prediction
coefficients are vector quantized using a 6-bit codebook.
Seven bits are used for the "pitch" term in the long-term
filter, and eight bits are used to identify each excitation vector
in the frame. A Lloyd-Max scalar quantizer is used to
encode the four gain terms. Four bits are reserved for frame
synchronization and bit error detection, for a total of 96 bits
per frame. The decoder contains an adaptive postfilter for
enhancing the decoded speech. Total memory usage is 1.5K
words for instructions and 5K words for data, with 2.5K
remaining for additional enhancements.

4.3. Performance in a Noisy Environment

A speech coder which operates in a mobile system must
exhibit robust performance when the input speech is cor-
rupted by vehicle (e.g. truck or helicopter) noise. It is well
known that in these adverse conditions the performance of
conventional 2400 bps LPC-10 is significantly degraded.
Since PVXC also utilizes LPC techniques, its noisy speech
performance is an important concern for MSAT-X.

Intuitively, one might expect hybrid speech coders such
as VXC (which combine features of waveform and conven-
tional LPC coders) to be robust to noisy speech inputs since
the decoder creates a synthetic waveform with similar time-
domain characteristics as the input signal. This hypothesis
has been verified by PVXC computer simulations. Two
classes of additive input noise were considered: vehicle

(truck) noise and white noise. The signal-to-noise ratio at the
coder input was 6 dB and 12 dB, respectively, for the two
cases. These SNR figures are typical of those expected in the
MSAT-X mobile environment.

Fig. 3 presents original and reconstructed speech signals
of 150 ms duration for the case of truck noise. The original
and decoded residual signals are also shown. The first 60 ms
of the plots show signals corresponding to truck noise only
(speaker is silent) followed by voicing onset. Note that both
the speech and the truck noise are faithfully reproduced by
the decoder. Informal listening tests show that very negligi-
ble degradation in speech quality is incurred due to the vehi-
cle noise.

Original
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Figure 3. Vehicle noise corrupted original and -
reconstructed waveforms in the PVXC coder. 150 ms. Eg,
SNR of input signal = 6 dB. Residual and excita- “
tion are amplified 15 dB relative to input signal.

Fig. 4 presents similar waveforms for the case of addi-
tive white noise at the input. In this case, the coder exhibits
a "noise-suppression” characteristic - significant attenuation (6
dB) of the high-frequency white noise components can be
observed in the figure. This is due in part to the fact that the
pulse excitation models voiced (periodic) signals better than
the high-frequency noise components. Although the decoded
speech is slightly muffled compared to the original (noisy)
speech, overall quality and intelligibility are actually
improved due to the noise-suppression effect.

Another desirable characteristic for speech coders
operating over a mobile satellite link is robustness to channel
errors. Computer simulations using an MSAT-X channel
model (described earlier) indicate that PVXC is reasonably
robust to errors even in the absence of bit error detection.
The robustness of the coder to burst channel errors can be
improved by incorporating a frame-repeat algorithm in the
decoder. When an error burst is detected in one frame, the
decoder simply uses parameters from the last valid frame to
synthesize the current one. Error protection can be applied to
the most critical parameters - the short-term prediction
coefficients and the pitch. Bit error sensitivities of the
remaining three parameters are relatively small. The excita-
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Figure 4. White noise corrupted original and
0 reconstructed waveforms in the PVXC coder.
SNR of input signal = 12 dB. Residual and exci-
tation are amplified 10 dB relative to input signal.

tion codevector addresses can be partially protected without
redundancy bits through the use of pseudo-Gray coding, dis-
cussed below.

5. Pseudo-Gray Coding

In both the VAPC and PVXC algorithms, a large frac-
tion of-the 4.8 kb/s rate is devoted to the transmission of
codebook addresses to identify specific codevectors (i.e., for
regenerating the residual in VAPC or the excitation in PVXC
and for recovering parameter vectors). The distortion caused
by an isolated channel error occasionally causes a very audi-
ble glitch and if this recurs frequently it can have a
significant impact on the perceived speech quality. The low
bit rate (4.8 kb/s) constraint gives little opportunity to allocate
redundancy bits for error protection. In this section, we
present a technique for reducing the degradation in speech
quality when channel errors cause erroneous codevector
addresses, or indices, to be received. The technique, called
pseudo-Gray coding, does not require the addition of redun-
dancy bits and thus provides an effective partial solution to
the problem of channel errors.

The transmitted bit stream carries the binary indices of
optimally chosen codevectors. The effect of channel errors is
to cause the incorrect decoding of received codevector
indices. Thus, a distortion is introduced due to the effect of
errors in transmitted binary indices. The assignment of
indices to vectors in a VQ codebook (i.e. the ordering of the
codebook) plays a vital role in determining how significant
channel errors will be in increasing overall system distortion.
By assigning indices to codevectors in such a way that close
indices (in the Hamming distance sense) correspond to close
vectors (in terms of a distance function between vectors), the
average distortion caused by channel error effects can be
reduced.

The technique of pseudo-Gray coding was developed
for a fixed metric type of distortion measure, such as MSE,
the squared Euclidean distance between vectors. In some

applications, however, the actual encoding is based on a time
varying perceptually weighted distortion measure. Neverthe-
less, the coding method still provides effective protection in
the event of a channel error by assuring that the incorrectly
received index is likely to yield a decoded vector that has a
relatively small distance from the optimal codevector selected
at the transmitter. An important observation to make is that
there always exists some reordering (possibly the original
ordering) of a given codebook which provides a nonnegative
decrease in overall average distortion in the VQ system.
Hence it can only be an improvement in any VQ system to
perform optimal pseudo-Gray coding.

5.1. Problem Formulation

Suppose an analog input vector in k dimensions is
coded using a given codebook

CB = {wg, wy, -+ Wy_1}

150 mS'whose subscripts (indices) correspond to channel codewords,

assuming a b-bit binary representation of the indices where
the codebook size is N =2°. Hence, b represents the
number of bits in each binary index i that corresponds to
codevector w;.

Let d(x , y) be a real-valued distance function (metric)
between any two vectors X and y of R*. Let p (w) be the pro-
bability that a particular codevector is selected by the encoder
to represent the input vector.

5.2. Channel Errors

We assume a memoryless binary symmetric channel
with crossover probability €. An error in one or more of the
bits of a transmitted index will result in an incorrectly
received index and thus an incorrectly decoded codevector.
The MSAT-X channel is in fact bursty, but interleaving is
used to reduce the bursty character. Pseudo-Gray ecoding may
not offer any advantage during a dense burst of errors but
will be helpful during periods when errors are relatively
sparse. In any case, there is no price to pay for the use of
this technique.

5.3. Distortion Minimization

We seek a codebook with maximum protection against
channel errors. The optimal arrangement of a codebook will
in general depend upon the statistics of the input vectors. We
instead introduce a minimization of an upper bound on the
average distortion that is independent of the input statistics.
We will attempt to minimize a quantity called the bit error
distortion which is independent of the actual vectors con-
tained in the codebook CB, and is affected only by the
assignment of binary indices to those codevectors. That is,
the order in which the vectors are placed in the codebook
determines the resulting bit error distortion, whereas the
actual choice of which vectors belong in a codebook will be
completed during the codebook design process. There are at
most a finite number of such index assignments. Thus, there
is at least one "best" codebook arrangement, in the sense of
yielding the minimal average distortion caused by bit errors
inflicted upon indices due to channel noise. Hence it would
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be advantageous to determine an algorithm that takes as input
a codebook and yields a rearrangement of the codevectors
that minimizes the expected time average bit-error distortion.
This is the main idea behind what we call Pseudo-Gray Cod-
ing (analogous to scalar Gray Coding) which is discussed
below.

Let the set of N = 2? vector indices be denoted by
I={0,1, ---,2°1}

using decimal integers for notational brevity, but understand-
ing that each integer represents a b-bit binary word. For any
two binary words i , jel, let H(i , j) denote the Hamming
distance between i and j, i.e., the number of bit positions in
which / and j differ. For each binary index iel and each
integer m with 0 < m < b, define the m" neighbor set of i
as

N"(@)={jel :H( ,j)=m},

the set of all integers whose binary representations differ
from that of i in exactly m positions (i.e. with Hamming dis-
tance equal to m). If index j is transmitted, N™(j) is the set
of all indices that can be received if exactly m bit errors
occur.

In order to describe the assignment of binary indices to
codevectors, let f(w) be a one-to-one mapping or permuta-
tion function, from the codebook CB to the index set /. In
other words, f specifies a2 permutation (or reordering) of the
codebook CB by assigning new indices to its vectors.

Suppose an input vector v is approximated (vector quantized)
by the codevector w; and suppose that index j is received.
The average distortion due to the combined effect of the
quantization and channel index error (which causes index i to
be improperly received as index j ) can be upper bounded by
the triangle inequality as

Eld(v,w))]=E[d(v, W)+ E[d(v, w;) —d(v, Wil
SE[W, Wil + E[dwy) , W)l

where i(v) denotes the index of the codevector selected by
the encoder and is a function of the input v, and j denotes
the received index that depends on both i (v) and on the chan-
nel bit errors.

The right hand side of the above inequality provides an
upper bound for the average distortion of the VQ system. We
seek to minimize this upper bound (rather than the actual
average distortion) over all possible permutation functions.
This avoids the need for explicit consideration of the input
vector statistics in optimizing the choice of permutation. The
first term of this bound, E[d(v, w;))], the expected distor-
tion in the absence of channel errors is independent of the
assignment of indices to codevectors.

In order to minimize the upper bound in this case, we
must find a permutation which minimizes the second term,
which we call the bit error distortion:

where the minimization is taken over all possible codebook
permutations f. by minimizing the upper bound rather than
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the exact distortion, we have eliminated any need to consider
the distribution of the input vector Vv in order to find an
optimal permutation.

Evaluating the bit error distortion gives the result

2b1
D = Y Cw,)
r=0

where C(w, ) is the rotal cost associated with a codevector w,
and is given by

b
Cw,)= Y e"(1-e>"C,,(w,)
m=0
where C,, (W, ) is the m™ cost of codevector w, which meas-
ures the relative contribution to the overall expected bit error
distortion of the codebook when exactly m bit errors occur
and w, is selected by the encoder, defined as

Cnw)=pw,) X dW,,w,)
xeN™(r)

If we use notation involving permutation functions f,
and note that for any index ge/, f () = w,, then we want
to find

21
min {Z C (f‘l(r))}
f r=0

where the minimization ranges over all possible permutation
functions f. We desire to minimize this quantity in the hope
of reducing the expected distortion introduced to the VQ sys-
tem from the combined effect of coding error and channel
noise. In general, as can be seen in the above equation, this
minimization involves the knowledge of the channel’s error
transition probability € as well as the distance function 4 and
the codevector probabilities p (w, ).

54. The Algorithm

We have developed an algorithm that rearranges a code-
book such that the summation above is a local minimum. The
main idea of the algorithm involves iteratively switching the
positions of two codevectors, reducing the expected value of
bit-error distortion at every switch. Thus a monotonic
decrease in distortion results as the algorithm progresses. The
choice of which pair of vectors to switch in the codebook at
each iteration is determined by an ordering process. Each
codevector v is assigned a number, C (v) as presented earlier.
The codevectors are sorted in decreasing order of their cost
values. The vector with the largest cost, say v is selected as
a candidate to be switched first. A trial is conducted, where
vy is temporarily switched with each of the other codevectors
to determine the potential decrease in the summation of costs
of all the vectors following each switch. The codevector
which yields the greatest decrease in summed cost when
switched with v, is then switched with vy If no such vector
exists (an unsuccessful switch attempt), then the second
highest cost vector is used to check for its most cost efficient
switch, and so on. If every codevector is such that when
switched with every other vector, an increase in summed cost
results, then the algorithm halts in a locally optimal state.




We have experimented with this algorithm on a variety
of codebooks ranging in size from 16 to 256 and found that a
useful drop in average distortion can be achieved by applica-
tion of the algorithm on a codebook with a random initial
index assignment.

6. Hardware Issues

From the outset, we recognized the need to develop the
expertise and the hardware resources for the demanding
requirements of implementing VQ based coders in real-time.
We have been developing semi-custom IC chips to do the
intensive pattern matching task of codebook search in VQ. A
stepping-stone in learning about VQ based hardware imple-
mentation was the design of a real-time version of an Adap-
tive Vector DPCM. This coder used a Codebook Search Pro-
cessor (CSP), a single board VQ processor that is centered
around a VLSI pattern matching chip [15] and a single
TMS32010 signal processor chip. This coder operates in
real-time at rates in the neighborhood of 14 kb/s and is
described in another paper at this conference [16]. Subse-
quently, as our algorithm development advanced, we recog-
nized the need for a more powerful DSP processor and
migrated to the AT&T DSP32. One of the advantages of
selecting a floating point chip was the faster software
development resulting from the avoidance of handling scaling
and other problems that arise with the limited word length of
fixed point DSP chips. It becomes very easy to transfer an
algorithm from a general purpose computer simulation to a
real-time implementation without degrading the performance
due to word-length reduction.

Our final hardware implementation, to be completed in
Fall 1987, will consist of a single board containing three
AT&T wge® DSP32 chips, two with externally addressable
memory, a microcontroller chip and an extended range AT&T
15-bit codec chip. Complexity reduction techniques for both
algorithms has eliminated the need to use the CSP as a VQ
coprocessor board. In fact, we expect that a second genera-
tion version of our speech coder board will be implementable
with a single DSP32 chip running at the higher clock rate of
25 MHz. We have already achieved real-time implementation
of somewhat simplified versions of VAPC and PVXC in the
laboratory using a single DSP32 chip.

7. Conclusions

We have described two speech coders, VAPC and
PVXC, both of which achieve very high quality at low bit-
rates, and which require a tolerable level of computational
complexity. Both are reasonably well-structured and in
somewhat simplified form are suitable for real-time imple-
mentation using only one or two of today’s programmable
DSP chips.

The Jet Propulsion Laboratory is currently planning ini-
tial field trials of our prototype speech coder in 1988. In addi-
tion to the new understanding and new algorithmic techniques
that are spinoffs of this project, it is possible that one of our
algorithms may be adopted or modified for a future commer-

cial mobile satellite service. It also appears that our coding
algorithms will be very attractive for high-quality speech cod-
ing in other mobile communication applicatiors at rates
between 4000 and 9600 bits per second.
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