
Network computing capacity
for the reverse butterfly network

Rathinakumar Appuswamy, Massimo Franceschetti,
Nikhil Karamchandani, and Kenneth Zeger

Abstract—We study the computation of the arithmetic sum
of the q-ary source messages in the reverse butterfly network.
Specifically, we characterize the maximum rate at which the
message sum can be computed at the receiver and demonstrate
that linear coding is suboptimal.

I. INTRODUCTION

Suppose a set of source nodes in a network generates
independent messages and a single receiver node computes a
function of these messages. The objective is to characterize the
maximum rate of computation, that is the maximum number
of times the specified function can be computed per network
usage. In [2], we presented a network computation model that
is closely related to network coding [1], [13], thus extending
network “coding” to network “computing”.

Network coding with a single receiver is equivalent to
the special case of network computing when the function
to be computed is the (vector) identity map - that is, the
receiver wants to reproduce all of the messages generated
by the sources. Routing is known to be rate-optimal for
single receiver network coding [9]. We extend the network
coding model to computation of arbitrary functions of source
messages. Our work is related to that of Ramamoorthy [11],
who studied computing the parity of a collection of binary
sources in a network with two sources and arbitrary number
of receivers, or vice versa; however, he considered only
the existence of a solution, rather than the rate at which
the solution can be computed. Problems related to function
computation have been studied in a such areas as communi-
cation complexity [8], [12], average consensus [4], [6], and
distributed computation [3], [10]. The reader is referred to
[7] for a review of various approaches to the problem. The
model we use is concerned with the maximum possible rate
of computing a given function at a node where, the set of
allowable interactions is constrained by the network topology.

In this paper, we study the problem of computing the
arithmetic sum of the source messages in the reverse butterfly
network (obtained by reversing the direction of all the edges in
the well known multicast butterfly network) as an illustrative
example. We first find the maximum rate at which a modulo
sum can be computed and use that result to determine the

This work was supported by the National Science Foundation, AFOSR, and
the UCSD Center for Wireless Communications

The authors are with the Department of Electrical and Computer
Engineering, University of California, San Diego, La Jolla, CA 92093-0407.
Emails: rathnam@ucsd.edu, massimo@ece.ucsd.edu,
nikhil@ucsd.edu, zeger@ucsd.edu

This paper appeared at the the IEEE International Symposium on Informa-
tion Theory (ISIT), in Seoul, Korea, June 28 – July 3, 2009.

maximum possible rate of computation of the arithmetic sum
(i.e. over Z). We then compare the maximum achievable
computing rate to that using only linear coding. These results
naturally generalize to arbitrary acyclic networks having a
single receiver and will be presented in a future publication.

A. Network model and preliminaries

In this paper, a network N for computation consists of a
finite, directed acyclic multigraph G = (V , E), a set of source
nodes S ⊆ V , and a single receiver T ∈ V − S. Throughout,
let s = |S|. Such a network is denoted by N = (G,S, T). We
will assume (without loss of generality) that if a node has no
in-edges, then it is a source node. An alphabet is a finite set
of size at least two. Each source generates messages, which
are symbols from a fixed alphabet1 A. The objective of the
receiver is to compute a certain function of these messages.

Let B be an arbitrary alphabet. A target function is any map
of the form

f : As → B.

Let + denote the arithmetic sum operation (i.e. ordinary
addition) and let ⊕ denote modulo addition (for a specified
modulus). Some example target functions are defined below.

Example I.1. Let B = As. The identity target function is

f (x1, . . . , xs) = (x1, . . . , xs) .

Example I.2. Let A = {0, 1, . . . , q − 1} and B =
{0, 1, . . . , (q − 1)s} with q ≥ 2. The arithmetic sum target
function is

f (x1, . . . , xs) =

s
∑

i=1

xi.

Example I.3. Let A = {0, 1, . . . , q − 1} and B =
{0, 1, . . . , r− 1}. For q, r ≥ 2, the mod r sum target function
is

f (x1, . . . , xs) = x1 ⊕ x2 ⊕ . . .⊕ xs.

The network computation problem consists of a single-
receiver network N , and a target function f , whose arguments
are the network source messages. The goal is to compute f at
the receiver T .

We will view each network source node in S as generating
a vector of k alphabet symbols (e.g. modeling a source output
over k consecutive time units). Every out-edge of each node in
V carries a vector of n alphabet symbols, which is a function of

1For simplicity we assume each source has associated with it exactly one
message, but all of the results in this paper can readily be extended to the
more general case.

1

the vectors carried by the in-edges to the node and the node’s
message vector if it is a source. The objective of the receiver
is to construct a vector of k alphabet symbols, such that for
each i ∈ {1, 2, . . . , k}, the i-th component of the receiver’s
computed vector equals the value of the target function f
applied to the i-th components of the source message vectors.

Let S = {µ1, . . . , µs} and fix a mapping

α : S → Ak.

For each m ∈ {1, 2, . . . , s}, we say that the k-dimensional
quantity α(µm) is a message vector that is generated by
the source µm. The i-th component of α(µm) is denoted by
α(µm)i.

For each node u, let Ei(u) denote the set of in-edges of u.
For each network edge e = (u, v) ∈ E , an encoding function
ge is a mapping

ge :

{

An|Ei(u)| ×Ak → An if u ∈ S

An|Ei(u)| → An otherwise.

A decoding function ψ (at the receiver T) is a mapping

ψ : An|Ei(T)| → Bk.

A (k, n) network code (with respect to a particular alphabet
A) for a network is a collection of encoding functions, one
for each network edge, together with a decoding function
at the receiver. For each edge e, let ze ∈ An denote the
vector carried by e and denote the in-edges of the receiver by
e1, e2, . . . , e|Ei(T)|. A (k, n) network code is called a solution
for computing f if, for each i ∈ {1, 2, . . . , k}, and for each
mapping α, we have

ψ
(

ze1 , · · · , ze|Ei(T)|

)

i
= f (α(µ1)i , · · · , α(µs)i) .

In this case, we say the rational number k/n is an achievable
computing rate. When the alphabet A is a ring, a (k, n)
network code is said to be linear if all the encoding functions
are linear (i.e., at each node, its out-edges carry a linear
combination with matrix coefficients over A of all the vectors
on the in-edges of that node). We do not require the decoding
function ψ to be linear in a linear network code, thus allowing
a linear network code to compute non-linear target functions.

The computing capacity of a network N with respect to
target function f is

C(N , f) = sup
{ k

n
: ∃(k, n) network coding

solution for computing f
}

.

The computing capacity is thus the supremum of all achievable
computing rates for a network. The linear computing capacity
Clin(N , f) and routing computing capacity are defined simi-
larly by restricting the set of allowable encoding functions.

II. SUMMARY OF THE RESULTS

Figure 1 shows the well-known multicast butterfly network
(introduced in [1]). The network shown in Figure 2 is obtained
by reversing the direction of all the edges of the butterfly
network, and we call the result the reverse butterfly network

PSfrag replacements

Source

Receiver 1 Receiver 2

Fig. 1. The butterfly network.

PSfrag replacements

Source 1 Source 2

Receiver

Fig. 2. The reverse butterfly network.

The reverse butterfly network has sources S = {µ1, µ2} and
receiver node T .

Theorem II.1. Let N denote the reverse butterfly network and
let the alphabet be A = {0, 1, . . . , q−1}. If f is the arithmetic
sum target function, then the computing capacity of N is

C(N , f) =
2

logq (2q − 1)
.

Theorem II.2. Let N denote the reverse butterfly network and
let the alphabet be A = {0, 1, . . . , q−1}. If f is the arithmetic
sum target function, then any linear computing capacity of N
is

Clin(N , f) = 1.

The phrase “any linear computing capacity” in Theorem II.2
refers to the possibility that different underlying ring structures
of the alphabet A can give rise to different types of linearity.

Remark II.3. The arithmetic sum can be computed in the
reverse butterfly network at a computing rate of 1 using only

2

routing (by sending α(µ1) down the left side and α(µ2) down
the right side of the graph). From a simple cutset argument, it
follows that the routing computing capacity is equal to 1 for
all q ≥ 2.

Remark II.4. The computing capacity C(N , f) obtained in
Theorem II.1 depends on the coding alphabet A. In contrast,
for ordinary network coding (i.e. when the target function is
the identity map), the coding capacity and routing capacity
are known to be independent of the coding alphabet used [5].

Remark II.5. The ratio of the coding capacity to the routing
capacity for the multicast butterfly network with two messages
is 4/3 (see [5]), i.e. coding provides an advantage of about
33%. The corresponding ratio of computing rates for the
reverse butterfly network increases as a function of q from
approximately 1.26 (i.e. 26%) to 2 (i.e. 100%) as q → ∞. Fur-
thermore, in contrast to the multicast butterfly network, where
the coding capacity is equal to the linear coding capacity, in
the reverse butterfly network the nonlinear computing capacity
is strictly greater than any linear computing capacity.

Remark II.6. It was pointed out in [5], that an open question
is whether the coding capacity of a network can be irrational.
Our Theorem II.1 demonstrates that the computing capacity
of a network can be irrational.

A. Discussion

In the next section, the proof of achievability in Theo-
rem II.1 will use a result on computing the modulo sum in the
reverse butterfly network. It is based on the observation that
computing the arithmetic sum of the source messages over an
alphabet A = {0, 1, . . . , q} can be accomplished by computing
the modulo sum of the sources for sufficiently large modulus.

III. PROOFS

PSfrag replacements

µ1 µ2

T

x
1 ⊕

x
2

y 2

x
1

x
1
⊕

x
2
⊕

y
2

y
1

x
2 ⊕

y
2

x 1
⊕

x 2
⊕

y 1
⊕

y 2

Fig. 3. The reverse butterfly network with a solution for computing the
mod q sum target function. The messages vectors are α(µ1) = (x1, x2),
α(µ2) = (y1, y2), and T computes (x1 ⊕ y1, x2 ⊕ y2). ‘⊕’ denotes mod
q addition.

Lemma III.1. Let N denote the reverse butterfly network and
let the alphabet be A = {0, 1, . . . , q − 1}. If f denotes the
mod q sum target function, then the computing capacity of N
is

C(N , f) = 2.

Proof: We have C(N , f) ≤ 2 from [2, Theorem II.1]. To
establish the lower bound, let k = 2 and n = 1. Consider
the linear code shown in Figure 3, where ‘⊕’ indicates the
mod q sum and where µ1 emits the vector (x1, x2) and µ2

emits the vector (y1, y2). The receiver node T gets x1⊕y1 and
x1 ⊕x2 ⊕ y1 ⊕ y2 on its in-edges, from which it can compute
x2 ⊕ y2 by subtraction. This code achieves a computing rate
of 2.

A. Proof of Theorem II.1

Proof: We have C(N , f) ≤ 2/ logq(2q−1) from [2, Theo-
rem II.1]. To establish the lower bound, we use the fact the that
arithmetic sum of two elements from A = {0, 1, . . . , q − 1}
is equal to their mod 2q − 1 sum. Let the reverse butterfly
network have alphabet Â = {0, 1, . . . , 2(q − 1)}. From
Lemma III.1 (with alphabet Â), the mod 2q − 1 sum can
be computed in N at rate 2. Indeed for every n ≥ 1, there
exists a (2n, n) network code for computing at rate 2 the
mod 2q − 1 sum. So for the remainder of this proof, let
k = 2n. Furthermore, every such code using Â can be “sim-
ulated” using A by a corresponding (2n,

⌈

n logq (2q − 1)
⌉

)
code for computing the mod 2q − 1 sum, as follows. Let
n′ be the smallest integer such that qn′

≥ (2q − 1)n, i.e.,
n′ =

⌈

n logq (2q − 1)
⌉

. Let g : Ân → An′ be an injection
(which exists since qn′

≥ (2q − 1)n) and let the function
g−1 denote the inverse of g on it’s image g(Â). Let x(1), x(2)

denote the first and last, respectively, halves of the message
vector α(µ1) ∈ A2n, where we view x(1) and x(2) as lying in
Ân (since A ⊆ Â). The corresponding vectors y(1), y(2) for
the source µ2 are similarly defined.

Figure 4 illustrates a (2n, n′) code for network N using
alphabet A where, ‘⊕’ denotes the mod 2q− 1 sum. Each of
the nodes in N converts each of the received vectors over A
into a vector over Â using the function g−1, then performs
the node function in Figure 3 over Â, and finally converts the
result back to A. Similarly, the receiver node T computes the
component-wise arithmetic sum of the source message vectors
α(µ1) and α(µ2) as

α(µ1) + α(µ2)

=
(

g−1(g(x(1) ⊕ x(2) ⊕ y(1) ⊕ y(2))) 	 g−1(g(x(2) ⊕ y(2))),

g−1(g(x(2) ⊕ y(2)))
)

= (x(1) ⊕ y(1), x(2) ⊕ y(2)).

For any n ≥ 1, the above solution computes the arithmetic
sum target function in N at a rate of

k

n′
=

2n
⌈

n logq (2q − 1)
⌉ .

Thus for any ε > 0, by choosing n large enough we have a

3

PSfrag replacements

µ1 µ2

T

g(x (1)
⊕

x (2))
g(

y
(2

))

g
(x

(1
))

g
(x

(1
)
⊕

x
(2

)
⊕

y
(2

))

g
(y

(1
))

g(x (2)
⊕

y (2))
g(

x
(1

) ⊕
x
(2

) ⊕
y
(1

) ⊕
y
(2

))

Fig. 4. The reverse butterfly network with a solution for computing the
arithmetic sum target function when A = {0, 1, . . . , q − 1}. ‘⊕’ denotes
mod 2q − 1 addition.

scheme which achieves a computing rate of at least
2

logq (2q − 1)
− ε.

B. Proof of Theorem II.2

Proof: The lower bound follows from the fact that routing
achieves a computing rate of 1.

Let e1, e2 denote the two in-edges of the receiver T . For
any (k, n) linear network solution, the length-n vectors on
edges e1 and e2 can be written as2 M1α(µ1) +M2α(µ2) and
M3α(µ1) +M4α(µ2), respectively, where M1, M2, M3, and
M4 are n× k matrices over A.

We will show that distinct pairs (α(µ1) , α(µ2)) of message
vectors lead to distinct pairs of values carried on e1 and
e2, and thus k ≤ n. Suppose α and α′ are mappings such
that message vectors (α(µ1) , α(µ2)) = (w(1), w(2)) and
(α′(µ1) , α

′(µ2)) = (w(1)′ , w(2)′) in Ak ×Ak satisfy

(M1w
(1) +M2w

(2),M3w
(1) +M4w

(2)) =

(M1w
(1)′ +M2w

(2)′ ,M3w
(1)′ +M4w

(2)′).

Then we have

M1(w
(1) − w(1)′) +M2(w

(2) − w(2)′) = 0

M3(w
(1) − w(1)′) +M4(w

(2) − w(2)′) = 0

where 0 denotes the length-n zero vector. That is, when the
source messages are α(µ1) = w(1)−w(1)′ and α(µ2) = w(2)−
w(2)′ , the edges e1 and e2 each carry the all-zero vector.

On the other hand, when the source message map α is
such that α(µ1) = α(µ2) = 0, the edges e1 and e2 also
each carry the all-zero vector. In this case the arithmetic sum

2In this proof, matrix multiplication and vector addition are performed over
the ring in which the network code is linear and 0 denotes the zero vector
over the same ring.

target function evaluates to 0 + 0 = 0, so in order to prevent
ambiguity the receiver must always decode the target function
value as 0 whenever ze1 = ze2 = 0. Since the arithmetic
sum of any vectors over A is 0 if and only if each of the
sources vectors is 0, the vectors carried on e1 and e2 are both
zero if and only if both source vectors are zero. Thus, we
must have (w(1) −w(1)′ , w(2) −w(2)′) = (0,0) and therefore
w(1) = w(1)′ and w(2) = w(2)′ . Thus for any linear code that
computes the arithmetic sum target function, every distinct pair
of message vectors (α(µ1) , α(µ2)) produces a distinct edge
vector pair (M1w

(1) + M2w
(2),M3w

(1) + M4w
(2)). Hence

|A|2n ≥ |A|2k and the computing rate satisfies k/n ≤ 1.

C. Conclusion

We have illustrated concepts of network computing with
the reverse butterfly network by deriving its non-linear, linear,
and routing computing capacities. More extensive and general
results will be presented in a future publication. In particular,
we can obtain the computing capacity of arbitrary single-
receiver directed, acyclic networks if the target function is
linear over a finite field alphabet. This result, then, can be used
to provide a lower bound on the rate at which the arithmetic
sum target function can be computed in such networks.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow”, IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, July 2000.

[2] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing”, Proceedings of the forty-sixth Annual
Allerton Conference on Communication, Control, and Computing, Mon-
ticello, IL, Sept. 2008.

[3] O. Ayaso, D. Shah, and M. Dahleh, “Lower Bounds on Information
Rates for Distributed Computation via Noisy Channels”, Proceedings of
the forty-fifth Allerton Conference on Computation, Communication and
Control, Monticello, IL, Sept. 2007.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized Gossip
Algorithms”, IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, June 2008.

[5] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network routing
capacity”, IEEE Transactions on Information Theory, vol. 52, no. 3, pp.
777–788, March 2006.

[6] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic gos-
sip: efficient aggregation for sensor networks”, Proceedings of the fifth
international conference on Information processing in sensor networks,
Nashville, TN, April 2006, pp. 69–76.

[7] A. Giridhar and P. R. Kumar, “Toward a theory of in-network compu-
tation in wireless sensor networks”, IEEE Communications Magazine,
vol. 44, no. 4, pp. 98–107, April 2006.

[8] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge
University Press, 1997.

[9] A. Rasala Lehman and E. Lehman, “Complexity classification of net-
work information flow problems”, Proceedings of the fifteenth annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, Jan.
2004, pp. 142–150.

[10] D. Mosk-Aoyama and D. Shah, “Fast Distributed Algorithms for Com-
puting Separable Functions”, IEEE Transactions on Information Theory,
vol. 54, no. 7, pp. 2997–3007, July 2008.

[11] A. Ramamoorthy, “Communicating the sum of sources over a network”,
Proceedings of the IEEE International Symposium on Information The-
ory, Toronto, Canada, July 2008, pp. 1646–1650.

[12] A. C. Yao, “Some Complexity Questions Related to Distributed Com-
puting”, Proc. of eleventh ACM Symposium on Theory of Computing,
Atlanta, GA, April 1979, pp. 209–213.

[13] R. W. Yeung, A First Course in Information Theory, Springer, 2002.

4

