Problem 3.1

Given a string of four bits representing a binary number (e.g. 0001 = 1, 0010 = 2, ...), where the bits are independent and the kth bit (for $k = 0, 1, 2, 3$) is 1 with a probability of p^k, for some $0 < p < 1$. Are the 0th and 1st bit independent given that the number falls between 7 and 9?

Let B_i be the event the ith bit is a 1, and let E be the even the number falls between 7 and 9.

We have $P[B_i] = p^i$

We know that B_0 and B_1 are independent, i.e. $P[B_0 B_1] = P[B_0] P[B_1]$, but are they independent given E? i.e. is $P[B_0 B_1 | E]$ equal to $P[B_0 | E] P[B_1 | E]$?

$$E = \text{“the number is 7, 8, or 9”} = B_3 B_2 B_1 B_0 \cup B_3 B_2 B_1' B_0 \cup B_3' B_2 B_1 B_0$$

which is a disjoint union, so

$$P[E] = P[B_3 B_2 B_1 B_0] + P[B_3 B_2 B_1' B_0] + P[B_3' B_2 B_1 B_0]$$

B_1, B_2, B_3 are independent, so

$$= (1 - p^4) (p^3) (p^2) (p) + (p^4) (1 - p^3) (1 - p^2) (1 - p) + (p^4) (1 - p^3) (1 - p^2) (p)$$

$$= (p^6 - p^{10}) + (p^4 - p^5 - p^6 + p^8 + p^9 - p^{10}) + (p^5 - p^7 - p^8 + p^{10})$$

$$= p^4 - p^7 + p^9 - p^{10}.$$

Thus we have

$$P[B_0 | E] = \frac{P[B_0 E]}{P[E]} = \frac{P[\text{“the number is 7 or 9”}]}{P[E]} = \frac{(p^6 - p^{10}) + (p^5 - p^7 - p^8 + p^{10})}{p^4 - p^7 + p^9 - p^{10}} = \frac{p + p^2 - p^3 - p^4}{1 - p^3 + p^5 - p^6}$$

$$P[B_1 | E] = \frac{P[B_1 E]}{P[E]} = \frac{P[\text{“the number is 7”}] p^{10}}{p^4 - p^7 + p^9 - p^{10}} = \frac{p^2 - p^6}{1 - p^3 + p^5 - p^6}$$

$$P[B_1 B_0 | E] = \frac{P[B_1 B_0 | E]}{P[E]} = \frac{P[\text{“the number is 7”}]}{P[E]} = \frac{p^2 - p^6}{1 - p^3 + p^5 - p^6}.$$

Clearly $P[B_1 B_0 | E] \neq P[B_0 | E] P[B_1 | E]$, so B_0 and B_1 are not conditionally independent, given E.
Problem 3.2: For \(N > q \), assume \(q \) items are randomly assigned to \(N \) boxes. Each box is equally likely and may have more than one item assigned to it.

1. What is \(K(N, q) \), the probability that all \(q \) items are assigned to unique boxes?
 The first item can be assigned to any box. There are \(N \) total boxes and \(N \) possible choices for item 1. The second item can be assigned to any box, except the box the first item is in. There are \(N \) total boxes and \(N - 1 \) choices for item 2. The third item can be assigned to any box, except the boxes the first and second item are in. There are \(N \) total boxes and \(N - 2 \) choices for item 3. And so on... The \(q \)th item can be assigned to any box, except the boxes the first \(q - 1 \) items are in. There are \(N \) total boxes and \(N - (q - 1) \) choices for item \(q \). Thus
 \[
 K(N, q) = P[\text{all } q \text{ items are in distinct boxes}]
 = \frac{N}{N} \cdot \frac{N - 1}{N} \cdot \frac{N - 2}{N} \cdots \frac{N - (q - 1)}{N} = \frac{N!}{N^q (N - q)!} = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)
 \]

2. What is the minimum number of people needed to have the probability that at least two people share a birthday be at least 0.5?
 \[
 0.5 \leq P[\text{at least two people share a birthday}] = P[\text{not all birthdays are distinct}]
 = 1 - P[\text{all birthdays are distinct}] = 1 - K(365, q)
 \]
 So \(K(365, q) \leq 0.5 \). Unfortunately, we do not have a simple inverse formula to solve for \(q \). However, guessing and checking different values of \(q \) gives \(K(365, 23) \approx 0.493 \). This implies we only need about 23 people to have the probability that at least two people share a birthday be at least 0.5. Note that \(K(365, 50) \approx 0.03 \), so the probability that in a group of 50 people, at least two people share a birthday is about 0.97.

Problem 3.3: Suppose there are three traffic lights in a row, designed such that there is an 80% chance the driver will encounter the same color light at next light as the previous (i.e. if the first light is green, the second light has 80% chance of being green). Assume the first light is green or red with 50% probability. What are the probabilities of the events

1. A driver is not stopped at any lights?
 Let \(G_1, G_2, G_3 \) denote the events the first, second, and third lights are green respectively.
 \[
 P[G_1G_2G_3] = P[G_1] P[G_2|G_1] P[G_3|G_1, G_2] = \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{8}{25}
 \]

2. A driver is stopped at two or more lights?
 \[
 P[\text{two or more lights are red}]
 = P[G_1 G_2^c G_3] + P[G_1^c G_2 G_3^c] + P[G_1^c G_2^c G_3] + P[G_1^c G_2 G_3^c]
 = \left(\frac{1}{2} \cdot \frac{1}{5} \cdot \frac{4}{5}\right) + \left(\frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{5}\right) + \left(\frac{1}{2} \cdot \frac{1}{5} \cdot \frac{4}{5}\right) + \left(\frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{5}\right) = \frac{1}{2}
 \]

3. A driver is stopped at at least one light?
 \[
 P[\text{not all lights are green}] = 1 - P[\text{all lights are green}] = 1 - P[G_1G_2G_3] = 1 - \frac{8}{25} = \frac{17}{25}
 \]
Problem 3.4

Assume each component R_1, \ldots, R_{10} fails with probability $0 < (1 - p) < 1$, independently of any other component in the circuit. We say the circuit works (i.e. does not fail), if there exists a path from a to b such that every component along the path works.

1. Determine the probability the circuit works

Let E_i denote the event R_i works. Let X and Y denote the event that the upper and lower paths, respectively, work. The circuit works if either the upper path or the lower path works. We have

$$X = (E_1 E_2 \cup E_3 E_4) E_5 = (E_1 E_2 E_5) \cup (E_3 E_4 E_5)$$
$$Y = (E_6 E_7 \cup E_8 E_9) E_{10} = (E_6 E_7 E_{10}) \cup (E_8 E_9 E_{10})$$

and so

$$P[X] = P[E_1 E_2 E_5] + P[E_3 E_4 E_5] - P[E_1 E_2 E_3 E_4 E_5]$$
$$= 2p^3 - p^5$$

(Similarly $P[Y] = 2p^3 - p^5$)

Note X and Y are independent, since $P[X|Y] = P[X]$. i.e. whether the upper branch works has no impact on whether the lower branch works. So we have

$$P[\text{Circuit Works}] = P[X \cup Y] = P[X] + P[Y] - P[XY]$$
$$= 4p^3 - 2p^5 - 4p^6 + p^{10}$$

2. Determine the probability the circuit works, assuming R_5 fails.

Intuitively, if we assume R_5 fails, the probability the circuit works should be the probability the lower branch works.

$$P[X \cup Y | E^c_5] = \frac{P[(X \cup Y) E^c_5]}{P[E^c_5]} = \frac{P[X E^c_5 \cup Y E^c_5]}{1 - p} = \frac{P[Y E^c_5]}{1 - p}$$
$$= \frac{P[Y | E^c_5]}{1 - p} = \frac{P[Y](1 - p)}{1 - p} = P[Y] = 2p^3 - p^5$$

3. Determine the probability R_5 fails, assuming the circuit works.

$$P[E^c_5 | X \cup Y] = \frac{P[E^c_5 (X \cup Y)]}{P[X \cup Y]} = \frac{P[X \cup Y | E^c_5]}{P[X \cup Y]}$$
$$= \frac{P[Y] P[E^c_5]}{P[X \cup Y]} = \frac{1 - p}{2 - P[Y]} = \frac{1 - p}{2(1 - p^3) + p^5}$$