Problem 3.1:
(a) Let \(X \) be a continuous random variable with probability density function:

\[
f(u) = \begin{cases}
 K_i & \text{if } a_i < u < b_i \ (1 \leq i \leq m) \\
 0 & \text{else}
\end{cases}
\]

where \(b_i \leq a_{i+1} \) for \(i = 1, \ldots, m - 1 \). Suppose we have an \(N \)-point scalar quantizer for \(X \), which consists of an \(N_i \)-point uniform quantizer in the interval \((a_i, b_i)\) for each \(i = 1, \ldots, m \), where \(N_1 + \ldots + N_m = N \). For each \(i \), determine the fraction \(N_i/N \) of codepoints allocated to the interval \((a_i, b_i)\), such that the overall mean-squared error \(E[(X - Q(X))^2] \) is minimized. Make as few assumptions as necessary and state them explicitly.

(b) Consider the special case when \(m = 2, a_1 = 0, b_1 = 1, a_2 = 5, b_2 = 7, K_1 = 1/2, K_2 = 1/4 \). For each \(N = 2, \ldots, 1000 \), perform an exhaustive computer search over all possible choices of \(N_1 \) and \(N_2 \) to determine the optimal fraction \(N_i/N \). Plot the resulting \(N_i/N \) as a function of \(N \) and indicate on the graph the value of \(N_i/N \) predicted by your answer in part (a).

Problem 3.2:
Prove that the unique MSE-optimal \(N \)-point quantizer for a uniform source on \((a, b)\) is a uniform quantizer on \((a, b)\) with cell widths \(\frac{b-a}{N} \).

Problem 3.3:
Suppose \(a < b < c \), and let \(X \) be a discrete random variable taking on the values \(a, b, \) and \(c \), with probabilities \(I, J \), and \(K \), respectively. Let \(y_1 \) and \(y_2 \) be the codepoints of a MSE-optimal 2-point scalar quantizer for \(X \). Assume \(y_1 < y_2 \). Determine the values of \(y_1 \) and \(y_2 \) as functions of \(a, b, c \) and \(I, J, K \). Simplify your answer as much as possible.

Problem 3.4:
Suppose \(a < b < c < d \), and let \(X \) be a continuous random variable with probability density function

\[
f(u) = \begin{cases}
 I & \text{if } a < u < b \\
 J & \text{if } c < u < d \\
 0 & \text{else}
\end{cases}
\]

Determine the MSE-optimal 2-point scalar quantizer as a function of \(a, b, c, d, I, J \).

Problem 3.5:
Let \(X \) be a continuous random variable with finite mean and variance and with probability density function \(f \) such that \(f(u) = 0 \) for all \(u < 0 \) and \(f(u) > 0 \) for all \(u > 0 \). Suppose we quantize \(X \) using an \(N \)-point uniform quantizer on the interval \([0, B]\). Any values of \(X \) larger than \(B \) get quantized by the right-most codepoint of the uniform quantizer. Let \(B \) be chosen to minimize the MSE \(e \). You may use high resolution approximations for the uniform quantizer in \([0, B]\).

(a) Prove that \(B \to \infty, B/N \to 0 \), and \(e \to 0 \) as \(N \to \infty \).
(b) Determine the asymptotic growth rate that $B \to \infty$ as a function of N, as $N \to \infty$ for the following source densities:

$$f_1(u) = \begin{cases} \sqrt{\frac{2}{\pi}} e^{-u^2/2} & \text{if } u > 0 \\ 0 & \text{else} \end{cases}$$

$$f_2(u) = \begin{cases} e^{-u} & \text{if } u > 0 \\ 0 & \text{else} \end{cases}$$

If you cannot get an exact rate, use reasonable approximations to get an accurate estimate.