Conditional Probability

- The **conditional probability** of event E given event F is

$$P(E|F) = \frac{P(EF)}{P(F)}$$

This definition is only valid when $P(F) > 0$.

- **Fact:** $P(EF) = P(E|F)P(F) = P(F|E)P(E)$

- A collection of events in sample space S is said to **cover** S if their union equals S. A collection of events A_1, A_2, \ldots, A_n is called a **partition** of S if the sets are disjoint and cover S.

- If the events A_1, A_2, \ldots, A_n partition S, then

$$E = EA_1 \cup EA_2 \cup \cdots \cup EA_n$$

$$P(E) = P(EA_1) + \cdots + P(EA_n)$$

$$= P(E|A_1)P(A_1) + \cdots + P(E|A_n)P(A_n)$$

$$P(A_i|E) = \frac{P(E|A_i)P(A_i)}{\sum_{k=1}^{n} P(E|A_k)P(A_k)}$$

- Similarly, for conditional probability, we have

$$P(E|F) = P(E|A_1F)P(A_1|F) + \cdots + P(E|A_nF)P(A_n|F).$$

- Conditional probability satisfies:
 - **Axiom 1:** $0 \leq P(E|F) \leq 1$.
 - **Axiom 2:** $P(S|F) = 1$.
 - **Axiom 3:** If E_1, E_2, E_3, \ldots are disjoint, then

$$P(E_1 \cup E_2 \cup E_3 \cup \ldots |F) = P(E_1|F) + P(E_2|F) + P(E_3|F) + \ldots.$$

- **Chain Rule:**

$$P(E_1 E_2 E_3 \ldots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_2E_1)\ldots P(E_n|E_1E_2\ldots E_{n-1})$$

- There are many different ways of asking for $P(E|F)$ in words. The following statements are all equivalent:
 - “Find the probability of E given F”
 - “What is the probability E occurred, if F occurred?”
 - “If F occurred, then determine the probability that E occurred.”
 - “You learn that F happened. Now what is the probability of E?”