Axioms of Probability

- **Probability** is a mapping $p : S \to (-\infty, \infty)$ that assigns to each event E in the sample space S a real number $p(E)$ satisfying:

 Axiom 1: $0 \leq p(E) \leq 1$.
 Axiom 2: $P(S) = 1$.
 Axiom 3: If E_1, E_2, E_3, \ldots are disjoint, then
 $$p(E_1 \cup E_2 \cup E_3 \cup \ldots) = p(E_1) + p(E_2) + p(E_3) + \ldots.$$

- **Fact**: $P(\emptyset) = 0$
 This follows from $S = S \cup \emptyset$ (a disjoint union), since then $P(S) = P(S \cup \emptyset) = P(S) + P(\emptyset)$.

- **Fact**: If $E \subseteq F$, then $P(E) \leq P(F)$.
 This follows from $F = E \cup E^c F$ (a disjoint union), so $P(F) = P(E \cup E^c F) = P(E) + P(E^c F) \geq P(E)$.

- **Fact**: $P(E \cup F) = P(E) + P(F) - P(EF)$.
 This follows from

 $$E = EF \cup EF^c$$
 $$F = EF \cup E^c F$$
 $$E \cup F = EF^c \cup E^c F \cup EF$$
 $$P(E \cup F) = P(EF^c) + P(E^c F) + P(EF)$$
 $$= (P(EF^c) + P(EF)) + (P(E^c F) + P(EF)) - P(EF)$$
 $$= P(E) + P(F) - P(EF).$$

- For coin flipping experiments, we write H for Heads and T for Tails. For example, if we flip two coins, then we write the sample space as $S = \{HH, HT, TH, TT\}$. The event that the coin flips are different is $E = \{HT, TH\}$, and its complement is $E^c = \{HH, TT\}$. If the coins are fair and independent, then each element of S has probability $1/4$.

 As another example, if we roll two dice (i.e. 6-sided), then the sample space is
 $$S = \{(1,1), (1,2), \ldots, (1,6), (2,1), (2,2), \ldots, (2,6), \ldots, (6,1), \ldots, (6,6)\}$$
 which has 36 elements in it. Each element of the sample space is a pair of the form (i,j). The event that the dice add up to at least 11 is $E = \{(5,6), (6,5), (6,6)\}$. If the dice are fair and independent, then each element of S has probability $1/36$.