1. \(P(A \cup (B^c \cup C^c)^c) = P(A \cup BC) \) by DeMorgan’s theorem.

 (a) \(P(BC) = 0 \), and therefore \(P(A \cup BC) = P(A) = 1/2 \)

 (b) \(P(A \cup BC) = P(A) + P(BC) - P(ABC) = 1/2 + 1/4 - 1/6 = 7/12 \)

 (c) \(P(A \cup BC) = P(A) + P(BC) - P(ABC) = 1/2 + 1/3 - 0 = 5/6 \)

 (d) \((A^c \cap (B^c \cup C^c))^c = A \cup (B^c \cup C^c)^c \) by DeMorgan’s theorem. Hence,

 \[P(A \cup (B^c \cup C^c)^c) = 1 - P(A^c \cap (B^c \cup C^c)) = 1 - 0.7 = 0.3. \]

2. Let \(B \) be the event that the two dice show the same number, and let \(A \) be the event that the sum is greater than seven. We want \(P(B|A) \). We have that \(|A| = 15 \), since 15 outcomes of two dice sum to eight or greater; therefore \(P(A) = 15/36 = 5/12 \). Also, \(AB = \{(4, 4), (5, 5), (6, 6)\} \), since these are the outcomes that show the same number \textit{and} sum to eight or greater. Therefore, \(P(AB) = 3/36 = 1/12 \), and it follows that \(P(B|A) = P(AB)/P(A) = 1/5 \).

3. By definition, \(P(AB|(A \cup B)) = P(AB \cap (A \cup B))/P(A \cup B) \). Note that \(AB \cap (A \cup B) = AB \). Therefore \(P(AB|(A \cup B)) = P(AB)/P(A \cup B) \). Also observe that \(A \subset A \cup B \), and hence \(P(A \cup B) \geq P(A) \). Therefore, \(P(AB|A \cup B) \leq P(AB)/P(A) \). The right hand side of this inequality is \(P(B|A) \). But \(P(B|A) = P(AB|A) \), so the inequality is proven.

The source of the inequality was \(A \subset A \cup B \), which implied that \(P(A \cup B) \geq P(A) \). We have equality if and only if \(A = A \cup B \), or, equivalently, \(B \subset A \).

4. Let \(A \) and \(B \) denote respectively the events that your first choice and your final choice is the curtain concealing the prize. \(P(A) = 1/3 \), \(P(A^c) = 2/3 \).

 (a) If you always switch, then \(P(B|A) = 0 \), while \(P(B|A^c) = 1 \). Hence,

 \[P(B) = P(B|A)P(A) + P(B|A^c)P(A^c) = 2/3. \]

 (b) If you never switch, then \(P(B|A) = 1 \), while \(P(B|A^c) = 0 \). Hence, \(P(B) = 1/3 \).

 (c) If you decide at random, then \(P(B|A) = P(B|A^c) = 1/2 \) and \(P(B) = 1/2 \) also. Monty is correct in his assertion. (Would he lie to you? Besides, it was on TV, so it must be true!!!!)

5. Let \(B \) be the event that the target is hit and let \(A \) be the event that there is a gust of wind.

 (a) \(P(B) = P(B|A)P(A) + P(B|A^c)P(A^c) = (0.4)(0.3) + (0.7)(0.7) = 0.61 \)

 (b) This is asking for \(P(A^c|B^c) = P(A^cB^c)/P(B^c) = [P(B^c|A^c)P(A^c)]/P(B^c) \). From part (a), \(P(B^c) = 0.39 \). \(P(B^c|A^c) = 1 - P(B|A^c) = 0.3 \). Therefore, \(P(A^c|B^c) = (0.3)(0.7)/0.39 = 0.54 \).
6. (a) If A is an event independent of itself, then $P(A) = P(AA) = P(A)P(A) = [P(A)]^2$. This can happen only if $P(A) = 0$ or $P(A) = 1$.

(b) $P(A \cup B) = P(A) + P(B) - P(AB)$. If A and B are independent, then

$$P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.3 + 0.4 - (0.3)(0.4) = 0.58.$$ If A and B are disjoint, then $P(AB) = 0$, so $P(A \cup B) = 0.7$. If $P(A)$ were 0.6 and $P(B)$ were 0.8 then the events could be independent, but they could not be disjoint since then $P(AB)$ would be zero, and you would have to conclude that $P(A \cup B) = 1.4$, which is nonsense.