
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1227

Universal Lossless Compression Via Multilevel
Pattern Matching

John C. Kieffer, Fellow, IEEE, En-hui Yang, Member, IEEE, Gregory J. Nelson, Member, IEEE, and
Pamela Cosman, Member, IEEE

Abstract—A universal lossless data compression code called the
multilevel pattern matching code (MPM code) is introduced. In
processing a finite-alphabet data string of length , the MPM code
operates at (log log) levels sequentially. At each level, the
MPM code detects matching patterns in the input data string (sub-
strings of the data appearing in two or more nonoverlapping posi-
tions). The matching patterns detected at each level are of a fixed
length which decreases by a constant factor from level to level, until
this fixed length becomes one at the final level. The MPM code
represents information about the matching patterns at each level
as a string of tokens, with each token string encoded by an arith-
metic encoder. From the concatenated encoded token strings, the
decoder can reconstruct the data string via several rounds of par-
allel substitutions. A (1 log) maximal redundancy/sample
upper bound is established for the MPM code with respect to any
class of finite state sources of uniformly bounded complexity. We
also show that the MPM code is of linear complexity in terms of
time and space requirements. The results of some MPM code com-
pression experiments are reported.

Index Terms—Arithmetic coding, entropy, lossless data com-
pression, redundancy, universal codes.

I. INTRODUCTION

UNIVERSAL lossless data compression algorithms
based upon pattern matching have been studied in the

source coding literature since the 1970’s, beginning with the
Lempel–Ziv code [17]. It is the purpose of this paper to put
forth a new universal lossless data compression algorithm based
upon pattern matching, which has some attractive features both
with regard to data compression performance and implementa-
tion complexity. This new data compression algorithm is called
the Multilevel Pattern Matching code (MPM code, for short).
In this introductory section of the paper, we give a nontechnical
description of the workings of the MPM code—a detailed
description shall be presented in subsequent sections.

Manuscript received July 19, 1996; revised June 6, 1999. This work was sup-
ported in part by the National Science Foundation under Grants NCR-9304984,
NCR-9508282, NCR-9627965, and by the Natural Sciences and Engineering
Research Council of Canada under Grant RGPIN203035-98. The material in
this paper was presented in part at the IEEE International Symposium on Infor-
mation Theory, Cambridge, MA, August 16–22, 1998.

J. C. Kieffer is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455 USA.

E.-h. Yang is with the Department of Electrical & Computer Engineering,
University of Waterloo, Waterloo, Ont., Canada N2L 3G1.

G. J. Nelson is with Anoka-Ramsey Community College, Coon Rapids, MN
55433 USA.

P. Cosman is with the Department of Electrical and Computer Engineering,
University of California at San Diego, San Diego, CA 92037 USA.

Communicated by N. Merhav, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(00)04275-9.

For some fixed positive integer , and each data string
of length at least over a fixed finite alphabet, let there be

specified a positive integerfor which is less than or equal to
the length of . (The choice of the integer is dependent upon
the length of ; we shall discuss the nature of this dependence
later in the paper.) For each integersatisfying , the
MPM code extracts from a certain sequence consisting
of some nonoverlapping substrings ofof length . For
each sequence (), let the substrings
of forming the entries of be called “patterns.” If

, the set of distinct patterns in
is the set for some . In each

, the MPM code detects the
distinct patterns in . For each distinct patternappearing
in , the MPM code performs a pattern-matching task
consisting of determining which entries of match
(i.e., coincide with)—each appearance in of a pattern
matching is replaced with a “token” from an abstract token
alphabet , so that distinct patterns in
are assigned distinct tokens. In this way, each sequence

is “tokenized” via pattern matching to
yield a “token sequence” containing the same number of
terms as the sequence .

The sequences , together with the se-
quence consisting of some individual entries of
the given data string , form the sequence
called themultilevel representationof . Each data string can
be fully recovered from its multilevel representation. Via a
simple adaptive arithmetic encoder, the MPM code separately
encodes each token sequencein the multilevel representation

of the data string into a binary string .
The binary codeword for the data stringgenerated by the
MPM code is then obtained by concatenating the strings

together from left to right; we write this
codeword as . From the codeword ,
the MPM code can decode the multilevel representation

from which the data string is reconstructed
by means of parallel substitutions.

The structure of the MPM code is depicted in the block dia-
grams in Figs. 1 and 2, where we assume that for sim-
plicity. The encoding part of the MPM code is given in Fig. 1.
The mappings , , and are string processing functions, de-
fined in Section II, that allow for the recursive computation of
the sequences from the input data

. The “tokenization map”, also described in Section II, con-
verts into the multilevel repre-
sentation . The bit strings are

0018–9448/00$10.00 © 2000 IEEE

1228 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

Fig. 1. Encoding part of MPM code.

Fig. 2. Decoding part of MPM code.

then obtained by encoding , respectively. Fig. 2
gives the decoding part of the MPM code. The mapping, de-
scribed in Section II, is used to perform parallel substitutions,
and allows the reconstruction ofin a recursive manner.

Example 1: We illustrate the workings of the MPM code
using a simple example. For simplicity, we take and take
the length of the data string to be a power of two. (The case of
general and general data lengths will be considered in Section
II.) We take the data string to be the following binary string
of length :

Let us suppose that . We need to describe how to form the
sequences . First, form the following
sequences:

The entries of are substrings of of length . The entries
of are obtained by partitioning into nonoverlapping blocks
of length , and, of these blocks, keeping only the distinct
blocks as entries of , in order of first appearance from left to
right in the partitioning. The sequence is then obtained
from the sequence by bisecting each entry of . (In other
words, simultaneously replace each entry ofwith the two

substrings that form the left and right halves of that entry.) This
gives us

We then “tokenize” each , obtaining the
multilevel representation in which

For , we tokenized to obtain from by scan-
ning from left to right, assigning to the first entry the token

, assigning to each succeeding entry not matching a previously
scanned pattern the first token from the list not
used previously, and assigning to each entry matching a previ-
ously scanned pattern the same token that was used previously
for that pattern.

The multilevel representation allows re-
construction of via four rounds of parallel substitutions, as fol-
lows. In the first round of parallel substitutions, replace each
in by (the first two entries of) and replace each

in by (the next two entries of). The resulting
token sequence is

In the second round of parallel substitutions, make the substitu-
tions

for the entries of , with the right sides of the substitutions
taken as the entries of , two by two. This yields the token
sequence

In the third round of parallel substitutions, make the substitu-
tions

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1229

for the entries of , where the right sides of the substitutions
come from the entries of , two by two. This yields the token
sequence

In the fourth and last round of parallel substitutions, a sequence
is obtained from , by making the following substitu-

tions for the entries of :

The right sides come from the entries of. The reader can see
that .

We discuss what shall be accomplished in this paper con-
cerning the MPM data compression code. In Section II, we lay
out the particulars concerning the encoding part and the de-
coding part of the MPM coding procedure. In Section III, we
investigate the order of growth of the total number of entries
which appear in the sequences forming the multilevel represen-
tation of a data string of length ; in partic-
ular, we show that taking makes this order
of growth . In Section IV, we apply the Section III
order of growth result to perform a redundancy analysis for the
MPM code. The key result of the paper (Theorem 4) asserts
that the maximal redundancy/sample of the MPM code rela-
tive to any class of finite-state sources of uniformly bounded
complexity is as a function of the data length, a
better redundancy result than has currently been established for
the Lempel–Ziv code [17] (whose maximal redundancy/sample
is only known to be [14]). The MPM code
is a universal code in the sense that it optimally encodes any
stationary source (Theorem 5). In Section IV, we also present
some results of compression experiments in which the MPM
code was used to losslessly compress binary images—the re-
sults show that the MPM code is competitive with JBIG on large
binary images. The paper concludes with a complexity analysis
of the MPM code; it is shown (Theorem 6) that the MPM code,
like the Lempel–Ziv code, is of linear time and storage com-
plexity as a function of the data length.

To our knowledge, the MPM code is the first pattern matching
based universal lossless data compression code for which both
of the following have been established:

a) linearity in time and space complexity as a function of data
length ;

b) maximal redundancy/sample behavior.

II. THE ALGORITHM MPM

Let denote a finite alphabet containing at least two sym-
bols, fixed for the rest of this paper. The terminology-string
shall refer to any string of finite length whose entries are selected
from (excluding the empty string). We shall be using the mul-
tilevel pattern matching method outlined in Section I to com-
press and decompress-strings. As indicated in Section I, there

are two parametersand that are preselected in order to com-
press an -string by the multilevel pattern-matching method.
The parameter is an integer that must satisfy . The pa-
rameter is a nonnegative integer.

We fix the parameters and throughout this section. Con-
sider the data compression method, which we call algorithm
MPM , in which each -string of length at least is
compressed and decompressed in four phases, performed in the
following order.

1) Multilevel Decomposition Phase: The sequences
are formed. Each

consists of nonoverlapping (but not necessarily con-
tiguous) substrings of of length .

2) Tokenization Phase: The output of the tok-
enization phase is the multilevel representation

of the data string , in which each
sequence from the multilevel decomposition
phase is “tokenized” to form the sequence.

3) Encoding/Decoding Phase:The entries of the mul-
tilevel representation are separately
encoded and decoded.

4) Reconstruction Phase:Parallel substitutions are used
to reconstruct from the multilevel representation.

In this section, we make precise the workings of the algorithm
MPM by explaining the preceding four phases in detail.
The eventual MPM code that shall be spelled out in Section IV
employs a certain choice ofas a function of the length of the

-string to be compressed. (In other words, in Section IV, we
shall specify a sequence of nonnegative integers such that
if an -string is of length , then will be compressed/de-
compressed with the algorithm MPM .) The choice of the
parameter as a function of the data lengthcannot be made
now, since at present we do not know how to optimize the choice
of . By holding fixed in this section and in Section III, we
shall be able to make an analysis of the algorithm MPM
that will enable us to cleverly chooseas a function of . We
shall see that is the best choice.

Before describing the algorithm MPM , we introduce
some notation and terminology that shall be in effect throughout
this paper. If is a nonempty set, we let denote the set of
all strings of finite length over the alphabet, excluding the
empty string. (As a special case, is the set of all -strings.)
Sometimes, for convenience, we shall want to append an empty
string to the set ; letting denote the empty string, de-
notes the set . For shall denote
the set of all strings in of length . For each in , let
denote the length of. If are strings in ,
let denote the string in obtained by con-
catenating together the strings from left to
right. If is a finite set, then shall denote the cardinality
of . All logarithms written “ ” without any subscript shall
denote logarithms to the base two; if we use a base for the loga-
rithm other than base two, that base shall be denoted by means
of a subscript.

We let denote the set of all sequences of finite length
whose entries come from (including the empty sequence).

1230 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

We have to be very careful with our notation so that we do
not confuse the -strings in with members of . Let-
ting , we shall take the -strings
to be all the expressions of the form , where

, and . (Notice that
in these expressions we do not separate the en-
tries by commas or place parentheses around the expressions.)
An element of shall be written where
each entry is an -string and therefore an expression of the
form . If are sequences in ,
then is the sequence in in which we
first write down the entries of , then the entries of , then
the entries of , etc.

Example 2: Let . Then is a member of
, whereas and are members of

. If and , then

A. Multilevel Decomposition Phase

We fix throughout this subsection the pair of integers
in which and . The goal of this subsection is
to explain the workings of the multilevel decomposition phase
of the algorithm MPM . Let be an -string of length
at least , and we operate on this string with the algorithm
MPM . The end product of the multilevel decomposition
phase is then a set of sequences
from , with each sequence consisting of certain care-
fully selected substrings of of length .

The sequences are generated re-
cursively. This shall be accomplished using three “string pro-
cessing functions” , , and . We proceed to define each of
these functions, followed by the definition of the .

The Function : This function is a mapping from the
set into the set . Let be an

-string of length at least . Let . Let
be the unique strings in such that

and such that each of the strings except is of length .
Then

The Function : Let be the subset of such that
a sequence is a member of if and only if all
of the -strings which are entries of are of the same length,
where this common length can depend onand is of the form
for some . The function is a mapping from
into . Let be a sequence in
and let . We define as follows. First, identify the
distinct entries of , which we label as , where

(2.1)

(2.2)

and

(2.3)

Let each entry of have length . For each , let
be the sequence in such

that

• and

• are all of length .

Let be the string in , and let
be the sequence in such that

•

•

• are all of length .

(If , is taken to be the empty sequence in .)
Then

The Function : This function is the projection mapping
from onto . Therefore,

Definition of the Sequences : Let be
any -string of length at least . Let

Then

Example 3: Consider the string

(2.4)

and we suppose that . We recursively compute

Projecting down onto the first coordinate

B. Tokenization Phase

Throughout this subsection, we fix , and a nonneg-
ative integer . The purpose of this subsection is to describe
the tokenization phase of the algorithm MPM applied to
any -string of length at least , in which each sequence

, generated in the multilevel decomposition
phase, is converted into a certain sequenceof the same length
as .

We define a “token alphabet”

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1231

whose entries are abstract symbols called “tokens.” The sym-
bols in the token alphabet are distinct, and, in addition, we
assume that none of them is a member of the data alphabet.

According to our definitions at the beginning of Section II,
denotes the set of all sequences of finite length whose

entries are selected from the token alphabet. We use the
same notational convention in writing the elements of
that we do in writing the elements of , namely, the
entries of a sequence in are separated by commas, with
the entire sequence enclosed in parentheses. For example,

is a member of the set .
Let be the following natural injection mapping from

into :

The tokenization phase shall employ a mapping

which we shall call thetokenization map. If , we
define . Now we suppose that
is a sequence in . In this case, will be a member of

. We describe how is formed. First, identify the dis-
tinct entries of , which we label as , where
(2.1)–(2.3) hold. Writing

we can then rewrite as

where belong to . Define

Definition of Sequences : Let be an -string of length
at least . Application of the algorithm MPM to yields
the sequences in the multilevel decompo-
sition phase. We define

The sequence is themultilevel representation
of generated by the algorithm MPM .

Example 4: We compute the multilevel representation of the
data string in Example 3, where and

(2.5)
(2.6)
(2.7)
(2.8)
(2.9)

C. Reconstruction Phase

The purpose of this subsection is to specify how the algorithm
MPM reconstructs an -string from its multilevel repre-
sentation. Let denote the set of all pairs such that

• .

• If , and is the cardinality of the set
, then the length of is at least .

Example 5: Suppose . Let

(2.10)

(2.11)

The number of distinct entries ofis . The length of (which is
) is at least as big as . Therefore, the pair belongs

to .

Definition: We define a mapping which
we call theparallel substitution map. Let . Let the
distinct entries of be the following symbols in :

(2.12)

where we have ordered the list in (2.12) so that

Let be the unique sequences such
that

• are the sequences in of
length , which, when concatenated together from left to
right in the indicated order, yield a prefix of.

• If is the length of , then is the suffix of of length
. (Note: is taken to be the empty sequence if
.)

The string is formed via the following two
steps:

Step 1: Write down below each entry of

the corresponding member of the set

according to the substitutions

Let be the resulting list of members
of .

Step 2: Concatenate together the members of the list

from left to right, thereby obtaining a sequencein
. Then

.

Example 6: We consider again the stringsand given in
(2.10) and (2.11). We suppose that . Then, the substitu-
tions that are to be used in computing are

Using these substitutions on the six entries of, we obtain the
six sequences

These sequences are concatenated and, the suffix of that
was not used in forming the above substitutions, is also concate-
nated to the right end. We conclude that

Formation of from its multilevel representation. Let
be an -string of length at least to which the algo-

1232 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

rithm MPM has assigned the multilevel representation
. A comparison of the definitions of the map-

pings and with the definition of the mapping indicates
that the operator inverts the effect of the mappings and
. Since and are used to determine the from , this

means that can be reconstructed from the using . Here
is the algorithm via which this reconstruction is accomplished:

ALGORITHM: Given , generate
recursively by

(2.13)

(2.14)

Then

Example 7: Assume that , and that the alphabet
is . We consider the multilevel description

given in (2.5)–(2.9), for a certain string
. Applying (2.13) and (2.14), we obtain

D. Encoding/Decoding Phase

It is the purpose of this subsection to describe the en-
coding/decoding phase of the algorithm MPM . Let
be an -string of length at least . Let
be the multilevel representation of obtained by applying
the algorithm MPM to . In the encoding/decoding
phase, an encoder encodes the multilevel representation

of into a binary string that is transmitted to
the decoder; the decoder then decodes this binary string back
into the multilevel representation.

In the encoding/decoding phase, three encoder/decoder pairs
are employed. The encoder/de-

coder pair is used first, and allows for the communica-
tion of to the decoder; this step is necessary because the value
of is needed by the decoder for the rest of the encoding/de-
coding phase. After the encoder/decoder pair has been
used to communicate to the decoder the value of, the en-
coder/decoder pair is used to communicate to the de-
coder each sequence . Finally, the
encoder/decoder pair is used to communicate the se-
quence to the decoder.

We now give precise descriptions of the encoder/decoder
pairs .

1) Encoder/Decoder Pair : Each positive integer
has a unique binary expansion in which
and

We shall write

to denote that is the unique binary expansion
of the positive integer . The encoder is taken to be the
one-to-one mapping from the set into the set of bi-
nary strings such that, if , then

Note that the set

(2.15)

is a prefix set, meaning that any infinite or finite binary string
can have at most one member of the set (2.15) as a prefix. The
decoder is the unique mapping from the set

has a prefix in the set (2.15)

onto the set in which

whenever is a binary string with prefix .
For later use, it is not hard to see that

(2.16)

Remark: To obtain good compression performance for the
MPM code that we shall define in Section IV, one needs to re-
quire of only that

(2.17)

The particular encoder defined above satisfies (2.17), but
many other encoders for the integers satisfying (2.17) have been
studied. Elias [4] gives examples of encodersfor the integers
satisfying the property that

which is a stronger property than (2.17). We choseabove
rather than one of the Elias encoders becauseis simpler and
allows us to obtain specific compression bounds later on in the
paper.

The encoder/decoder pair is now determined. The
encoder will transmit the binary string to the decoder,
who will then use the decoding function to learn what is.

2) Encoder/Decoder Pair : Recall from Sec-
tion II-B the tokenization map defined on .
Let be any sequence in . Let be the number of
distinct terms in . Then, each term of belongs to the set

. Define to be the set

The set has the following property that is useful for adaptive
arithmetic coding:

Property: If is any sequence in having as a
proper prefix, then the entry of in position belongs to
the set .

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1233

For each , let denote the number
of times that appears as an entry of. Let denote the
following probability distribution on :

.
(2.18)

Notice that each of the probabilities in this definition is positive.
This fact, combined with the above Property, allows us to apply
the theory in [2, Sec. 5.10] to conclude the existence of an adap-
tive arithmetic encoder/decoder pair such that

i) is a mapping from into .

ii) If is of length one, then is the empty
string in . (In this case, must be the sequence

.)

iii) If is of length greater than one, then

(2.19)

where denotes the prefix of of length , and
denotes the st entry of .

iv) is a mapping from into
such that

whenever and is any string in
having as a prefix.

The reader interested in the practical implementation details
of the adaptive arithmetic encoder/decoder may con-
sult the paper [11].

3) Encoder/Decoder Pair : The encoder/decoder
pair is easy to describe. The symbols appearing in
belong to the set . Each symbol in can be encoded using a
binary string of length . Therefore, can be encoded
symbol by symbol using a binary string of length .

4) Encoder/Decoder Implementation:We are now ready to
describe the mechanics of the overall encoder/decoder scheme.
The encoder output is the binary string defined by

(2.20)

The decoder structure is a little more complicated. We need the
following two definitions in order to specify the decoder struc-
ture:

Definition 1: If and are strings such that is a prefix
of , define to be the suffix of that remains after is
removed from the beginning of .

Definition 2: If belongs to the set
, define to be the cardinality of the set

.

If , the decoder determines from by means of the
equations

If , let be the binary strings

.

The decoder then recursively determines from
according to the equations

(2.21)

(2.22)

(2.23)

.
(2.24)

The order in which these recursions are performed may not be
clear to the reader. We point out that determines

as follows. First, is used to compute
via (2.22). Then, is determined from via (2.23). Fi-
nally, and are jointly used to compute via (2.24).

III. COUNTING TOKENS

As in the previous section, the integer and the
nonnegative integer are fixed throughout this section.
Let be the multilevel representation of
an -string of length , generated by the algorithm
MPM . In order to judge the performance of the algorithm
MPM , we shall need to obtain a bound on

The purpose of this section is to prove the following theorem,
which gives us the desired bound.

Theorem 1: Let . Define to
be the constant

Let be any -string of length and let, be
the multilevel representation of generated by the algorithm
MPM . Then

(3.25)

We lay some groundwork that shall be necessary for
proving Theorem 1. We define an-set to be any subset of

such that
• consists of consecutive integers; i.e.,is of the form

• The smallest integer in and the largest integerin
satisfy

for integers .

1234 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

Given any two distinct -sets and , exactly one of the fol-
lowing statements must be true:

• and are disjoint or

• one of the two sets is properly contained in the
other.

Also, it can be seen that the following two properties are true:

• Given any -set , there is a unique-set with
elements that properly contains. We shall call the
fatherof and shall denote by .

• Given any -set containing more than one element, there
are exactly -sets of size which are
contained in (i.e., have as their father). We shall call
these -sets thechildrenof .

Let be an integer satisfying . We define three fami-
lies of -sets , , and as follows:

is an -set

Example 8: We denote an-set by ,
where is the smallest of the elements of the-set, and is the
largest of the elements. Let , , and . The
-sets comprising are

(3.26)

The -sets comprising are

(3.27)

Let be an -string of length . If
is any -set which is a subset of , then

• we let denote the substring of ;

• we say that is -redundantif there is an -set further
to the left of on the real line such that ;

• we say that is -innovativeif is not -redundant.

We define to be the following collection of -sets:

is -innovative

Each -set in either has no children in , or
else it has exactly children in ; for later use, we term
theleavesof to be those -sets in that have
no children in .

The set is important for the following reason. Sup-
pose we apply the algorithm MPM to an -string , and
let be the sequences of substrings of

arising from the multilevel decomposition phase of the algo-
rithm MPM . From the manner in which these sequences
were defined earlier in the paper, the following lemma, pre-
sented without proof, is clear.

Lemma 1: Let be any -string of length at least . Let
, and let be the members of

of cardinality , ordered according to their left-to-
right appearances as subsets of the real line. Then

(3.28)

Example 8 (Continued):As before, we take , ,
. Let , and let be the -string of length

given by (2.4). Strike out from in (3.27) all -sets
whose fathers are-redundant. This leaves us with

(3.29)

For example, and were eliminated because their
fathers are, respectively, and and

Combining the -sets (3.26) with the -sets (3.29), we obtain
the following members of :

Applying Lemma 1, we have

This confirms the results obtained in Example 3.
Letting be the multilevel representation

of which results from the application of the algorithm
MPM to , Lemma 1 tells us that

(3.30)

In view of (3.30), we see that Theorem 1 can be established by
bounding the cardinality of the set . We shall be able

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1235

to do this by first bounding the cardinality of the set of leaves of
.

Lemma 2: Let be an -string of length at least , and let
be the number of leaves of . Then

(3.31)

Proof: Let be the integer obtained by counting all the
children of all the elements of which are not leaves.
Since every element of which is not a leaf has exactly

children, we have

(3.32)

All of the children counted to obtain belong to but
do not belong to ; on the other hand, every element
of which is not in is one of the children
of some member of , and therefore entered into the
computation of . This gives us the equation

(3.33)

Equating the right sides of (3.32) and (3.33), one readily obtains
(3.31).

Proof of Theorem 1:Let and let be
a fixed (but arbitrary) -string of length . In view of (3.30),
relationship (3.25) of Theorem 1 is valid provided we can show
that

(3.34)

In order to establish (3.34), we first show that

(3.35)

Let . Then one of the conditions i), ii) below
must hold:

i) or

ii) , and contains the integer .

If satisfies condition i), there are at most possibilities
for , as there are no more than -sets of cardinality
contained in . If satisfies ii), there are at most
possibilities for (the cardinality of must be one of
the numbers); since each of these possibilities
for the father of has children, there are at most possibil-
ities for under condition ii). We conclude that (3.35) holds.

Let be the set of leaves of . Define
and to be the following subsets of :

is -innovative is -redundant

is -innovative (3.36)

Observe that

(3.37)

It is clear that

(3.38)

In the Appendix, we show that

(3.39)

Applying (3.35), (3.39), and (3.38) to (3.37), we conclude that

from which (3.34) follows via an application of Lemma 2.

We conclude this section by presenting Lemma 3 below,
which shall be needed later on. Lemma 3 and subse-
quent parts of the paper employ the following notation: if

is any sequence (over any alphabet), we
let denote the sequence obtained fromby striking from
each entry which is not equal to any entry of further to the
left of . (It could be that is an empty sequence.)

Lemma 3: Let be an -string of length at least . Let
be the ordering of the leaves of ac-

cording to the left-to-right ordering of these-sets as subsets of
the real line.

a) The string is the concatenation of the strings
.

b) Let , and let be the sequence of
substrings of of length defined in Section II. Then

is the subsequence of consisting
of all entries of this sequence for which has
cardinality .

Lemma 3 is proved in the Appendix.

IV. COMPRESSIONPERFORMANCE

In this section, we shall first establish a bound telling us how
well the algorithm MPM compresses -strings of length
at least . The bound (Theorem 2) is an entropy bound, showing
that the MPM codeword length can be bounded above by
an expression involving empirical entropy. We then turn our
attention to the redundancy performance of the MPM lossless
data compression code. The MPM code is a universal code,
formally defined in Section IV-B, built by letting the param-
eter in the algorithm MPM vary appropriately with the
data length. Redundancy is a figure of merit commonly used
in source coding theory to evaluate lossless data compression
codes. In particular, the redundancy of the MPM data compres-
sion code is a measure of the deviation of MPM code compres-
sion performance from the optimal performance achievable for
some class of lossless codes (a precise definition of redundancy
shall be given later on). We shall obtain specific redundancy
bounds for the MPM data compression code (Theorems 3 and
4), which can be regarded as the key contributions of this paper.

A. Entropy Bound

In this subsection, the integers and are fixed.
Let be the length of the binary codeword assigned by
the algorithm MPM to an -string of length at least .

1236 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

We shall obtain an upper bound on which involves
the finite-context empirical entropies of the string. We begin
by explaining what these entropies are. Letbe a fixed positive
integer. Let be the set . Let be the
family of all functions from into such
that

• for each , the value of the
function at is denoted ;

• for each

Definition: Let be any -string. The -con-
text unnormalized empirical entropy ofis the nonnegative real
number defined by

The quantities are the finite-context
empirical entropies of . The following theorem bounds the
codeword length assigned to a data string by the algorithm
MPM in terms of the finite-context empirical entropies
of the data string.

Theorem 2: Let be any positive integer. Then, for any in-
teger , and any -string of length

(4.40)

In order to prove Theorem 2, we shall employ another
concept of entropy called zeroth-order entropy. If

is any nonempty sequence of finite length
(over any alphabet), we define thezeroth-order entropyof to
be the nonnegative real number

where denotes the number of times that the symbol
appears as an entry in the sequence. If is an empty sequence,
in our later work it is convenient for us to define the zeroth-order
entropy of to be equal to zero.

We state two properties of zeroth-order entropy which are
needed in proving Theorem 2. The simple proofs of these prop-
erties are omitted.

Property 1: Let and
be sequences, where is a

one-to-one mapping. Then

Property 2: Let be any sequence, and
let be any probability distribution on . Then

Proof of Theorem 2:Let be a string
in of length . The key to the proof is an exami-
nation of the codeword length . Let be the number of
distinct entries of ; then

From (2.18) and (2.19) it can be seen that (see (4.41) at the
bottom of this page). Notice that

(4.42)

Also, by [3, Lemma 2.3]

(4.43)

Applying (4.42) and (4.43) to (4.41), we obtain

(4.44)

Let , and let be an -string of length . Let
be the multilevel representation ofgener-

ated by applying the algorithm MPM to the string . Re-
ferring to (2.20), (4.44), and (2.16), we see that

(4.45)

We have

(4.46)

For each , let be the sequence of sub-
strings of of length defined in Section II. By Property 1
of zeroth-order entropy

(4.47)

From (4.47), (4.46), (4.45), and Theorem 1, we conclude that

(4.48)

(4.41)

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1237

Pick such that

For each string in , define

For each positive integer , there is a positive constant
and a probability distribution on such that

Suppose that , and that are substrings
of of possibly varying lengths which, when concatenated to-
gether, yield . It is not hard to see that

(4.49)

By Lemma 3, we may find substrings of such
that

• is obtained when are concatenated to-
gether in the given order.

• For each the sequence is the
sequence whose entries are the members of the list

of length , in the order of their
appearance in this list. (If there are no such entries, then

is the empty sequence.)

From Property 2 of zeroth-order entropy

(4.50)

Summing over in (4.50) and using (4.49) as well as Theorem 1

(4.51)

Applying (4.51) to (4.48), and using the fact that
, we obtain (4.40).

B. Redundancy Bounds

In this subsection, we shall make precise some different no-
tions of redundancy for a lossless data compression code, and
shall establish some redundancy bounds for the MPM data com-
pression code (defined below).

Let us first give a formal definition of the concept of lossless
data compression code. Letbe a positive integer. A lossless
encoder–decoder pairon is a pair of mappings
such that

• , the encoder of the encoder–decoder pair, is a
one-to-one mapping from into .

• , thedecoderof the encoder–decoder pair, is the inverse
mapping for (i.e., the mapping from into

such that is the unique such that).

Notice that the decoder half of an encoder–decoder pair is
uniquely determined once the encoder half has been specified.
Suppose that for some fixed positive integer, a lossless en-
coder–decoder pair has been specified on for each

. The family of encoder–decoder
pairs is called analphabet lossless data compression code.

We are now going to formally define the notion of the MPM
data compression code. If and are fixed integers,
we have discussed the algorithm MPM for losslessly com-
pressing every -string of length . We remove the depen-
dence on the code parameterby requiring that vary with the
data length in a prescribed manner. For each , we define

to be the positive integer

(4.52)

Fix the integer . For each , let be the one-to-one
mapping from into such that, for ,

is the codeword (2.20) assigned toby the algorithm
MPM (this codeword is defined because). Let

be the inverse mapping corresponding to. We define the
MPM data compression codeto be the family of encoder–de-
coder pairs .

Since we have now removed dependence on the parameter
in the MPM code, we shall use a different notation for codeword
length that does not involve. If and , we let

denote the length of the codeword assigned toby the
MPM data compression code. In terms of our earlier notation,
this means that

There are two scenarios in which we shall want to perform
redundancy measurements for the MPM data compression code.

Scenario i): In this scenario, calledredundancy relative to a
class of codes, a class of lossless data compression codes is
given, and one measures redundancy as the difference be-
tween the MPM codeword length and the optimum code-
word length achievable via codes in the given class of
codes.

Scenario ii): In this scenario, calledredundancy relative to a
class of sources, a class of information sources is given,
and one measures redundancy as the difference between
the MPM codeword length and the optimum self-informa-
tion over the given class of sources.

In both redundancy relative to a class of codes (Theorem 3)
and redundancy relative to a class of sources (Theorem 4), we
examine the behavior of the growth of redundancy as a function
of the data length. Results of compression experiments on im-
ages are presented at the end of Section IV.

1) Redundancy Relative to a Class of Codes:Throughout
this subsection, the integer is fixed. Let be an arbitrary

1238 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

positive integer. It is our purpose here to investigate the redun-
dancy of the MPM code relative to the class of all
-state arithmetic codes on the alphabet. Each such -state

arithmetic code is characterized by a triple in which

a) ;
b) is a function from into ;
c) is a function from into the interval of real

numbers ;
d) for each

where, by convention, we write to denote the value
of the function at .

For each , the -state arithmetic code induced by the triple
encodes each string in into a

binary codeword of length

where are generated according to the formula

The optimum codeword length arising from the use of-state
arithmetic codes to encode is the quantity
defined by

where the infimum is over all triples satisfying the
criteria a)–d) above. We let denote the class of all-state
arithmetic codes.

Theorem 3: Let be an arbitrary positive integer. Then, we
have the following redundancy bound for the MPM data com-
pression code:

(4.53)

where is the positive constant

Discussion. The left-hand side of (4.53) is themaximal redun-
dancy/sampleof the MPM data compression code relative to the
class of codes . Theorem 3 tells us that the maximal re-
dundancy/sample is as a function of the data length

. To illustrate, for and , we conclude from The-
orem 3 that the maximal redundancy/sample is no larger than

. (Note: The “ ” in this bound is not
the best possible—it is an open problem to determine what is
the smallest positive constant that will work in place of “.”)

Proof: Since for an -string of
length , we see from Theorem 2 that the left-hand side of

(4.53) is upper-bounded by the sum of the following two
expressions:

It is clear how the terms in enter into terms of . To
complete the proof, we bound the terms of as follows:

(4.54)

(4.55)

To establish inequalities (4.54) and (4.55), we used the fact that

Remark: The code classes are not the only
classes of codes to which one might want to compare the MPM
code. One could also, for each fixed positive integer, consider
the class of all lossless block to variable-length codes on
the alphabet which have block length . However, for a suf-
ficiently large , the class of codes outperforms the class
of codes . Theorem 3 therefore automatically extends to
the class of codes . In similar fashion, one can extend
Theorem 3 to other classes of codes which are outperformed by
one of the classes .

2) Redundancy Relative to a Class of Sources:Throughout
this subsection, the integer is fixed. It is our purpose to in-
vestigate the redundancy of the MPM code relative
to classes of finite-state information sources (defined below).

Let be the set of all infinite sequences
in which each entry is chosen from the alphabet. For each
string , let denote the set of all se-
quences in whose first terms are . The
set becomes a measurable space if we endow this set with
the sigma field spanned by the sets . A prob-
ability measure on shall be called analphabet in-
formation sourceor simply analphabet source. Let
denote the class of all alphabet sources for which there
exists and such that, for every

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1239

The sources in the class are calledfinite-state informa-
tion sources with states.

Definition: If is an alphabet information source and
, then theself-information of with respect to the source

is defined by

Theorem 4: Let be an arbitrary positive integer. Then, we
have the following redundancy bound for the MPM data com-
pression code:

(4.56)

Proof: The minimum of over is .
Therefore, Theorem 4 follows from Theorem 2 in the same way
that Theorem 3 followed from Theorem 2.

Discussion. Let be any class of alphabet information
sources. The quantity

(4.57)

is called themaximal redundancy/sampleof the MPM data
compression code relative to the class of sources. Theorem
4 tells us that the maximal redundancy/sample of the MPM
data compression code is , relative to each class
of sources . Theorem 4 is of interest because the 1978
Lempel–Ziv data compression code [17] is known to have
maximal redundancy/sample relative
to each class [14], but it is not known whether its
maximal redundancy/sample is . The MPM data
compression code and the Lempel–Ziv data compression code
are similar in structure in that they both use pattern matching
to represent a data string as a string of pointers used for com-
pression; it is therefore natural to make comparisons between
these two compression algorithms.

Remark: Earlier, we defined the MPM code by requiring that
the parameter in the algorithm MPM be dependent upon
the data length according to the formula .
Instead, suppose one weakens the definition of the MPM code
to require only that be a function of in which

(4.58)

for sufficiently large, where is some positive constant.
Then, it can be shown that Theorems 3 and 4 can be extended to
yield redundancy/sample for this more general no-
tion of MPM code. This fact gives more flexibility to those who
may want to implement an MPM code so that good redundancy
performance is assured. On the other hand, if one implements
the MPM code by selecting to have a slower order of growth
than , the maximal redundancy/sample in Theorems 3
and 4 can decay to zero more slowly than the sequence

decays to zero; consequently, choosingto have an order of
growth at least as fast as the sequence is what one
should strive for in implementation of an MPM code.

3) Other Redundancy Notions:We discuss the performance
of the MPM data compression code with respect to some weaker
notions of redundancy than the notion of redundancy used in
Theorem 4. Let be a fixed alphabet information source. The
quantity

(4.59)

is called the maximal redundancy/sample of the MPM code rel-
ative to the source. Theorem 4 automatically implies that the
MPM code has maximal/redundancy relative to
each individual source in the union of the classes of sources

. Savari [15] proved behavior of
the maximal redundancy of the 1978 Lempel–Ziv code relative
to each individual unifilar finite-order Markov source.

Again, let be a fixed alphabet information source. The
quantity

(4.60)

is called the average redundancy/sample of the MPM code rel-
ative to the source . The quantity (4.60) is clearly less than
or equal to the quantity (4.59). Therefore, Theorem 4 also au-
tomatically implies that the MPM code has average redundancy

relative to each individual source in the union of the
classes of sources . Let denote the
family of all binary memoryless information sources. Louchard
and Szpankowski [10] have shown that for all but countably
many , the average redundancy/sample of the
1978 Lempel–Ziv code relative to has an asymptotic expan-
sion of the form

where is a certain constant depending on. It is an open
problem whether an analogous result holds for the MPM data
compression code.

4) Universal Coding: An alphabet information source
is said to bestationaryif there is a stationary alphabet sto-
chastic process such that

(4.61)

The entropy rateof a stationary alphabet source is the
number defined by

Theorem 5: Let be any stationary alphabet information
source. Then

1240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

Discussion. Let be the class of all alphabet sta-
tionary sources. It is well known that any lossless alphabet
data compression code satisfies

(4.62)

Therefore, the codes which perform best on the class of sta-
tionary sources are the ones for which equality holds
in (4.62). In the literature, these codes have been given a special
name. An alphabet code satisfying

is said to beuniversal. Theorem 5 tells us that the MPM data
compression code is universal. The Lempel–Ziv code is also
universal [17].

Theorem 5 follows from Theorem 4, if one uses standard ap-
proximations of stationary sources via finite-state sources [5].
Or, one can use the facts that i) the MPM data compression
code belongs to a class of lossless data compression codes called
asymptotically compact grammar-based codes [6]; and ii) every
asymptotically compact grammar-based code is universal [6].

5) Compression Experiments:A version of the MPM code
called the quadrisection code (QUAD, for short) has been de-
veloped for lossless image compression [8], [13], [9]. First, one
scans a image to obtain a one–dimensional (1-D)
string of length , so that for each , the
subblocks of arising from a partitioning of correspond to
disjoint substrings of length of the 1-D string . For ex-
ample, the pixels of an image are scanned in the following
order:

Such a scanning is called aquadrisection scanning. One then
applies the MPM code to the 1-D string with . In
the recursive generation of the multilevel representation of,
substrings of of length a power of four are partitioned into
four substrings of equal length, which corresponds to a parti-
tioning of a corresponding subblock of into four subblocks
of equal size, namely, the NW, NE, SW, and SE corners of.

The quadrisection code compresses binary images particu-
larly well. In Table I, we report the results of compression ex-
periments on binary archival images. Each image
was originally a 256-level image, from which the principal bit
plane was extracted as input to QUAD. As can be seen from
the table, QUAD compression is competitive with JBIG, one of
the best binary image compressors. The gap between QUAD
and JBIG lessens as one increases the size of the image beyond

, confirming the theory developed in this paper that

TABLE I
COMPRESSIONRESULTS INBITS/PIXEL FOR 512� 512 BINARY IMAGES

TABLE II
MULTILEVEL DECOMPOSITION OF256� 256 BINARY LENA IMAGE

tells us that QUAD should compress high-resolution binary im-
ages well. These compression experiments were run on a SUN
SparcStation using a C program. The running time for one com-
pression run on a binary image was reasonably fast
(no more than about 4 s)—improvements in running time are
no doubt possible, since our programs were not optimized for
speed.

The quadrisection code can easily be modified for progres-
sive resolution scalable binary image compression [9] by trans-
mitting additional information to the decoder. For each distinct
image subblock of size bigger than generated in the multi-
level decomposition phase, a single bit can be used to tell the
decoder what binary level to use for that subblock. To illus-
trate, we refer the reader to Table II, which gives the number of
distinct subblocks of each size in the principal bit plane of the

Lena image (as reported in [8]). The total number
of distinct blocks of all sizes is . Transmitting an extra
1442 bits only increases the compression rate in bits per pixel
by .

The MPM code, modified for progressive data reconstruction,
will still have an maximal redundancy bound. This
is because the number of additional code bits transmitted to the
decoder will be proportional to the number of distinct substrings
of all orders that are represented in the multilevel representation.
By Theorem 1, this number is ; dividing by , the
increase in compression rate is only .

V. COMPLEXITY

Fix throughout this section. In the preceding section,
we showed that the maximal redundancy/sample of the MPM

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1241

code is . In this section, we address the
question of the complexity of the MPM code. We shall show
(Theorem 6) that the MPM code is linear in both time com-
plexity and space complexity, as a function of the data length.
We shall prove our linear complexity result by using a spe-
cial-purpose machine on which the multilevel representation of
a data string of length is computed via computational
cycles of the machine, while using storage cells in the
working space of the machine.

We put forth some background material needed to accom-
plish the goals of this section. Let the alphabetbe denoted
as . We let be the infinite tree
characterized as follows.

• There is a unique root of the tree , which shall be
denoted .

• Each vertex of the tree has exactly edges ema-
nating from it; these edges terminate at vertices which are
called the children of . The children of shall be referred
to as child , child , , child .

• For each vertex of the tree , there is a unique
vertex of such that is a child of . The vertex

shall be called the father of.

• For each vertex of the tree , there is a unique
positive integer and unique vertices such
that , , and is the father of for

.

For each string , there is a unique path
in consisting of vertices of
such that

• .

• For each , vertex is child of vertex .

Definition: Let denote the set of vertices of the tree
. Let be a symbol which is not a member of the set of

tokens (will serve as a “blank symbol”). A
labelingof the tree is any mapping from into
the set in which

• .

• for only finitely many vertices .

• If , then whenever .

We let denote the special labeling of in which

.

We describe a machine on which our calculations shall be
performed. Aconfigurationof the machine is defined to be a
pair in which and is a labeling of . In
one computational cycle of the machine, the machine moves
from one configuration to another. Suppose is the config-
uration of the machine at the beginning of a computational
cycle. The control head of the machine views the content of a
storage cell located at vertex. If , then the content
of the cell is the token ; otherwise,
is empty. During execution of the computational cycle, the con-
tent of might be changed, or the content of might remain

unchanged while the control head repositions itself at a vertex
adjacent to (meaning the vertex or one of the children of
). The movement of the machine during the computational

cycle is accomplished by means of aninstruction. We specify
the set of instructions for the machine as follows:

i) Let be a configuration in which . Let be
the labeling of in which

.

The instruction

“Move from configuration to configuration
.”

belongs to the instruction set for the machine. An in-
struction of this type shall be called a Type i) instruction.

ii) Let be a configuration in which . Let
be the labeling of in which

.

The instruction

“Move from configuration to configuration
.”

belongs to the instruction set for the machine. An in-
struction of this type shall be called a Type ii) instruction.

iii) Let be any configuration, and let be any child
of . The instruction

“Move from configuration to configuration
.”

belongs to the instruction set for the machine. An in-
struction of this type shall be called a Type iii) instruction.

iv) Let be any configuration in which . The
instruction

“Move from configuration to configuration
.”

belongs to the instruction set for the machine. An in-
struction of this type shall be called a Type iv) instruction.

v) The instruction set for the machine includes only those
instructions specified in i)–iv) above.

We describe now a program for computing the tokenization
function of Section II-B on the machine . The program ac-
cepts as input any positive integerand any strings

in for which

The output of the program is the sequence
.

PROGRAM:

1) Read from machine input tape.
2) Let . Let .
3) If , halt PROGRAM. Otherwise, continue.
4) Read from the input tape of the machine .
5) Let be the nonroot vertices along the

path . Execute machine instructions of Type iii)
to move from configuration to the configuration

1242 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

in computational cycles. (Note that by defi-
nition of , we have .)

6) If , go to Line 7). Otherwise, go to Line 8).
7) Print on the machine output tape. Execute ma-

chine instructions of Type iv) to move back to the con-
figuration in computational cycles. Increase
by one. Go to Line 3).

8) Move to configuration in computational
cycles by executing instructions of Type iv). Move to
configuration in one computational cycle by
executing an instruction of Type i). Print on the
machine output tape.

9) Move to configuration in one computational
cycle by executing an instruction of Type iv). Move to
configuration in one computational cycle by
executing an instruction of Type ii).

10) Move to configuration in two computational
cycles by executing instructions of Type iii).

11) Move to configuration in one computational
cycle by executing an instruction of Type i).

12) Move to configuration in compu-
tational cycles by alternately performing instructions of
Type iii) and i). (If , nothing needs to be done.)

13) Move to configuration in computational cy-
cles by performing instructions of Type iv). Updateby
setting it equal to , increase by one, and go to Line
3).

The following lemma is clear from an examination of the
PROGRAM.

Lemma 4: Let and let be
the common length of the strings . Then,

can be computed on in at most
computational cycles.

The computation of the multilevel representation of a data
string via the MPM code is the most computationally intense
part of the overall MPM code operation. The following lemma
addresses the time complexity of this particular task. We adopt
the usual convention of measuring the time complexity of a
computational task in terms of the number of computational cy-
cles needed to accomplish the task.

Lemma 5: There is a positive constant such that
for every integer , and every string , the mul-
tilevel representation of generated by the
MPM code can be computed on the ma-
chine via a calculation involving no more than
computational cycles.

Proof: Parsing off nonoverlapping blocks of length
from , one obtains

(5.63)

According to Lemma 4, the PROGRAM computesin at most
computational cycles. The PROGRAM, during

the course of these cycles, can also identify which entries of
are new, since a block in has not been seen

before if and only if Line 7) of the PROGRAM is not exe-
cuted while processing . Therefore, as a by-product of the

PROGRAM run on the machine , one obtains (parti-
tion each of the new ’s into substrings each, and append
at most substrings of that appear in after). Ap-
plying the PROGRAM to the entries of , we obtain in
at most computational cycles, and we also ob-
tain as a by-product. Continuing in this way, one sees that

is computed by using no more than

(5.64)

computational cycles. (Recall from Section II-B that
, so that and are both generated during the

last computational cycles of the machine.)
Using the fact that , we can upper-bound the ex-
pression in (5.64) by

Applying Theorem 1 to this expression yields the desired con-
clusion.

Now we turn our attention to the problem of quantifying the
storage complexity of the computational task of computing the
multilevel representation of a data string via the MPM code.
Suppose that the machine goes through the configurations

(5.65)

during the course of a computation. The number of storage cells
that are used to store information in the working space of the
calculation is the cardinality of the set

(5.66)

This number shall be our measure of the storage complexity.
(We have followed the customary practice of measuring the
storage complexity of a computation as the number of storage
cells that are employed in the working space of the calcula-
tion—this means that we exclude storage space employed to
store input data or output data.)

Lemma 6: There is a positive constant such that
for every integer , and every string , the mul-
tilevel representation of generated by the
MPM code can be computed on the machine
using no more than storage cells to store data in
the working space of the calculation.

Proof: Parsing off nonoverlapping blocks of length
from , one obtains (5.63). Let (5.65) be the sequence
of configurations of that result in computing from
using the PROGRAM. A study of the PROGRAM reveals
that once a token in is assigned as a label to a
vertex of during some computational cycle of , then
that vertex will carry a token as label throughout the remaining
cycles (not necessarily the same token the whole way). In other
words, referring to (5.65), if for some ,
then . Consequently, the number of storage cells
employed during the course of the computation can be sim-
plified from the cardinality of the set (5.66) to the cardinality
of the set . This cardinality can certainly be
no bigger than , the total of the lengths of the strings

(which is the same as the number of entries

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1243

from on the machine ’s input tape). As discussed during
the proof of Lemma 5, as a by-product of the computation of

on the machine , those entries of in (5.63)
are identified which are “new.” Those entries are kept on’s
input tape, and the remaining entries of are erased from
the input tape. Some additional entries are entered on the input
tape to represent substrings ofof length appearing
after . The input tape now contains terms from

, and this information is used to compute on using the
PROGRAM. By the same argument used above in discussing
the computation of , one argues that, in computing , no
more than storage cells are used in the working
space of the machine (i.e., the number of entries on the input
tape). Repeating this argument, one concludes that for each

, the number of storage cells used in the working
space of to compute is at most . Moreover, no
storage cells are used to compute other than those used to
compute (these two token strings are computed by
together, as pointed out in the proof of Lemma 5). Summing,
the total number of storage cells used in the computation of

can be no bigger than

(5.67)

Using the bound , we bound (5.67) as

which, appealing to Theorem 1, gives us our result.

Here is the main result of this section. Since the computa-
tional task of computing the multilevel representation of a data
string is the most expensive part of the MPM code both in terms
of computation time and storage requirements, the result follows
from Lemmas 5 and 6.

Theorem 6: The MPM code has time
complexity and storage complexity .

Remark: At the end of Section IV-B2, we remarked upon an
extension of the MPM code in which it is required that the pa-
rameter in the algorithm MPM be dependent upon the
data length according to the inequality (4.58). We remarked
that this extended MPM code still yields maximal
redundancy/sample. It is an open question (suggested by The-
orem 6) whether this extended MPM code is of linear time and
space complexity.

VI. CONCLUSIONS

As a consequence of this paper, we have isolated a data com-
pression code, the MPM code, which, like the Lempel–Ziv code,
is of linear time and space complexity, but for which we can
prove a better redundancy bound. Let us try to give a reason
for this state of affairs. The MPM code and the Lempel–Ziv
code are “pure pattern matching” codes in the sense that they
do not directly compress the data, but instead form essentially
all of their encoder output by compressing pointers pointing be-
tween matching patterns in the data. However, the MPM code
does its pattern matching on multiple levels, giving the MPM
code a hierarchical structure that the Lempel–Ziv code does not

possess. This insight seems to suggest that a properly designed
hierarchical pattern matching-based data compression code can
outperform a nonhierarchical pattern matching-based data com-
pression code.

We conclude with some historical remarks. The first instance
of the MPM code was developed for , strictly for data of
length a power of two, and named thebisection algorithm[12].
However, the implementation of the bisection algorithm given
in [12] was computationally inefficient. Subsequent work led
to the present efficient implementation of the MPM code (an-
nounced in [7]). There are some points of resemblance between
the bisection algorithm and the-gram algorithm of Bugajski
and Russo [1], [16]. These are as follows:

• both algorithms are hierarchical in nature;
• both algorithms employ multilevel dictionaries, where

each dictionary consists of strings of length a fixed power
of two, the length varying from level to level;

• both algorithms generate a parsing of the data into vari-
able-length substrings, each substring of length a power
of two.

On the other hand, there are some differences between the two
algorithms:

• the algorithms generate their dictionaries differently, and
employ them differently;

• the bisection algorithm is universal in the sense of Sec-
tion IV-B4, whereas the -gram algorithm has not yet
been proved to be universal.

APPENDIX

We first prove (3.39), needed in the proof of Theorem 1. We
then establish Lemma 3, needed in the proof of Theorem 2.

Proof of (3.39): Recall from the proof of Theorem 1
that , and that is an -string of length

. Let be the cardinality of the set defined by (3.36),
and let be the -sets comprising . Let

be the fathers of , respec-
tively. Some of the sets might coincide. How-
ever, for each , there are at mostintegers
such that is the father of . Therefore, we may pick an in-
teger and integers
such that are distinct. By definition of ,
the -sets are all -innovative, whence the
substrings are distinct. Notice
that

(A.68)

Any -set in is -redundant, but its father is not-redun-
dant. Therefore, if properly contains , then

must also properly contain , which contradicts the fact
that any -set contained in an-redundant -set is also -redun-
dant. We conclude that the-sets in are pairwise disjoint,
whence the right side of (A.68) is at most. This gives us

1244 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

which implies that the sum of the first terms of the sequence
consisting of ones, followed by twos, threes, etc.,
can be no bigger than . Suppose

(A.69)

Then

(A.70)

where is the integer satisfying

(A.71)

Doing the sum on the left side of (A.70), we see that

which implies

(A.72)

Notice that the left side of (A.72) is . For , one has
, and so, letting be the left and right

sides of (A.72), respectively, we conclude that

(A.73)

The previous inequality implies that

(A.74)

because for . Summing the right
side of (A.71), we obtain

which implies

Applying this to (A.74), we get

We demonstrated this under that assumption that (A.69) holds.
If (A.69) does not hold, then

Therefore, whether (A.69) holds or not

which completes our proof of (3.39).

Proof of Part a) of Lemma 3:Let be an -string of
length at least , and let be the length of . Let us call a
family of -sets a -tree if all of the following prop-
erties hold for :

• .
• If and , then either all of the children of

belong to or none of them do.
• If and , then .

It is easy to check that and are each
-trees. We establish part a) of Lemma 3 by mathemat-

ical induction. Our induction hypothesis is the statement that
for any -tree , the string is the concatenation of
the strings , where
are the leaves of (the members of not properly containing
any member of), ordered according to their left-to-right ap-
pearances as subsets of the real line. The induction hypothesis
can be seen to be true for . Suppose and
are two -trees such that

• is obtained by appending to all of the children of a
leaf of .

Then, we shall say that is a simple extensionof . It is
easy to see that if the induction hypothesis holds for, then
it must also hold for any simple extension of. Starting from

, one can perform finitely many simple extensions
to arrive at any -tree whatsoever. We conclude that
the induction hypothesis must hold for every -tree .
Part a) of Lemma 3 now follows by taking in
the induction hypothesis.

Proof of Part b) of Lemma 3:Again, let be an -string
of length at least . Fix . As in Lemma 1, let

be the sequence of-sets in of
cardinality , ordered according to their left-to-right ap-
pearance on the real line. Let be the
subsequence of whose entries are the leaves
of of cardinality . This is precisely the subse-
quence of formed by the -redundant entries
of ; that is, if and only if

coincides with for some . Since, by Lemma
1, is the sequence , it follows by
the definition of how is obtained from that
must be equal to , which gives us part
b) of Lemma 3.

ACKNOWLEDGMENT

J. C. Kieffer would like to thank S. Yakowitz and T. Park at
the University of Arizona and J. Massey at the Swiss Federal
Institute of Technology (Zürich, Switzerland), during his stays
at these institutions as part of his 1996–1997 sabbatical. The
results reported in Table I were compiled by R. Stites at the
University of Minnesota. The authors would all like to thank D.
Neuhoff for bringing the -gram text compression algorithm to
their attention.

REFERENCES

[1] J. Bugajski and J. Russo, “Data compression with pipeline processors
having separate memories,” U.S. Patent 5245337, Sept. 1993.

[2] T. Cover and J. Thomas,Elements of Information Theory. New York:
Wiley, 1991.

[3] I. Csiszár and J. Körner,Information Theory, Coding Theorems for
Discrete Memoryless Systems. Budapest, Hungary: Akadémiai Kaidó,
1981.

[4] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 194–203, Mar. 1975.

[5] C. Hobby and N. Ylvisaker, “Some structure theorems for stationary
probability measures on finite state sequences,”Ann. Math. Statist., vol.
35, pp. 550–556, 1964.

[6] J. Kieffer and E. Yang, “Grammar based codes: A new class of uni-
versal lossless source codes,”IEEE Trans. Inform. Theory, vol. 46, pp.
737–754, May 2000.

KIEFFERet al.: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1245

[7] , “Redundancy of MPM data compression system,” inProc. 1998
IEEE Int. Symp. Information Theory, Cambridge, MA, p. 136.

[8] J. Kieffer, G. Nelson, and E. Yang, “Tutorial on the quadrisection method
and related methods for lossless data compression,” Dept. Elec. Comput.
Eng., Univ. Minn., Tech. Rep., 1996.

[9] J. Kieffer, T. Park, Y. Xu, and S. Yakowitz, “Progressive lossless image
coding via self-referential partitions,” inProc. 1998 Intl. Conf. Image
Processing, vol. 1, Chicago, IL, pp. 498–502.

[10] G. Louchard and W. Szpankowski, “On the average redundancy rate of
the Lempel–Ziv code,”IEEE Trans. Inform. Theory, vol. 43, pp. 2–8,
Jan. 1997.

[11] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” inProc.
1995 Data Compression Conf., Snowbird, UT, pp. 202–211.

[12] G. Nelson, J. Kieffer, and P. Cosman, “An interesting hierarchical
lossless data compression algorithm,” inProc. 1995 IEEE Information
Theory Soc. Workshop, Rydzyna, Poland.

[13] T. Park, “Computational considerations in quadrisection image com-
pression,” Honors thesis, Dept. Syst. Indust. Eng., Univ. Ariz., 1997.

[14] E. Plotnik, M. Weinberger, and J. Ziv, “Upper bounds on the probability
of sequences emitted by finite-state sources and on the redundancy of
the Lempel–Ziv algorithm,”IEEE Trans. Inform. Theory, vol. 38, pp.
66–72, Jan. 1992.

[15] S. Savari, “Redundancy of the Lempel–Ziv incremental parsing rule,”
IEEE Trans. Inform. Theory, vol. 43, pp. 9–21, Jan. 1997.

[16] C. Teng and D. Neuhoff, “An improved hierarchical lossless text
compression algorithm,”Proc. 1995 IEEE Data Compression Conf.,
pp. 292–301.

[17] J. Ziv and A. Lempel, “Compression of individual sequences via vari-
able-rate coding,”IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536,
Sept. 1978.

