IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1227

Universal Lossless Compression Via Multilevel
Pattern Matching

John C. Kieffer Fellow, IEEE En-hui Yang Member, IEEEGregory J. NelsonMember, IEEE and
Pamela CosmarMember, IEEE

Abstract—A universal lossless data compression code called the For some fixed positive integer > 2, and each data string
multilevel pattern matching code (MPM code) is introduced. In ; of length at least over a fixed finite alphabet, let there be
processing a finite-alphabet data string of lengthn, the MPM code specified a positive integdrfor whichr is less than or equal to

operates atO(log log n) levels sequentially. At each level, the . . .
MPM code detects matching patterns in the input data string (sub- the length ofz. (The choice of the integefris dependent upon

strings of the data appearing in two or more nonoverlapping posi- the length ofz; we shall discuss the nature of this dependence
tions). The matching patterns detected at each level are of a fixed later in the paper.) For each integesatisfying0 < ¢ < I, the
Iengt_h which decreases by a constant fa_ctorfrom levelto level, until MPM code extracts from: a certain sequencs; (=) consisting
this fixed length becomes one at the final level. The MPM code of some nonoverlapping substrings fof length+/~%. For

represents information about the matching patterns at each level L .
as a string of tokens, with each token string encoded by an arith- each sequencti(z) (¢ = 0, 1, ---, I — 1), let the substrings

metic encoder. From the concatenated encoded token strings, the©f = forming the entries ofS;(z) be called “patterns.” If

decoder can reconstruct the data string via several rounds of par- S;(z) = (s1, s2, -, si), the set of distinct patterns if};(z)

allel substitutions. A O(1/log n) maximal redundancy/sample s the set{u:u = s; for somei = 1,2, ---, k}. In each

upper bound is established for the MPM code with respect to any Si(z) (i = 0,1,---,1 — 1), the MPM code detects the
T - ? ? ? 1

class of finite state sources of uniformly bounded complexity. We . . . o .
also show that the MPM code is of linear complexity in terms of distinct patterns irb; (). For each distinct pattera appearing

time and space requirements. The results of some MPM code com-in Si(x), the MPM code performs a pattern-matching task

pression experiments are reported. consisting of determining which entries &f;(z) match «
Index Terms—Arithmetic coding, entropy, lossless data com- (ie., C_Omc'(_je W'th“)_ea_Ch appearance () of a pattern
pression, redundancy, universal codes. matchingu is replaced with a “token” from an abstract token

alphabet{to, t, t2, t3, - - -}, so that distinct patterns i6;(xz)
are assigned distinct tokens. In this way, each sequéy(acg
(i =0,1,---, 1 —1)is “tokenized” via pattern matching to
NIVERSAL lossless data compression algorithmgield a “token sequencel’; containing the same number of
based upon pattern matching have been studied in tiegms as the sequenég(x).
source coding literature since the 1970’s, beginning with the The sequencedy, 11, ---, 771, together with the se-
Lempel-Ziv code [17]. It is the purpose of this paper to puiuencel; = S;(x) consisting of some individual entries of
forth a new universal lossless data compression algorithm ba#keel given data string;, form the sequenc€ly, 11, -- -, T7),
upon pattern matching, which has some attractive features boedlled themultilevel representationf z. Each data string can
with regard to data compression performance and implemenkg- fully recovered from its multilevel representation. Via a
tion complexity. This new data compression algorithm is calle&gimple adaptive arithmetic encoder, the MPM code separately
the Multilevel Pattern Matching code (MPM code, for short).encodes each token sequefig@n the multilevel representation
In this introductory section of the paper, we give a nontechnicélo, 71, -- -, 17) of the data stringe into a binary stringB;.
description of the workings of the MPM code—a detailedhe binary codeword for the data stringgenerated by the
description shall be presented in subsequent sections. MPM code is then obtained by concatenating the strings
By, By, ---, By together from left to right; we write this
codeword asByB; - -- By. From the codeword3y B - - - By,

ManUSCript received JuIy 19, 1996; revised June 6, 1999. This work was Slﬂﬁ'e MPM Code can decode the multllevel representatlon
ported in part by the National Science Foundation under Grants NCR-93049

NCR-9508282, NCR-9627965, and by the Natural Sciences and Engineef ; T, -+, T1), from which the data string is reconstructed
Research Council of Canada under Grant RGPIN203035-98. The materiabiyy means of parallel substitutions.

this paper was presented in part at the IEEE International Symposium on Infor-The structure of the MPM code is depicted in the block dia-

mation Theory, Cambridge, MA, August 16-22, 1998. in Fi 1 and 2. wh h " .
J. C. Kieffer is with the Department of Electrical and Computer Engineerin@,rams In Figs. 1 an » Where we assume that 3 for sim-

University of Minnesota, Minneapolis, MN 55455 USA. plicity. The encoding part of the MPM code is given in Fig. 1.
E.-h. Yang is with the Department of Electrical & Computer Engineeringrhe mappingsIf ®. andIl are string processing functions. de-

University of Waterloo, Waterloo, Ont., Canada N2L 3G1. ined in Secti Il that all for th . tati f
G. J. Nelson is with Anoka-Ramsey Community College, Coon Rapids, MRIne In secuon [l, that allow Tor the recursive computation o

55433 USA. the sequenceSy(z), Si(z), S2(x), S3(x) from the input data
P. Cosman is with the Department of Electrical and Computer Engineering, The “tokenization mapt, also described in Section Il, con-
University of California at San Diego, San Diego, CA 92037 USA. . .
Communicated by N. Merhav, Associate Editor for Source Coding. verts (So(z), S1(z), S2(x), S3(x)) into the multilevel repre-
Publisher Item Identifier S 0018-9448(00)04275-9. sentation7y, 71, T2, T3). The bit stringsBy, Bi, B, Bz are

I. INTRODUCTION

0018-9448/00$10.00 © 2000 IEEE

1228 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

substrings that form the left and right halves of that entry.) This
z v o @ o gives us

So(z) =(0010010010000001, 0010000010010010)

ﬁﬂ ﬁﬂ B 1] S1(x) = (00100100, 10000001, 00100000, 10010010)

Solz) 8 (x) Sy(x) S3(x) Sy(x) = (0010, 0100, 1000, 0001, 0010, 0000, 1001, 0010)
Sa(z) = (00, 10, 01, 00, 10, 00, 00, 01, 00, 00, 10, 01)
t t t t
|__J LJ L_l Su(x) =(0,0,1,0,0,1).
T . L B We then “tokenize” eacl$;(z) (i = 0, 1, 2, 3), obtaining the

multilevel representatio(ily, 11, T», T3, 74) in which

enc enc €nc enc
To =(to, t1)
Bo B By Bs Ty =(to. t1, t2, t3)
Ts =(tg, t1, to, t3, to, tg, t5, ¢
Fig. 1. Encoding part of MPM code. 2 (0’ Ly 525 35 505 24y 5, 0)
13 = (to, t1, t2, to, t1, to, to, t2, to, to, t1, t2)
Ty, =(0,0,1, 0,0, 1).

B, B B,
ByB,B;B3 Tec B,B,;B3 doc | 2 m 3 dec

For0 < ¢ < 3, we tokenized to obtaiff; from S;(x) by scan-
T T T; T3 ning.S; («) from left to right, assigning to the first entry the token
L to, assigning to each succeeding entry not matching a previously
i——P—J lf—;, | {—P—’_. . Scanned pattern the first token from the lgt ¢1, 2, - -- not

used previously, and assigning to each entry matching a previ-
ously scanned pattern the same token that was used previously
for that pattern.

The multilevel representatidfiy, 71, T, 15, T4) allows re-
then obtained by encodirith, 71, 1%, 15, respectively. Fig. 2 construction ofr via four rounds of parallel substitutions, as fol-
gives the decoding part of the MPM code. The mapgihgle- lows. In the first round of parallel substitutions, replace each
scribed in Section Il, is used to perform parallel substitutioni® 75 by (¢, 1) (the first two entries of/1) and replace each
and allows the reconstruction ofin a recursive manner. t1 in Ty by (t2, t3) (the next two entries df;). The resulting
token sequence is

Fig. 2. Decoding part of MPM code.

Example 1: We illustrate the workings of the MPM code
using a simple example. For simplicity, we take- 2 and take 20 = (to, t1, ta, t3).
the length of the data string to be a power of two. (The case of
general- and general data lengths will be considered in Section the second round of parallel substitutions, make the substitu-
II.) We take the data string to be the following binary string tions

of length32:
to — (to, t1)
z = 00100100100000010010000010010010. t1 — (t2, t3)
. ta — (o, ta)
Let us suppose thdt= 4. We need to describe how to form the
ts — (5, to)

sequences;(z), ¢« = 0, 1, 2, 3, 4. First, form the following

sequences. for the entries oft("), with the right sides of the substitutions
taken as the entries @f,, two by two. This yields the token

to == sequence
w1 =(0010010010000001, 0010000010010010)
1z = (00100100, 10000001, 00100000, 10010010) @ = (to, t1, ta, B3, to, b, 15, t0)-
u3 = (0010, 0100, 1000, 0001, 0000, 1001) In the third round of parallel substitutions, make the substitu-
ug = (00, 10, 01). tions

The entries ofy; are substrings aof of length2°—*. The entries to — (fo, t1)

of u; are obtained by partitioning into nonoverlapping blocks t1 — (t2, to)

of length2°—%, and, of these blocks, keeping only the distinct ty — (t1, to)

blocks as entries af;, in order of first appearance from left to . P

right in the partitioning. The sequencég(z) is then obtained 3 = (to, t2)

from the sequence; by bisecting each entry af;. (In other ta — (to, to)

words, simultaneously replace each entryugfwith the two ts — (t1, t2)

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1229

for the entries of:(2), where the right sides of the substitutionsre two parametersandl that are preselected in order to com-

come from the entries df;, two by two. This yields the token press and-string by the multilevel pattern-matching method.

sequence The parameter is an integer that must satisfy> 2. The pa-
rameter/ is a nonnegative integer.

2 =(to, t1, t, to, t1, to, to, ta, to, t1, to, to, t1, t2, to,). We fix the parameters and I throughout this section. Con-
o sider the data compression method, which we call algorithm
In the fourth and last round of parallel substitutions, a sequeng@m(r, 1), in which eachA-string = of length at least is

™ is obtained fromz(®, by making the following substitu- compressed and decompressed in four phases, performed in the
tions for the entries of®: following order.

to — (0, 0) 1) Multilevel Decomposition Phase: The sequences
. 1’ 0 So(x), S1(x), ---, Sy(z) are formed. EachS;(zx)
1=~ (1.0) consists of nonoverlapping (but not necessarily con-
t2 — (0, 1). tiguous) substrings of of lengths!—.

2) Tokenization Phase: The output of the tok-

The right sides come from the entriestf The reader can see enization phase is the multilevel representation

thate = <. (Ty, T4, - - -, Ty) of the data stringe, in which each
We discuss what shall be accomplished in this paper con- sequencesS;(z) from the multilevel decomposition

cerning the MPM data compression code. In Section II, we lay phase is “tokenized” to form the sequerite

out the particulars concerning the encoding part and the de- 3) Encoding/Decoding PhaseThe entrie<’; of the mul-

coding part of the MPM coding procedure. In Section I, we tilevel representatioiZy, 71, - - -, T;) are separately

investigate the order of growth of the total number of entries encoded and decoded.

)[NT.'Ch az?peTar |'n' FheTseqlfJengets foim'”g :chle m;;bl’;u.lt_avel retpr_esen— 4) Reconstruction PhaseParallel substitutions are used

ation (Io, Iy, -+, I).O a data string of length, n partic to reconstruct: from the multilevel representation.

ular, we show that taking = O(log log n) makes this order

of growthO(n/log n). In Section IV, we apply the Section lll Inthis section, we make precise the workings of the algorithm

order of growth result to perform a redundancy analysis for tidPM(r, 1) by explaining the preceding four phases in detail.
MPM code. The key result of the paper (Theorem 4) assefiibe eventual MPM code that shall be spelled out in Section IV
that the maximal redundancy/sample of the MPM code relamploys a certain choice dfas a function of the length of the
tive to any class of finite-state sources of uniformly bounded-string to be compressed. (In other words, in Section IV, we
complexity isO(1/log n) as a function of the data length a shall specify a sequence of nonnegative integéx$ such that
better redundancy result than has currently been establishedff@n A-string z is of lengthn, thenz will be compressed/de-
the Lempel-Ziv code [17] (whose maximal redundancy/samptempressed with the algorithm MRM 1,,).) The choice of the

is only known to beD(log log n/log n) [14]). The MPM code parametetr as a function of the data lengthcannot be made

is a universal code in the sense that it optimally encodes amyw, since at present we do not know how to optimize the choice
stationary source (Theorem 5). In Section IV, we also preseaft/. By holding ! fixed in this section and in Section IIl, we
some results of compression experiments in which the MPshall be able to make an analysis of the algorithm MPM)
code was used to losslessly compress binary images—thethat will enable us to cleverly choodeas a function of. We
sults show that the MPM code is competitive with JBIG on largghall see thal ~ log log n is the best choice.

binary images. The paper concludes with a complexity analysisgefore describing the algorithm MPM I), we introduce
of the MPM code; it is shown (Theorem 6) that the MPM cod&ome notation and terminology that shall be in effect throughout
like the Lempel-Ziv code, is of linear time and storage comhis paper. IfD is a nonempty set, we ldd+ denote the set of
plexity as a function of the data length. all strings of finite length over the alphabg, excluding the

To our knowledge, the MPM code is the first pattern matchingmpty string. (As a special casé? is the set of all4-strings.)
based universal lossless data Compression code for which bgthnetimes, for convenience, we shall want to append an empty
of the following have been established: string to the seD; letting A denote the empty strind)* de-
pptes the seDT U {A}. Forn = 1, 2, ---, D™ shall denote
the set of all strings i * of lengthn. For eachr in D*, let|z|
denote the length af. If (1), (2 ... 2(*) are strings inD*,
let (2@ ... 2(*) denote the string iD* obtained by con-
catenating together the strings”, (2, ... z(* from left to

Il. THE ALGORITHM MPM (1, I) right. If S is a finite set, ther}S| shall denote the cardinality

Let A denote a finite alphabet containing at least two synof S. All logarithms written ‘log” without any subscript shall
bols, fixed for the rest of this paper. The terminoladystring denote logarithms to the base two; if we use a base for the loga-
shall refer to any string of finite length whose entries are selectéthm other than base two, that base shall be denoted by means
from A (excluding the empty string). We shall be using the mubf a subscript.
tilevel pattern matching method outlined in Section | to com- We letS(A) denote the set of all sequences of finite length
press and decompredsstrings. As indicated in Section I, therewhose entries come from™ (including the empty sequence).

a) linearity intime and space complexity as a function of da
lengthn;

b) O(1/log n) maximal redundancy/sample behavior.

1230 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

We have to be very careful with our notation so that we doet each entry of: have length**. Foreachy = 1, 2, ---, ¢, let
not confuse thed-strings in A+ with members ofS(A). Let- w) = (w; 1, w; 2, -+, w; ,-) be the sequence ifi(A) such
ting A = {ao, a1, -+ -, aj4j—1}, we shall take thed-strings that

to be all the expressions of the foum a;, - - - a;, , wheren = R d

1,2, - andiy, i, - -, i,€{0, 1, -- -, |A]—1}. (Notice that Uiy = W5, 1W, 27 Wy, AN

in these expressions, a,, ---a; we do not separate the en- * Wi, 1, W2, ---, w; » are all of lengthr*—1.

tries by commas or place parentheses around the expressionst),(2) be the string ind*, and leto(1) = (v}, v, - -, v*)
An element ofS(A) shall be written(uy, uy, - -, ux), Where pe the sequence ifi(4) such that

each entry; is an A-string and therefore an expression of the

forma; a;, ---a; . If S1, Sz, -+, Sy are sequences ifi(A), « 5= [Jv]/rF

thenS; U S, U --- U S, is the sequence if(A) in which we e v =vlv? . 0u(2)

first write down the entries of;, then the entries af», then e vl 02, ..., v* are all of length-*—1.

the entries of5;, etc.)]
) (If || < 7*=1,v(1) is taken to be the empty sequenc&im).)
Example 2:Let A = {0, 1}. Then0010 is a member of Then

AT, whereag0010), (0, 0, 1, 0) and(00, 10) are members of A (@D (2) (@)
S(A). If S, = (0010) and S = (00, 10), then S(u, v) = (w VU Ut Ue(l), ”(2))'
The Functionll: This function is the projection mapping
51U 8, = (0010, 00, 10). from S(A) x A* ontoS(A). Therefore,
M(u, v) = u, uweSA4), wve A

Definition of the Sequencds;(z): 0 < ¢ < I}: Letx be
any A-string of length at least’. Let

A. Multilevel Decomposition Phase

We fix throughout this subsection the pair of integers/)
in which» > 2 andl > 0. The goal of this subsection is
to explain the workings of the multilevel decomposition phase (w0, vo) = ¥(x)
of the algorithm MPMr, I). Let = be anA-string of length (i, vi) =P(wi—1, vie1), 0<i<lI.
at leastr!, and we operate on this string with the algorithypen
MPM(r, I). The end product of the multilevel decomposition
phase is then a set of sequendes (), Si(z), ---, Sr(x)} Si(x) EN (u;, v;), 0<i<I.
fromS(A), with each sequenc® (x) consisting of certain care-
fully selected substrings af of lengths!—?. _ _ .
The sequenceSy(z), Si(z), ---, Sy(x) are generated re- Example 3: Consider the string
cursively. This shall be accomplished using three “string pro- x = 00000001000000010001011 (2.4)
cessing functions¥, ¢, andIl. We proceed to define each ofand we suppose that= 2, I = 4. We recursively compute
these functions, followed by the definition of thé;(x)}.

. . N , (0, vo) = ((0000000100000001), 0001011)
The FunctionW: This function is a mapping from the B
set{z € AT :|z| > +'} into the setS(A) x A*. Let z be an (1, v) = ((00000001, 00000001), 0001011)
A-string of length at least’. Let k = ||z|/r!]. Let (1), (u2, v2) =((0000, 0001, 0001), 011)
2@ ... 2™ ¢+ pe the unique strings iA* such that (us, v3) =((00, 00, 00, 01, 01), 1)
o= W@ (k) L) (g, v4) =((0, 0, 0, 1, 1), A).
and such that each of the strings excefft) is of length,Z, Projecting down onto the first coordinate
Then So(z) = (0000000100000001)
U(x) A ((35(1)7 2@ x(k)) 7 x(k+1)>' S1(x) = (00000001, 00000001)
_ Sy(z) = (0000, 0001, 0001)
The Function®: Le_t S.(A) be the subset_of(A) such that Sa(z) = (00, 00, 00, 01, 01)
a sequence € S(A) is a member of5,.(A) if and only if all
of the A-strings which are entries af are of the same length, Sa(x) =(0, 0,0, 1, 1).

where this common length can depend.and is of the form*
for somek > 0. The function® is a mapping frons,.(A) x A* B. Tokenization Phase

into S(A) x A*. Letu = (uy, -+ -, um) be asequence §.(4) Throughout this subsection, we fix > 2, and a nonneg-
and lety € A*. We define® (v, v) as follows. First, identify the ijve integerz. The purpose of this subsection is to describe
distinct entries ofi, which we label as.;, , ui,, -+, w;,, Where - the tokenization phase of the algorithm MPMT) applied to

g = [{u1, w2, -, um (2.1) any A-string = of length at least, in which each sequence
Si(z), 0 < ¢ < I, generated in the multilevel decomposition
phase, is converted into a certain sequéfiae the same length
and aSSi(x). -

ij = min{l <4 < m:w; =}, J=1,2 -, q. We define a “token alphabet

(2.3) T2 {to, t1, t2, -}

1<ig <o <---<ig<m (2.2)

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1231

whose entries are abstract symbols called “tokens.” The syihe number of distinct entries afis 3. The length o (which is
bolst; in the token alphabéf are distinct, and, in addition, we 7) is at least as big & = 6. Therefore, the paifu, v) belongs
assume that none of them is a member of the data alpbabet to 72,

According to our definitions at the beginning of Section II, Definition: We define a mapping : 72 — 7+UA* which

77+ denotes the set of all sequences of finite length whoag L
. e call theparallel substitution magl_et 7@, Letthe
entries are selected from the token alphabetWe use the ® (u, v) €

: L " distinct entries of: be the following symbols i :
same notational convention in writing the elements7Zof gsy

that we do in writing the elements af(A), namely, the bivs bigs o iy (2.12)
entries of a sequence it are separated by commas, withwhere we have ordered the list in (2.12) so that
the entire sequence enclosed in parentheses. For example, i <o < e <
(fo, 1, to, t2, t1) is @ member of the sa™. . Let v @ ... 40 4G+ pe the unique sequences such
Let v be the following natural injection mapping from™ ’ L ’
. that
into S(A):
/ o v 4@ .. L0G) u +

A + v\t) are the sequences it U ~(AT) of
V(@122 x") = (@2 w), m e AT lengthr, which, when concatenated together from left to
The tokenization phase shall employ a mapping right in the indicated order, yield a prefix of

) + + + . 1y .
t: S (A) U~(At) = TTuyAah) « If kisthe length of;, thenvU*1) is the suffix ofv of length

which we shall call theokenization maplf © € ~(A*), we k — jr. (Note:vU*1) is taken to be the empty sequence if
definet(u) = u. Now we suppose that = (uy, ug, « -+,) k= jr.)

is a sequence i,.(A). In this caset(u) will be a member of

i FUAT ; -
T+. We describe how(u) is formed. First, identify the dis- ' stingP(u, v) € 7" U A™ is formed via the following two

tinct entries ofu, which we label asi; , u;,, ---, u;,, where steps:
(2.1)—(2.3) hold. Writing Step 1: Write down below each entry of

Vj = Uisy j=0,1,---,¢g—1 w=(ug, ug, -+, Un)
we can then rewrite: as the corresponding member of the set

= (Vs,, Vsy, **» Vs,) {v(l),v@), ---,v(j)}
wheresy, s2, -+, s, belong to{0, 1, ---, ¢ — 1}. Define according to the substitutions
1) 2 (o, tayy sty) ti, >0, g=1,2,-,]
Definition of Sequencedl;}: Letz be anA-string of length Letwy, wa, ---, wy be the resulting list of members

atleast-’. Application of the algorithm MPNy-, 1) to z yields of 7F U~(AY).

the sequencefs;(z):0 < ¢ < I} in the multilevel decompo- Step 2: Concatenate together the members of the list
sition phase. We define W, W, s Wy, VT

T = 1(Si(x)), =012, 1 from left to right, thereby obtaining a sequengén
The sequencély, 11, - - -, T1) is themultilevel representation T+ U~(A1). Then

of z generated by the algorithm MRM I). ce Tt

| | Pl 2 {7, ;
Example 4: We compute the multilevel representation of the 7o), o €q(AT).

data string in Example 3, where= 2 andI = 4 Example 6: We consider again the stringsandv given in

Tp = t((0000000100000001)) = (to) (2.5) (2.10) and (2.11). We suppose that= 2. Then, the substitu-
1y = ¢((00000001, 00000001)) = (o, to) (2.6) tions that are to be used in computifgu, v) are
Ty = #((0000, 0001, 0001)) = (to, t1, £1) (2.7) o > (fo, f0)
13 = t((00, 00, 00, 01, 01)) = (to, to, to, t1, t1) (2.8) 7
Ty =#((0,0,0,1,1)) = (0,0,0, 1, 1). (2.9) b1 = (f1, o)
ty — (ta, t1)-

C. Reconstruction Phase Using these substitutions on the six entries.pfve obtain the

The purpose of this subsection is to specify how the algorithgix sequences
MPM(r, T) reconstructs ami-string from its multilevel repre-
sentation. Lef () denote the set of all paifs, v) such that (fo, t0), (1, t0), (to, to), (f2, 1), (h1, to), (2,).
cuweTH ve T+HUA(AT). These sequences are concatenateo(ajj;_jthg suff_lx ofwv that
was not used in forming the above substitutions, is also concate-

* If w = (s1,---, si), andj is the cardinality of the set \ateq to the right end. We conclude that

{s1, 2, -, si }, then the length of is at leastj.

P = (%o, to, t1, to, to, to, t2, t1, t1, to, t2, t1, To).

Example 5: Suppose: = 2. Let (u, v) = (o, to, t1, to, to, to, t2, t1, t1, to, t2, t1, to)
u = (to, t1, to, to, t1, ta) (2.10) Formation of z from its multilevel representation. Let
v = (to, to, t1, to, t2, t1, to). (2.11) « be an A-string of length at least! to which the algo-

1232 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

rithm MPM(r, I) has assigned the multilevel representatiowe shall write

(T%, T4, -+ -, T7). A comparison of the definitions of the map-

pings® andt with the definition of the mappind® indicates n o~ (b, bz, -+, by)

that the operatof’ inverts the effect of the mappings and

t. Since® and¢ are used to determine tHe} from z, this to denote thatby, by, - -+, by) is the unique binary expansion

means that can be reconstructed from th&; } usingP. Here ©f the positive integen.. The encodet, is taken to be the
is the algorithm via which this reconstruction is accomplishe@®ne-to-one mapping from the sgt, 2, - -} into the set of bi-

nary strings{0, 1}t such that, ifn ~ (b, b, -+, bg), then
ALGORITHM: Given (T, T1, ---, T7), generatet(©®, y strings{0. 1} (b, b 2

t ... ¢ recursively by Ei(n) = (by, by, b, by, -+, ba_y, br_y, b, 1 — by).
O =13 (2.13) Note that the set
(1) — (i=1) ;
1O =PV, T), 0<i<I. (214) (Eim)in=1.2 1 (2.15)
Then

is aprefix set meaning that any infinite or finite binary string
z = td, can have at most one member of the set (2.15) as a prefix. The

decoderD; is the unique mapping from the set
Example 7: Assume thatr = 2, and that the alphabet

is A = {0,1}. We consider the multilevel description {u € {0, 1}*: w has a prefix in the set (2.1p)

{To, T1, T>, Tg_, T,} given in (2.5)—(2.9), for a certain string y o the se{1, 2, 3, ---} in which

z € At. Applying (2.13) and (2.14), we obtain

tO =Ty = (to)

D _p (t(o)’ Tl) = (to, to) whenever is a binary string with prefix; (n).
For later use, it is not hard to see that

n = Di(uw)

t@ =P (+W, Ty = (to, t1, to, t1, t
(’ 2) (Fo; 1, to, 1, 1) |EL(n)| = 2[log(n+1)], n>1. (2.16)

10 =P (1@, 13) = (to, to. to, 1, fo. to, o, t1, o, t1, 1)
Remark: To obtain good compression performance for the

tW=p (t(3)7 T4) = 00000001000000010001011 = =. MPM code that we shall define in Section 1V, one needs to re-
quire of £, only that
D. Encoding/Decoding Phase |E1(n)| = O(log n) (2.17)

It is the purpose of this subsection to describe the en-)] o
coding/decoding phase of the algorithm MPMI). Let The particular encodeF; defined above satisfies (2.17), but
be an A-string of length at least’. Let (Ty, T3, ---, T7) many other encoders for the integers satisfying (2.17) have been
be the multilevel representation of obtained by applying studied. Elias [4] gives examples of encodBjsfor the integers
the algorithm MPMr, I) to =. In the encoding/decoding satisfying the property that
phase, an encoder encodes the multilevel representation
(To, T1, - -, Tr) of z into a binary string that is transmitted to

the decoder; the decoder then decodes this binary string bagich is a stronger property than (2.17). We chdgeabove
into the multilevel representation. rather than one of the Elias encoders becdtisis simpler and

In the encoding/decoding phase, three encoder/decoder pgjfsws us to obtain specific compression bounds later on in the
(E1, D), (Ea, D), (E3, Ds)areemployed. The encoder/de—paper_

coder pai £y, D;)is used first, and allows for the communica-

tion of || to the decoder; this step is necessary because the valu&he encoder/decoder pd&iE;, D) is now determined. The
of || is needed by the decoder for the rest of the encoding/dcoder will transmit the binary string; (|=|) to the decoder,
coding phase. After the encoder/decoder p&ir, D;) has been who will then use the decoding functidn, to learn whatz| is.
used to communicate to the decoder the valu¢rfthe en- 2) Encoder/Decoder Pair(Es, D»): Recall from Sec-
coder/decoder paitE.,, D) is used to communicate to the detion 1I-B the tokenization map defined onS,.(A) U v(AT).

|EL(n)] = log n + o(log n)

coder each sequen@® € {1y, T3, ---, T7—1 }. Finally, the Let« be any sequence i{S.(A)). Let m be the number of
encoder/decoder pa(iFs, D) is used to communicate the sedistinct terms inu. Then, each term of, belongs to the set
quencel to the decoder. {to, t1, -+, tm_1}. Define7, to be the set

We now give precise descriptions of the encoder/decoder A
pairS(El, Dl), (EQ, Dg), (Eg, Dg) Tu = {t07 t1, -5 b1, trn}~
n hle)lsE\nucr?igﬁzgierg)rgeeagglrg&;j?g; Eaﬁi)piﬁsvl\flr\]/iir:rl:eier The set7,, has the following property that is useful for adaptive

1 and arithmetic coding:

k Property: If «’ is any sequence in(S,.(A)) havingw as a
no=2k14 Z b2k proper prefix, then the entry af in position|«| + 1 belongs to
= the set7,,.

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1233

For each0 < ¢ < m — 1, let n(¢;|+) denote the number If I > 0, let By, By, ---, By be the binary strings
of times thatt; appears as an entry of Let p(-|«) denote the BT+ Es(Tr \Ex(T 0<i<I_1
following probability distribution or{,: B, = { BAL) - Bali-)Be(Ty), - 0Si<
(t |) E3(TI)7 i=1.
|77| ;u) =0,1,---,m-1 The decoder then recursively determifigs 11, - - -, 17 from
p(ti|u) = Y m m (2.18) B* according to the equations
[+m T |z| = D1(B") (2.21)
Notice that each of the probabilities in this definition is positive. r; _ {B* — Ei(Jz]), i=0 (2.22)
This fact, combined with the above Property, allows us to apply Bi1—Ex(Ti—1), 1<i<I '
the theory in[2, Sec. 5.10] to conclude the existence of an adap- L|z|/r1], i=0
tive arithmetic encoder/decoder péit,, D-) such that r(Ti_t)
i) E2 isamapping from(S,.(A)) into {0, 1}*. %l = Z_|x| — =i || fr T . (2.23)
i) If w e t(S,.(A)) is of length one, thel»(«) is the empty + { =i J IR AYES
string in {0, 1}*. (In this caseu must be the sequence . Dy(|T|, B)), 0<i<I-—1 (2.2
(o)) PSS\ Ds(Br), i=1. :

i) 1t u € #(S-(A)) is of length greater than one, then The order in which these recursions are performed may not be

) clear to the reader. We point out th@;_,, 7;_;) determines
|E2(u)| =1+ {Z —log p(ui+1|uz)w (2.19) (B;, T;) as follows. First(B;_1, T;_1) is used to comput;
=1 via (2.22). Then|T;| is determined fronf;_; via (2.23). Fi-
wherew’ denotes the prefix of, of lengthi, andw;,, nally, |Z;| andB; are jointly used to computé; via (2.24).
denotes théi + 1)st entry ofu.

iv) Dy is a mapping from{1, 2, ---} x {0, 1}* into IIl. COUNTING TOKENS
t(S,-(A)) such that

lul—1

As in the previous section, the integer > 2 and the

u = Da(lul, B) nonnegative integer/ are fixed throughout this section.
whenever € t(S,.(A)) andB is any string in{0, 1}t Let (Tp, T3, ---, 77) be the multilevel representation of
having F»(u) as a prefix. an A-string z of length > !, generated by the algorithm

The reader interested in the practical implementation detaN¥°M(r, I). In order to judge the performance of the algorithm
of the adaptive arithmetic encoder/deco@Es, D>) may con- MPM(r, I), we shall need to obtain a bound on
sult the paper [11].

3) Encoder/Decoder Pai(E3, D3): The encoder/decoder
pair (Fs3, D3) is easy to describe. The symbols appearing;in The purpose of this section is to prove the following theorem,
belong to the sefl. Each symbol in4 can be encoded using awhich gives us the desired bound.
binary string of lengttjlog | A|]. ThereforeI’; can be encoded Theorem 1: Letn > max(2,). DefineC(r, I, |A],) to

symbol by symbol using a binary string of lend#y|[log | A[].
4) Encoder/Decoder ImplementatioWe are now ready to be the constant

describe the mechanics of the overall encoder/decoder scheme. C(r, I, |A], n) 2 onr~! 4 20r + 2r|A|” + 47| A|°

|To| + |11 + - - + | L7

The encoder output is the binary strigty defined by 9 n
B + 8 log |Alr — .
A Eq(|z|)Es(T0), I=0 log n
B* = ¢ Ei(|z|)E2(To)Ex(Th) (2.20) et s be anyA-string of lengthn and let,(Zp, T4, - -, T7) be
o Ex(Tr-1) E5(17), I>0. the multilevel representation af generated by the algorithm

The decoder structure is a little more complicated. We need M (r, I). Then
following two definitions in order to specify the decoder struc-
ture:

Definition 1: If U andV" are strings such thdf is a prefix
of V, defineV — U to be the suffix ofi” that remains aftel/ is

|To| + |T1] + - -+ [T7] < O(r, I, |4], n). (3.25)

We lay some groundwork that shall be necessary for
proving Theorem 1. We define anset to be any subset of

removed from the beginning df. {1,2,3, -} such that
Definition 2: If w = (uy, ua, ---, u;) belongs to the set * J consists of consecutive integers; i.&.is of the form
t(S5,.(A)), define () to be the cardinality of the set J={a,a+1,a+2 -, b—1, b}
{ur, uz, -+, uy}. * The smallest integet in ./ and the largest integérin .J
If I = 0, the decoder determin&g from B* by means of the satisfy
equations a=jr'+1
|z| = D1(B") b=(j+ 1)

To =D3(B" — E1(|z))). for integersi, j > 0.

1234

Given any two distinct-sets.J; and.J», exactly one of the fol-
lowing statements must be true:

« J; and.J; are disjoint or

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

The set7(r, I|x) is important for the following reason. Sup-
pose we apply the algorithm MPM I) to an A-stringz, and
let So(z), S1(x), ---, Sr(z) be the sequences of substrings of
« arising from the muIt|IeveI decomposition phase of the algo-

* one of the two sets/y, J; is properly contained in the rithm MPM(r, I). From the manner in which these sequences

other.

were defined earlier in the paper, the following lemma, pre-

Also, it can be seen that the following two properties are trueSe€nted without proof, is clear.

» Given anyr-set.J, there is a unique-set.J’ with »|.J|
elements that properly contains We shall callJ’ the
fatherof J and shall denotd”’ by fa (J).

» Given anyr-set.J contammg more than one element, there

are exactly r-sets/y, Jo, ---, J,. of size|J|/r which are

contained inJ (i.e., haveJ as their father). We shall call

theser-setsJy, Jo, ---, J, thechildrenof J.

Letn be an integer satisfying > !. We define three fami-
lies of r-sets7 (v, I|n), Jo(r, I|n), andJy(r, I|n) as follows:

Jc{1,2, -, n}}
Iln)}

Ifn)}.

n) 2 {Jisanr-set |J| < ¢,
n) 2 {J €J(r Iln):fa(J) & T(r,
n) = {J €J(r Iln):fa(J) € T(r,

J(r, 1
jO(Ta I|
jl(rv I|

Example 8: We denote am-set{a, a + 1, ---, b} by [a, b],

wherea is the smallest of the elements of theet, and is the
largest of the elements. Let= 2, = 4, andn = 23. The

r-sets comprising’y(r, I|n) are
[1, 16]
[17, 20]
[21, 22]
[23, 23] (3.26)
Ther-sets comprising7y (r, I|n) are
[1, 8], 9, 16]
[1, 4], [5, 8], [9, 12], [13, 16]
[1, 2], [3, 4], [5, 6], [7, 8], - - -, [15, 16], [17, 18], [19, 20]
[, 1], 12, 2], -+, [20, 20], [21, 21], [22, 22]. (3.27)

-z, be anA-string of lengthn > 71, If
n}, then

Letx = z122--
J = [a, b] is anyr-set which is a subset df., 2, - - -,

 we letz(J) denote the substring,z,1 - - -z of x;

« we say that/ is z-redundantf there is anr-setJ’ further
to the left of J on the real line such that{J’) = x(J);

» we say that/ is z-innovativeif .J is notz-redundant.
We define7 (r,

T(r, I|z) £ Tolr, Iln)
u{J e Al

Eachr-setinJ (r, I|z) either has no children it (r, I|x), or
else it has exactly children in7 (r, I|x); for later use, we term
theleavesof 7 (r, I|x) to be those-sets in7(r, I|x) that have
no children in7 (r, I|x).

I|z) to be the following collection of-sets:

I|n):fa(J) is z-innovative}.

Lemma 1: Let z be anyA- string of length at least’. Let
0 <+¢ < I, and IetKl, K>, ---, K, be the members of
J(r, I|z) of cardinalityr! ordered according to their left-to-
right appearances as subsets of the real line. Then

Si(x) = (x(K1), 2(K2), -+, x(Km)).

Example 8 (Continued)As before, we take = 2, I = 4,
n = 23. Let A = {0, 1}, and letz be the A-string of length
23 given by (2.4). Strike out frond1 (r, I|n) in (3.27) allr-sets
whose fathers are-redundant. This leaves us with

(3.28)

[
1,
[
1,1 (3.29)

For example|9, 12] and[17, 18] were eliminated because their
fathers are, respectivelj@, 16] and[17, 20] and

(]9, 16]) = z([1, 8]) = 00000001
2([17, 20]) = z([5, 8]) = 0001.

Combining ther-sets (3.26) with the-sets (3.29), we obtain
the following members of7 (r, I|x):

Applying Lemma 1, we have

So(z) = (z([1, 16])) = (0000000100000001)
S1(z) = (z([1, 8]), z([9, 16])) = (00000001, 00000001)
Sa(x) = (2([1, 4]), =([5, 8]), «([17, 20]))
= (0000, 0001, 0001)
Ss(x) = (z([1, 2]), z([3, 4]), «([5, 6]), =([7, 8]), =([21, 22]))
= (00, 00, 00, 01, 01)
Sa(x) = (2([1, 1]), =([2, 2]), «([7, 7]), =([8, 8]), =([23, 23]))

=(0,0,0,1, 1).

This confirms the results obtained in Example 3.

Letting (7o, T4, ---, T7) be the multilevel representation
of z which results from the application of the algorithm
MPM(r, I) to z, Lemma 1 tells us that

|7 (r, 1])]. (3.30)

In view of (3.30), we see that Theorem 1 can be established by
bounding the cardinality of the sgt(r, I|z). We shall be able

|To| + 11| +--- + [T1| =

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1235

to do this by first bounding the cardinality of the set of leaves dfi the Appendix, we show that
J(r, I|z).

Lemma 2: Let z be anA-string of length at least!, and let
N(J(r, I|x)) be the number of leaves ¢f(r, I|x). Then

7Y < 2| AP + 4 log |} () . (339)

Applying (3.35), (3.39), and (3.38) to (3.37), we conclude that

log n

|7 (r, I|z)| < 2N(T(r, I]z)). (3.31) |7*(r, I|2)] <prTi1Ir + A" + 27’|A|5
Proof: Let M be the integer obtained by counting all the 4 log | Alr? < n)
children of all the elements of (, I|z) which are not leaves. log n
Since every element ¢f (r, I|z) which is not a leaf has exactly =C(r, 1, |A|, n)/2

7 children, we have . . o
from which (3.34) follows via an application of Lemma 2.

M =T (r, I|z)| = N(T (r, L]))]. (3:32) We conclude this section by presenting Lemma 3 below,

All of the children counted to obtait/ belong to7 (», I|x) but which shall be needed later on. Lemma_ 3 and .subs.e-
fluent parts of the paper employ the following notation: if

do not belong tQ7(r, I|x|); on the other hand, every elemen .
w = (ug, ua, -+,) IS any sequence (over any alphabet), we

of J(r, I|x) which is not inJo(r, I|z|) is one of the children ~ . >
of some member of7 (, I|z), and therefore entered into theIet 4 denote the sequence obtained franby striking from«

computation ofA/. This gives us the equation each entry; which is not equal to any entry affurther to the
' left of «;. (It could be that: is an empty sequence.)

M = [T (r, I|z)| = [To(r; I|z])]. (3.33) Lemma 3: Let z be anA-string of length at least’. Let
. . : . J1, Jo, -+, Ji. be the ordering of the leaves ¢f(r, I|z) ac-
(Eng%ung the right sides of (3.32) and (3.33), one readily Obtal<r:]ording to the left-to-right ordgring of thesesets E’;lS Sl|Jb)SG'{S of
R the real line.
Proof of Theorem 1:Letn > max(2, '), and letz be a) The string « is the concatenation of the strings
a fixed (but arbitrary)A-string of lengthn. In view of (3.30), (1)), 2(Jy), -+, ().
relationship (3.25) of Theorem 1 is valid provided we can show b) Let0 < ¢ < I, and letS; = S;(x) be the sequence of
that substrings of: of lengthr’—* defined in Section Il. Then

S; is the subsequence Gf(.J), -- -, x(Jx)) consisting
of all entriesz(J,/) of this sequence for whichy, has
cardinality~'—¢,

Lemma 3 is proved in the Appendix.

|7 (r, I|z)| < C(r, 1, |Al, n). (3.34)
In order to establish (3.34), we first show that

|To(r, IIn)| < nr™ ! + 71 (3.35)

Let J € Jo(r, I|n). Then one of the conditions i), ii) below V. COMPRESSIONPERFORMANCE

must hold: In this section, we shall first establish a bound telling us how
. I well the algorithm MPMr, I) compressesl-strings of length
) |J] =" or atleast-’. The bound (Theorem 2) is an entropy bound, showing
ii) |.7| < ', andfa(J) contains the integet + 1. that the MPMr, I) codeword length can be bounded above by

If J satisfies condition i), there are at most—? possibilities an expression involving empirical entropy. We then turn our
for J, as there are no more tham~' r-sets of cardinality-’ attention to the redundancy performance of the MPM lossless

contained in{1, 2, ---, n}. If J satisfies ii), there are atmogt data compression code. The MPM code is a universal code,
possibilities forfa (.J) (the cardinality offa (.7) must be one of formally defined in Section IV-B, built by letting the param-
the I numbersr, 72, -- -, #1): since each of these possibilitieSEterI in the algorithm MPMyr, I) vary appropriately with the

for the father of/ hasr children, there are at mosf possibil- data length. Redundancy is a figure of merit commonly used
ities for J under condition ii). We conclude that (3.35) holds. 1" Source coding theory to evaluate lossless data compression

Let 7*(r, I|z) be the set of leaves qf (r, I|z). Define 7 codes. In particular, the redundancy of the MPM data compres-
and.72 to t;e the following subsets qf; (r _}|n): sion code is a measure of the deviation of MPM code compres-

sion performance from the optimal performance achievable for
gt é{Je Ji(r, I|n): fa (J) is z-innovative J is z-redundant some class of lossless codes (a precise definition of redundancy
2 A) o L . shall be given later on). We shall obtain specific redundancy
J =€ Iin):|7]=1, fa(J) is z-innovative:. - (3.36) s for the MPM data compression code (Theorems 3 and

Observe that 4), which can be regarded as the key contributions of this paper.
T*(r, I|z) C Jo(r, IIn) U T U T>. (3.37) A. Entropy Bound
It is clear that In this subsection, the integers> 2 and/ > 0 are fixed.

Let E(x|r, I) be the length of the binary codeword assigned by
|72 < r|A|" (3.38) the algorithm MPMr, I) to anA-stringx of length at least’.

1236 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

We shall obtain an upper bound drz|r, I) which involves Property 2: Letu = (ug, us, - - -, u) be any sequence, and
the finite-context empirical entropies of the stringWe begin let ¢ be any probability distribution ofw , o, - - -, ux}. Then
by explaining what these entropies are. kbie a fixed positive k
integer. LetZ(s) be the se{1, 2, ---, s}. Let P,(A) be the Ho(u) < Z —log q(u;).
family of all functionsp from Z(s) x A x Z(s) into [0, 1] such i=1
that Proof of Theorem 2:Letw = (u1, usg, - --, ux) be astring

« for each(u, a, ') € Z(s) x A x Z(s), the value of the in#(S,(A)) of length% > 1. The key to the proof is an exami-

functionp at (u, a, »') is denoted(u, alu’); nation of the codeword lengtlE,(«)|. Let j be the number of
. for eachu’ € Z(s) distinct entries of:; then
Z p(u, alu') = 1. {to, tr, sty b = {u, w2, o, wrh
(u,@)CT(s)x A From (2.18) and (2.19) it can be seen that (see (4.41) at the
bottom of this page). Notice that

Definition: Letz = zizs - - - 2, be anyA-string. Thes-con- (k—1)!

text unnormalized empirical entropy ofis the nonnegative real log [m} <k-1 (4.42)

numberH ®(x) defined by
He(x) 2 inf min
PEP;(A) ug€I(s)

Also, by [3, Lemma 2.3]

108[(k=) }
. o|u) — 1)! luw) =1 j—1U/—1!
> 11 i, xilui_l)] . (ntolu) — DI n(trw) — Dt (n(tj—1fu) — 1)

— log < Ho(). (4.43)
wp, Uz, v, Up CL(s) =1

The quantities{H*(z):s = 1, 2, ---} are the finite-context applying (4.42) and (4.43) to (4.41), we obtain

empirical entropies of:. The following theorem bounds the

codeword length assigned to a data string by the algorithm | Ea(w)| < 2|u| + Ho(#). (4.44)
MPM(r, T) in terms of the finite-context empirical entropies B
of the data string. Letn > max (2, 1), and letz be anA-string of lengthn. Let

Theorem 2: Let s be any positive integer. Then, for any in-(Zo, 71, - -+, T7) be the multilevel representation ofgener-
tegern > max(2, 1), and anyA-string« of lengthn ated by applying the algorithm MP, 1) to the stringz. Re-

E(alr, I) < H(2) + 2[log(n + 1)] + 2| A"+ ferring to (2.20), (4.44), and (2.16), we see that
+ (2 +1og s)C(r, I, | 4], n). (4.40) i(x|r, I) < 2[log(n + 1)]

In order to prove Theorem 2, we shall employ another 7-1 N
concept of entropy called zeroth-order entropy. Wf = + Z{2|T;| + Ho(T;)} + |E3(T7)|. (4.45)
(w1, uz, -+, ug) IS any nonempty sequence of finite length i=1

(over any alphabet), we define tkeroth-order entroppf « to

be the nonnegative real number We have
k -
Hou) 2 3~ Log 141 |Bs(T1)] = [Tyl llog |A) < (r|A]" +7 — 1) og |A]
i=1 < 2r|A|". (4.46)

wheren(a|u) denotes the number of times that the symébol
appears as an entry in the sequendé « is an empty sequence, For eachd < ¢ < I, let.S; = S;(x) be the sequence of sub-
in our later work it is convenient for us to define the zeroth-ordetrings ofz of lengthr’—* defined in Section Il. By Property 1

entropyH,(u) of » to be equal to zero. of zeroth-order entropy
We state two properties of zeroth-order entropy which are N . .
needed in proving Theorem 2. The simple proofs of these prop- H(S;) = H(T), 0<i< I (4.47)

erties are omitted. From (4.47), (4.46), (4.45), and Theorem 1, we conclude that

Property 1:Let v = (w1, us, -+, u) and v =

I-1
(P(u1), P(uz), o ¢(ur)) be sequences, where is a L(zlr, I) < Z Ho(S:) b+ 2[log(n + 1)] + 2| A"+
one-to-one mapping. Then =

Ho(uw) = Ho(v). +2C(r, 1, |A], n). (4.48)

‘ e (k—1)!
Bl < o vlos (J = Dln(tolu) — Din(t|u) — DI~ (n(t;—1|w) — 1!] ' (440)

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1237

Pickp € P.(A) such that * ¢, the encoder of the encoder—decoder pair, is a
one-to-one mapping from™ into {0, 1}7.
s . - * 6,, thedecoderof the encoder—decoder pair, is the inverse
H = —1 o iy Lg|Ui— . o . . . ! .
(z) uolglzr(ls) o8 o Z 7(s) E plus, iui-y) mapping fore,, (i.e., the mapping,, from ¢,,(A") into
otz T i R A" such tha, («) is the uniquer such thatp,, (x) =).
o . i
For each string = y,2 - yx in AT, define Notice that the decoder half of an encoder—decoder pair is
k uniquely determined once the encoder half has been specified.
7(y) 2 max Z H p(ui, yilwi_1). Suppose that for some fixed positive integgr a lossless en-
UCT(S) e, i ureT(s) =1 coder—decoder pait,,, &,) has been specified ot for each

o) N n > ng. The family {(¢,, 6,): n > no} of encoder—decoder
For each positive integen, there is a positive constah,, < s pairs is called amlphabetA lossless data compression code

and a probability distributiog,, on A™ such that We are now going to formally define the notion of the MPM
(y) data compression code./f> 2 and! > 1 are fixed integers,
am(y) = EL) y €A™ we have discussed the algorithm MPM) for losslessly com-
" pressing everyi-string of length> /. We remove the depen-
Suppose thay € A*, and thaty*, 42, - --, v’/ are substrings dence on the code paramefdry requiring thatl vary with the
of y of possibly varying lengths which, when concatenated tdata length in a prescribed manner. For each »”, we define
gether, yieldy. It is not hard to see that 1,, to be the positive integer
) <7 () () o () (4.49) I, 2 [log, log, n). (4.52)
By Lemma 3, we may find substring8, 2, ---, ¥’ of z such Fix the integer- > 2. For eachn >7", let &; be the one-to-one
that mapping fromA” into {0, 1} such that, for: € A, ¢" () €

{0, 1}t is the codeword (2.20) assignedatdy the algorithm
MPM(r, I,,) (this codeword is defined because> r'*). Let
6 be the inverse mapping correspondingpfo We define the

+ 1 is obtained when/!, 32, - --, 3/ are concatenated to-
gether in the given order.

* Foreachi = 0,1, .-, I — 1, the sequence; is the \ip\ data compression code be the family of encoder—de-
sequence whose entries are the members of the |igher pairs{(¢r, 67):n > "}
7 T—i . ; ny Vn/ ot '
uh ot e, y* of length »*~*, in the order of their gince we have now removed dependence on the paraineter
appearance in this list. (If there are no such entries, thgyne MPM code, we shall use a different notation for codeword
Si is the empty sequence.) length that does not involvé. If z € A™ andn > ", we let
From Property 2 of zeroth-order entropy Ln($|7) denote the Iength of the codeword aSSigned W the
R ' MPM data compression code. In terms of our earlier notation,
Ho(S;) < Z —log g1 (y) this means that
(s lwd|=rT—7) . . o
. . L, (x|r) = L{z|r, I,) = |¢5(x)].
Cillgst T —logr (), (alr) = L(zlr, L) = |§(x)]
(e |wd|=rT—1} There are two scenarios in which we shall want to perform

0<i<I-1. (4.50) redundancymeasurementsforthe MPM datacompression code.

1 Scenarioi): In this scenario, calleedundancy relative to a

Summing ovet in (4.50) and using (4.49) as well as Theorem . .
class of codesa class of lossless data compression codes is

I-1 . J) given, and one measures redundancy as the difference be-
> Ho(S:) SC(r, I, |Al, n) log s+ > —log 7 (/) tween the MPM codeword length and the optimum code-
i=0 j=1 word length achievable via codes in the given class of
<C(r, I, |A|, n) log s — log 7(z). (4.51) codes.
Applying (4.51) to (4.48), and using the fact thatog 7(z) = Scenarioii): Inthis scenario, calleeddundancy relative to a
H*(z), we obtain (4.40). class of sourcesa class of information sources is given,
and one measures redundancy as the difference between
B. Redundancy Bounds the MPM codeword length and the optimum self-informa-

. . : . tion over the given class of sources.
In this subsection, we shall make precise some different no- 9

tions of redundancy for a lossless data compression code, anth both redundancy relative to a class of codes (Theorem 3)

shall establish some redundancy bounds for the MPM data coamd redundancy relative to a class of sources (Theorem 4), we

pression code (defined below). examine the behavior of the growth of redundancy as a function
Let us first give a formal definition of the concept of losslessf the data length. Results of compression experiments on im-

data compression code. Letbe a positive integer. A losslessages are presented at the end of Section IV.

encoder—decoder paion A™ is a pair of mapping$¢.,, 6,) 1) Redundancy Relative to a Class of Codé@siroughout

such that this subsection, the integer> 2 is fixed. Lets be an arbitrary

1238 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

positive integer. It is our purpose here to investigate the redy#d-53) is upper-bounded by the sum of the following two

dancy of the MPM codé€(¢7,, 67)} relative to the class of all expressions:
s-state arithmetic codes on the alphabetEach suchs-state

arithmetic code is characterized by a triglg), f, p) in which By =2n"log (n+ 1)] + 27 (2 4+ log s)
a) ug € I(s); +2n 71, (2 4 log)
b) f is a function fromZ(s) x A into Z(s); Ey =07 [3r|A]"T! + 47| AP°](2 + log s)
c) p is a function fromZ(s) x A into the interval of real 8 log | A|r2(2 +log s)
numbers{z:0 < z < 1}; + < log n) :

d) for eachu € Z(s)

Z (alu) = 1 Itis clear how the terms i enter into terms oD(r, |A|). To
P complete the proof, we bound the termsHjf as follows:

aCA
where, by convention, we wrijg a|«) to denote the value 2n" Hlog(n+1)] <n ™[4 +2 log n]
of the functionp at (u, a). 4(2 4+ log
p at (u, a) < (2+1log s) (4.54)
Foreach > 1, thes-state arithmetic code induced by the triple log n
(ug, f, p) encodes each string = zjz5---xz, in A™ into a , w1
binary codeword of length 2r7" (2 + log s) <2777 %8 98- (2 4 log)
N < 2rlog r(2 + log s)
Ly(wluo, f,p) =1+ {Z —~log p(mlm)} - log n
=t 2n 1rl,(241log s) <2n 7 log n(2 + log s)
whereuy, uq, - -, u, are generated according to the formula 4r(2 + log
< 4r(2 +log 5) (4.55)
ui:f(uiflvxi)v t=1,---,n IOgTL

The optimum codeword length arising from the use-state 10 establish inequalities (4.54) and (4.55), we used the fact that

arithmetic codes to encode € A" is the quantityL,, (x|s)

. log n 2
defined by <

n > 2.

n ~ logn’
Lo(z|s) = inf Ly(z|vo, f, p)
(o, fip) Remark: The code classe’;(A4): s > 1} are not the only
where the infimum is over all tripleguo, f, p) satisfying the classes of codes to which one might want to compare the MPM

criteria a)—d) above. We I&,(A) denote the class of aftstate code. One could also, for each fixed positive integeconsider
arithmetic codes. the clasg"™ (A) of all lossless block to variable-length codes on

_) o the alphabetd which have block lengtl.. However, for a suf-
Theorem 3:Let s be an arbitrary positive integer. Then, Wgiciently larges, the class of code, (A) outperforms the class
have the following redundancy bound for the MPM data congst codesc™(4). Theorem 3 therefore automatically extends to

pression code: the class of code€™(A). In similar fashion, one can extend
1[5 N Theorem 3 to other classes of codes which are outperformed by
s {L,,,(a:|7) L"(x"g)} one of the classe;(A), s > 1.
< (2+log s)D(r, |A]) < 1) Yn>r" (4.53) 2) Redundancy Relative to a Class of Sourc&sroughout
log n this subsection, the integer> 2 is fixed. Itis our purpose to in-
whereD(r, |A|) is the positive constant vestigate the redundancy of the MPM code’,, é7)} relative
A to classes of finite-state information sources (defined below).
D(r, |A]) = 4 +4r 4 2r log r + 3r| A" Let A% be the set of all infinite sequencés,, =2, =3, - -)
+ 47| A]® 4 872 log |A. in which each entry; is chosen from the alphabdt For each
stringz = z122-- -z, € AT, let[z] denote the set of all se-
DiscussionThe left-hand side of (4.53) is timeaximal redun- 9uences inA> whose firstn terms arer,, x, - - -, z». The

dancy/samplef the MPM data compression code relative to thdetA™ becomes a measurable space if we endow this set with
class of code€, (A). Theorem 3 tells us that the maximal rethe sigma field spanned by the séfs]:2 € A™}. A prob-
dundancy/sample 9(1/ log ») as a function of the data length@Pility measure.. on A> shall be called aralphabetA in-
n. To illustrate, forr = 2 and|A| = 2, we conclude from The- formation sourceor simply analphabetA source Lgt As(A)
orem 3 that the maximal redundancy/sample is no larger th@@note the class of all alphabst sourcesy. for which there
352(2 + log s)/log n. (Note: The 352" in this bound is not €Xistsp € Ps(A) andug € I(s) such that, for every: =
the best possible—it is an open problem to determine what%g?2 "~ ¥n € A*
the smallest positive constant that will work in place 852.") n

Proof: Since H*(x) < Ly(x|s) for an A-string « of p(z) = > [e, iluy).
lengthn, we see from Theorem 2 that the left-hand side of wy, e, un CI(s) =1

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1239

The sources in the clags,(A) are calledinite-state informa- decays to zero; consequently, chooslngo have an order of
tion sources withs states growth at least as fast as the sequehgelog » is what one

Definition: If 1 is an alphabeti information source and e should strive for in implementation of an MPM code.

AT, then theself-information ofr with respect to the sourge 3) Other Redundancy NotiondMe discuss the performance

is defined by of the MPM data compression code with respect to some weaker
notions of redundancy than the notion of redundancy used in
I(x) 2 _ log 4:([x]). Theorem 4. Let: be a fixed alphabedt information source. The
quantity
Theorem 4: Let s be an arbitrary positive integer. Then, we 1[5 N
have the following redundancy bound for the MPM data com- seds " {L"(xh) I“(x)} (4.59)

pression code: is called the maximal redundancy/sample of the MPM code rel-

max sup n_l{i (2|r) = L(x)} ative to the source. Theorem 4 automatically implies that the
ZEAY LEn () " # MPM code has maximal/redundanéy(1/log n) relative to

1) each individual source in the union of the classes of sources
o n) ; Vmzr". (456) {A,(A):s > 1}. Savari [15] proved)(1/log n) behavior of
the maximal redundancy of the 1978 Lempel—Ziv code relative
Proof: The minimum ofl,,(x) overy € A (A)is H(x). 10 each individual unifilar finite-order Markov source.

Therefore, Theorem 4 follows from Theorem 2 in the same wayAgain, let,. be a fixed alphabeti information source. The
that Theorem 3 followed from Theorem 2. quantity

Discussion Let A be any class of alphabet information _1 / i N_T d 4.60
sources. The quantity L . { n(@lr) u(x)} () (4.60)

< (2+1og 5)D(r, |A] (

is called the average redundancy/sample of the MPM code rel-
ative to the source.. The quantity (4.60) is clearly less than
or equal to the quantity (4.59). Therefore, Theorem 4 also au-
is called themaximal redundancy/sampl& the MPM data tomatically implies that the MPM code has average redundancy
compression code relative to the class of source$heorem O(1/log n) relative to each individual source in the union of the
4 tells us that the maximal redundancy/sample of the MPMasses of sources\,(A4):s > 1}. Let Ao({0, 1}) denote the
data compression code 3(1/log n), relative to each class family of all binary memoryless information sources. Louchard
of sourcesA;(A). Theorem 4 is of interest because the 197&81d Szpankowski [10] have shown that for all but countably
Lempel-Ziv data compression code [17] is known to haweany. € A¢({0, 1}), the average redundancy/sample of the
maximal redundancy/samplé)(log log n/log n) relative 1978 Lempel-Ziv code relative @ has an asymptotic expan-
to each classA.(A) [14], but it is not known whether its sion of the form
maximal redundancy/sample @(1/log »). The MPM data
compression code and the Lempel-Ziv data compression code A(y) + < 1)

(o]
are similar in structure in that they both use pattern matching log n log n

to represent a data string as a string of pointers used for CcWHereA(u) is a certain constant depending @nlt is an open

pression; it is therefore natural to make comparisons betWegRlem whether an analogous result holds for the MPM data
these two compression algorithms. compression code.

Remark: Earlier, we defined the MPM code by requiring that 4) Universal Coding: An alphabet4 information source:
the parametef in the algorithm MPMr, 1) be dependent upon is said to bestationaryif there is a stationary alphabeit sto-
the data length. according to the formuld = |log,. log, n|. Cchastic proces§X;, X3, X3, ---) such that
Instead, suppose one weakens the definition of the MPM cod
to require only thaf be a functionl,, of »n in which H

1[5 N
max ilclgn {Ln(x|7) Iu(x)} (4.57)

ﬁ.’L’]) = PI‘{Xl =T, XQ = X2, """, Xn = .’L’n},

T =2x1%2--Tn € AT. (4.61)

Cloglogn <1, <log, n (4.58)))
The entropy rateof a stationary alphabefl sourcey: is the

for n sufficiently large, whereC is some positive constant."umberH*(y) defined by
Then, it can be shown that Theorems 3 and 4 can be extended to e VA L .
yield O(1/log n) redundancy/sample for this more general no- H(p) = lim n Z —i([2]) log p([])-
tion of MPM code. This fact gives more flexibility to those who meAT
may want to implement an MPM code so that good redundancy ,))
performance is assured. On the other hand, if one implementd Neorem 5: Let 1 be any stationary alphabetinformation
the MPM code by selectingj, to have a slower order of growth SOUrce. Then
thanlog log n, the maximal redundancy/sample in Theorems 3) 1 - N
and 4 can decay to zero more slowly than the sequénkes » nlgr;o " /4 Ln(alr) dplw) = H* ().

1240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

Discussion Let A;.(A) be the class of all alphabet sta- TABLE |

tionary sources. It is well known that any lossless alphabet COMPRESSIONRESULTS INBITS/PIXEL FOR 512 X 512 BINARY IMAGES

data compression codé¢,, 6,)} satisfies IMAGE | QUAD | JBIG

lena 0.2043 |0.1633

lim 7 / (@) dp(a) 2 H(n), Y 1 € Asea(A)- airplane [0.1485 | 0.1154

(4.62) baboon | 0.5814 |0.5276

barbara | 0.3042 | 0.2513

Therefore, the codes which perform best on the class of sta- peppers | 0.1722 | 0.1307

tionary sources\s:,(A) are the ones for which equality holds sailboat | 0.2004 | 0.1553

in (4.62). In the literature, these codes h.ave. been given a special splash | 0.0706 | 0.0589

name. An alphabet code{(¢,, &,)} satisfying tiflany | 0.0242 | 0.0264

Jim ot [l dute) = B GO, Ve M)

TABLE 1l

. . . MULTILEVEL DECOMPOSITION OF256 X 256 BINARY LENA IMAGE
is said to beuniversal Theorem 5 tells us that the MPM data

compression code is universal. The Lempel-Ziv code is also size of block | distinct blocks

universal [17]. 9256 x 256 1
Theorem 5 follows from Theorem 4, if one uses standard ap- 128 x 128 4

proximations of stationary sources via finite-state sources [5]. 64 = 64 16

Or, one can use the facts that i) the MPM data compression

. 32 %32 63

code belongs to a class of lossless data compression codes called 16 < 16 207

asymptotically compact grammar-based codes [6]; and ii) every %8 496

asymptotically compact grammar-based code is universal [6]. 1 X 1 639
X

5) Compression Experiments\ version of the MPM code
called the quadrisection code (QUAD, for short) has been de- 2x2 16
veloped for lossless image compression [8], [13], [9]. First, one
scans &™ x 2" imageM to obtain a one—dimensional (1-D)

Strinngw of |ength4n, so that for each < i<, the?2s x 27 tells us that QUAD should compress high-reSO|Uti0n binary im-
subblocks of/ arising from a partitioning of correspond to @ges well. These compression experiments were run on a SUN
disjoint substrings of length’ of the 1-D stringzy,. For ex- SparcStation usga C program. The running time for one com-
ample, the pixels of a x & image are scanned in the followingPression run on &12 x 512 binary image was reasonably fast

order: (no more than about 4 s)—improvements in running time are
no doubt possible, since our programs were not optimized for

1 2 5 6 17 18 21 22 speed.
304 7 8 19 20 23 24 The quadrisection code can easily be modified for progres-
9 10 13 14 25 26 29 30 sive resolution scalable binary image compression [9] by trans-
112 15 16 27 28 31 32 mitting additional information to the decoder. For each distinct
33 34 37 38 49 50 53 54 image subblock of size bigger tharx 1 generated in the multi-
35 36 39 40 51 52 55 56 level decomposition phase, a single bit can be used to tell the
41 42 45 46 57 58 61 62 decoder what binary level to use for that subblock. To illus-
43 44 47 48 59 60 63 64. trate, we refer the reader to Table II, which gives the number of

distinct subblocks of each size in the principal bit plane of the
256 x 256 Lena image (as reported in [8]). The total number
of distinct blocks of all sizes i4442. Transmitting an extra
substrings ofz, of length a power of four are partitioned intol442 bits 9:1Iy increases the compression rate in bits per pixel
four substrings of equal length, which corresponds to a parjﬂy 1442/65536 = 0'022_0_' . .
tioning of a corresponding subblock 8 into four subblocks The MPM code, modified for progressive data reconstruction,

of equal size, namely, the NW, NE, SW, and SE corners/of will still have anO(1/ log n) maximal redundancy bound. This

The quadrisection code compresses binary images parti&pecause the number of additional code bits transmitted to the

larly well. In Table I, we report the results of compression e)gecoderwill be proportional to th? number qfdistinct substrin_gs
periments on binanp12 x 512 archival images. Each imageofallorders thatare represeqtedmthe mult_lle_zv_elrepresentatlon.
was originally a 256-level image, from which the principal bipY 1heorem 1, this number i9(n/log n); dividing by n, the
plane was extracted as input to QUAD. As can be seen frdHf'€ase In compression rate is 0N1/log n).

the table, QUAD compression is competitive with JBIG, one of
the best binary image compressors. The gap between QUAD
and JBIG lessens as one increases the size of the image beyorkix » > 2 throughout this section. In the preceding section,
512 x 512, confirming the theory developed in this paper thawe showed that the maximal redundancy/sample of the MPM

Such a scanning is calledcquadrisection scanningOne then
applies the MPM code to the 1-D string,; with » = 4. In
the recursive generation of the multilevel representatiomn,of

V. COMPLEXITY

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1241

code{(¢~, §7)} is O(1/log n). In this section, we address theunchanged while the control head repositions itself at a vertex
question of the complexity of the MPM code. We shall showdjacent tov (meaning the vertex; or one of the children of
(Theorem 6) that the MPM code is linear in both time coms). The movement of the machidd during the computational
plexity and space complexity, as a function of the data lengttycle is accomplished by means of i@struction We specify

We shall prove our linear complexity result by using a spéhe set of instructions for the machiné as follows:

cial-purpose machine on which the multilevel representation of i) Let (v, «) be a configuration in whiclh # v*. Let«; be

a data string of length is computed viaD(n) computational the labeling ofr(A) in which
cycles of the machine, while using(n) storage cells in the
working space of the machine. oy (u) = { zgz)v) U EV(T(A)% uFv
We put forth some background material needed to accom- £ w=u
plish the goals of this section. Let the alphakebe denoted The instruction
asA = {ag, a1, -~ -, aj4j—1 }. We letr(A) be the infinite tree “Move from configuration (v, o) to configuration

characterized as follows. (v, a).”

« There is a unique root of the tredA), which shall be belongs to the instruction set for the machitfe An in-
denotedy*. ’ struction of this type shall be called a Type i) instruction.

« Each vertex of the treer(A) has exactlyA| edges ema- 1) Let (v", «) be a configuration in which(v") = #;. Let
nating from it; these edges terminate at vertices which are @2 be the labeling of (4) in which
called the children of. The children of; shall be referred | a(w), u € V(r(A)), u#v*
to as childag, child ay, - -, child aj_; . az(u) =

* For each vertex # v* of the treer(A), there is a unique
vertexv; of 7(A) such that is a child ofv;. The vertex
vy shall be called the father ef

 For each vertex # v* of the treer(A), there is a unique

titi, u ="
The instruction
“Move from configuration (v*,) to configuration
(v*, a2).”
belongs to the instruction set for the machiiie An in-

positive integer. and unique vertices, vy, -, v, such struction of this type shall be called a Type ii) instruction.
thatvy = v*, v, = v, andw;_; is the father ofy; for . _ .
1<i<n. i) Let (v, «) be any configuration, and let. be any child
- - of v. The instruction
For each string: = 122+ - -z, € AT, thereis a unique path «vove from configuration (v, a) to configuration
7(x) in 7(A) consisting ofn + 1 verticesvg, v, - -, v, Of (ve,).
7(4) such that belongs to the instruction set for the machiie An in-
o vy = v, struction of this type shall be called a Type iii) instruction.
« Foreachl < i < n, vertexw; is child z; of vertexw,_. iv) Let (v, «) be any configuration in whick # v*. The
instruction
Definition: LetV(7(A)) denote the set of vertices of the tree “Move from configuration (v, a) to configuration
7(A). Let b be a symbol which is not a member of the set of (07, @) 9 U 9
o :

tokens{to, t1, t2, - - -} (b will serve as a “blank symbol”). A I he | i for th il ,

labelingof the treer(A) is any mappingy from V (7(A)) into be ongs to the instruction set for the machie An in-

the set{b, o, t1, ta, - --} in which struction of this type shall be called a Type iv) instruction.
. a(v*) £ b. v) The instruction set for the machité includes only those

- . instructions specified in i)—iv) above.
* «a(v) # b for only finitely many vertices.

e If v # v*, thena(vy) # b whenever(v) # b. We_ describe now a program for co_mputing the tokenization

functiont of Section II-B on the maching/. The program ac-
cepts as input any positive integgrand anyk strings ("),
2@, ..., 23 in AT for which

% _ tOv U:U*
)= {b, vt @, 2@, -) € 5,(A).

We describe a mach!rM on which our ca!culat!ons shall be o output of the program is the sequente:), 22, ...
performed. Aconfigurationof the machineV/ is defined to be a 2
pair(v, «)inwhichv € V(7(A)) andw is alabeling of-(A4). In
one computational cycle of the machig, the machine moves PROGRAM
from one configuration to another. Suppdse «) is the config- 1) Readk from machine input tape.
uration of the machiné/ at the beginning of a computational 2) Leti = 1. Leta = a*.
cycle. The control head of the machine views the content of a 3) If ¢ > k, halt PROGRAM. Otherwise, continue.
storage cel’, located at vertex. If a(v) # b, then the content 4) Read:(® from the input tape of the machine .
of the cellC, is the tokenx(v) € {to, t1, - - -}; otherwise C,, 5) Let vy, va, ---, v, be the nonroot vertices along the
is empty. During execution of the computational cycle, the con- pathr(z(?). Execute machine instructions of Type iii)
tent of C,, might be changed, or the content@f might remain to move from configuratioffv*, «) to the configuration

We leto* denote the special labeling of A) in which

1242 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

(vm, «) in m computational cycles. (Note that by defi-PROGRAM run on the machin&/, one obtainsS; (z) (parti-
nition of S,.(A), we havemn > 1.) tion each of the new:’s into » substrings each, and append
6) If a(v,) # b, go to Line 7). Otherwise, go to Line 8). at mostr — 1 substrings of: that appear in: afteru/”!). Ap-
7) Printa(v,,) on the machine output tape. Execute maplying the PROGRAM to the entries & (z), we obtainT; in
chine instructions of Type iv) to move back to the conat most 7 |(5r1»~! +1) computational cycles, and we also ob-
figuration(v*, «) in m computational cycles. Increase tainS»>(x) as a by-product. Continuing in this way, one sees that

by one. Go to Line 3). (T, T4, -+ -, Ty,) is computed by using no more than

8) Move to configuratior{vy, «) in m — 1 computational I,—1
cycles by executing instructions of Type iv). Move to Z (57Jn—i + 1) T3] (5.64)
configuration(vy, «1) in one computational cycle by =0
executing an instruction of Type i). Print (v1) on the - computational cycles. (Recall from Section 11-B tHEt =
machine output tape. Sy (), so thatT; _, andT;, are both generated during the

9) Move to configuration(v*, «) in one computational last(5r + 1)|77,_1| computational cycles of the machidé.)

cycle by executing an instruction of Type iv). Move tosing the fact that’~ < log n, we can upper-bound the ex-
configuration(v*, «z) in one computational cycle by pression in (5.64) by

executing an instruction of Type ii).
10) Move to configuration(vs, «2) in two computational (5 log n + (| To| + |T2] + --- + 17,])-
cycles by executing instructions of Type iii). Applying Theorem 1 to this expression yields the desired con-
11) Move to configuration(vz, «3) in one computational clusion.
cycle by executing an instruction of Type i). Now we turn our attention to the problem of quantifying the
12) Move to configuration(v,,, cs) in 2(m — 2) compu- storage complexity of the computational task of computing the
tational cycles by alternately performing instructions ofultilevel representation of a data string via the MPM code.
Type iii) and i). (If m = 2, nothing needs to be done.) Suppose that the machitié goes through the configurations
13) Move to configuratiorfv™,) in mm computational cy- 11 2 9
cles by performing ingtructio%s of Type iv). Updatdy Wh), (0%, a®), oo (09, a%) (5:65)
setting it equal taxv,, increase by one, and go to Line during the course of a computation. The number of storage cells
3). that are used to store information in the working space of the

. . o calculation is the cardinality of the set
The following lemma is clear from an examination of the y

PROGRAM. U {v:a%(v) £} (5.66)
Lemma 4: Let (), 23 ... 2(®)) e S,.(A) andletmbe _ t=1=Q _
the common length of the string€V, =2, - .-,). Then, This number shall be our measure of th_e storage complexny.
(=@, 2@ ... 2))) can be computed off in at most (We have followgd the customary practice of measuring the
k(5m + 1) computational cycles. storage complexity of a c_omputatlon_as the number of storage

cells that are employed in the working space of the calcula-

The computation of the multilevel representation of a dat®yn—this means that we exclude storage space employed to
string via the MPM code is the most computationally intensgore input data or output data.)

part of the overall MPM code operation. The following lemma) .

addresses the time complexity of this particular task. We adopt-€Mma 6: There is a positive constagk(r, |A|) such that

the usual convention of measuring the time complexity of 3" €very integem > +”, and every string: € A", the mul-

computational task in terms of the number of computational ci{€ve! representatioZo, 11, -- -, 77,) of « generated by the

cles needed to accomplish the task. I_DM code{(¢r, 67)} can be computed on the machiné _
using no more thas(r, |A|)n storage cells to store data in

Lemma 5: There is a positive constadt (r, |A|) such that the working space of the calculation.

for every integem > r", and every string: € A", the mul- Proof: Parsing off nonoverlapping blocks of length:

tilevel representatiofilo, 11, - - -, 17,) of = generated by the from » € A", one obtains (5.63). Let (5.65) be the sequence

MPM code{(¢y,, é,): n > r"} can be computed on the ma-of configurations ofM that result in computingp from So ()

chine M via a calculation involving no more thath (r, |A[)n using the PROGRAM. A study of the PROGRAM reveals

computational cycles. _ that once a token if{to, t;, ---} is assigned as a label to a
Proof: Parsing off nonoverlapping blocks of length" vertex of r(A) during some computational cycle 6f, then
from z, one obtains that vertex will carry a token as label throughout the remaining
S, — (w2 o T 563 cycles (not necessarily the same token the whole way). In other

ol (u R) (5-63) words, referring to (5.65), if?(v) # b for somel < ¢ < Q,

According to Lemma 4, the PROGRAM compuftBsin at most then a®(v) # b. Consequently, the number of storage cells
|To|(571» + 1) computational cycles. The PROGRAM, duringemployed during the course of the computation can be sim-
the course of these cycles, can also identify which entries miffied from the cardinality of the set (5.66) to the cardinality
So(z) are new, since a block’ in Sy(x) has not been seenof the set{v:a®@(v) # b}. This cardinality can certainly be
before if and only if Line 7) of the PROGRAM is not exe-no bigger thanZy|r», the total of the lengths of the strings
cuted while processing’. Therefore, as a by-product of thew!, w2, - - -, «!T! (which is the same as the number of entries

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1243

from A on the machinéV/’s input tape). As discussed duringpossess. This insight seems to suggest that a properly designed
the proof of Lemma 5, as a by-product of the computation dierarchical pattern matching-based data compression code can
t(So(z)) on the machiné/, those entries’ of Sy(z) in (5.63) outperform a nonhierarchical pattern matching-based data com-
are identified which are “new.” Those entries are keptidis pression code.

input tape, and the remaining entries%f(z) are erased from We conclude with some historical remarks. The first instance
the input tape. Some additional entries are entered on the inpfithe MPM code was developed fer= 2, strictly for data of

tape to represent substrings ofof length »/»—1 appearing length a power of two, and named thisection algorithn{12].
after»’. The input tape now containg? |r=—! terms from However, the implementation of the bisection algorithm given
A, and this information is used to compute on A4 using the in [12] was computationally inefficient. Subsequent work led
PROGRAM. By the same argument used above in discussitogthe present efficient implementation of the MPM code (an-
the computation off,, one argues that, in computirig, no nounced in [7]). There are some points of resemblance between
more than|73|r™~~! storage cells are used in the workinghe bisection algorithm and th&-gram algorithm of Bugajski
space of the machin® (i.e., the number of entries on the inputand Russo [1], [16]. These are as follows:

tape). Repeating this argument, one concludes that for each
0 < i < I, the number of storage cells used in the working
space ofM to computeZ; is at most|/Z;|ri»~*. Moreover, no
storage cells are used to compUie other than those used to
computelr, _; (these two token strings are computed My
together, as pointed out in the proof of Lemma 5). Summing,
the total number of storage cells used in the computation of

« both algorithms are hierarchical in nature;

« both algorithms employ multilevel dictionaries, where
each dictionary consists of strings of length a fixed power
of two, the length varying from level to level;

¢ both algorithms generate a parsing of the data into vari-
able-length substrings, each substring of length a power

(To, -+ -, Tr,) can be no bigger than of two.
Lt On the other hand, there are some differences between the two
STt (5.67) algorithms:
=0

« the algorithms generate their dictionaries differently, and
employ them differently;
log n(|To| + 12|+ -+ |17,]) « the bisection algorithm is universal in the sense of Sec-

been proved to be universal.

Using the bound» < log n, we bound (5.67) as

Here is the main result of this section. Since the computa-
tional task of computing the multilevel representation of a data
string is the most expensive part of the MPM code both in terms APPENDIX

of computation time and storage requirements, the result followswe first prove (3.39), needed in the proof of Theorem 1. We
from Lemmas 5 and 6. then establish Lemma 3, needed in the proof of Theorem 2.

Theorem 6: The MPM code{(¢},, 52,_) :n 2 7"} has time Proof of (3.39): Recall from the proof of Theorem 1
complexityO(n) and storage complexit§(n). thatn > max (2, »!), and thatz is an A-string of length

Remark: At the end of Section IV-B2, we remarked upon aft- L&t ¢ be the cardinality of the sef* defined by1(3.36),
extension of the MPM code in which it is required that the p&@nd 1€t Ji, J2, ---., J, be the r-sets comprising.7". Let
rameter] in the algorithm MPMr, I) be dependent upon thef{1, &2, -+, K, be the fathers o/, Jz, ---, Jg, respec-
data length: according to the inequality (4.58). We remarkedVely: Some of the set&’,, K>, ---, K, might coincide. How-
that this extended MPM code still yield(1/log n) maximal €Ver foreach < i < ¢, there are at mostintegersl < u < ¢
redundancy/sample. It is an open question (suggested by TRYch thatis,, is the father of/;. Therefore, we may pick an in-

orem 6) whether this extended MPM code is of linear time ari§9€" > ¢/r and integerd <4, <y <idz <--- <im Slq
space complexity. such thatk;,, K,,, ---, K, are distinct. By definition of/ -,

ther-setsk,, , K,,, ---, K, are allz-innovative, whence the
substringsz(K;,), «(K;,), ---, (K,) are distinct. Notice

VI. CONCLUSIONS that
As a consequence of this paper, we have isolated a data com- - K < llT J N A.68
pression code, the MPM code, which, like the Lempel-Ziv code, kzl (Bl < rll] 1ol 4o 4 |l (A.68)

is of linear time and space complexity, but for which we can Any ;-set in7! is z-redundant, but its father is notredun-
prove a better redundancy bound. Let us try to give a reasg '

i . Fant. Therefore, if7 € J* properly contains/’ € 71, then
for this state of affairs. The MPM code and the LempeI—Zl\j must also properly contaifa (.J'), which contradicts the fact

code are “pure pattern matching” codes in the sense that th %t anyr-set contained in an-redundant-set is alsa:-redun-

do not directly compress the data, but instead form essenti lé(nt We conclude that thesets in! are pairwise disjoint
all of their encoder output by compressing pointers pointing b ' '

X . hence the right side of (A.68) is at most. This gives us
tween matching patterns in the data. However, the MPM cogle Rl m () IS gvesu
does its pattern matching on multiple levels, giving the MPM Z l2(K;,)| < rn

code a hierarchical structure that the Lempel-Ziv code does not 1 A

1244

which implies that the sum of the firgt terms of the sequence
consisting ofl A| ones, followed by A|? twos, | A|? threes, etc.,

can be no bigger tharm. Suppose
m > |A| 4+ |AP 4 |APP + |A[* 4 |4, (A.69)
Then

J

Z i|Al" <

=1

(A.70)

wherej is the integee> 5 satisfying
|A[AP+ AP < m < |AH AP+ AP (A7)
Doing the sum on the left side of (A.70), we see that
[A[+ AP (A - 1) - 1
Al -1

which implies

|AP [— 1] < o (A.72)

Notice that the left side of (A.72) is4. For4 < u < v, one has
u/log v < v/log v, and so, letting:, v be the left and right
sides of (A.72), respectively, we conclude that

AlFHL .
4] " (A.73)
(£42) tog || + kst = log(rm)
The previous inequality implies that
| A+ n
<r | — .
3/2) Tog |4 + (1/2) =" \log n (A-74)

becauséog(j—1)/(7—1) < 1/2for j > 5. Summing the right

side of (A.71), we obtain
|A[+ — 1
m < |A] -1
which implies
|A[TE > my2.

Applying this to (A.74), we get

m < (3log |[Al +1)r <log

n ><410g|A|<)
n log n

We demonstrated this under that assumption that (A.69) hoI
If (A.69) does not hold, then

m < 2|AP°.
Therefore, whether (A.69) holds or not

ofr < m < 2P+ 41og |air

)

Proof of Part a) of Lemma 3Let z be anA-string of
length at leasi?, and letn be the length of:. Let us call a
family of r-sets7 a.7(r, I|x)-tree if all of the following prop-
erties hold for7:

o Jolr,IIn) C T C J(r, I|x).

* If J € J and|J| > 1, then either all of the children of
belong to.7 or none of them do.

o If J € JandJ & Jo(r, I|n), thenfa (J)

It is easy to check that7y(r, I|n) and J(r,
J(r,

log n
which completes our proof of (3.39).

eJ.

I|z) are each

I|x)-trees. We establish part a) of Lemma 3 by mathemat-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

ical induction. Our induction hypothesis is the statement that
for any J(r, I|x)-tree 7, the stringz is the concatenation of
the stringsz(Ly), (Ls), ---, (Ls), whereLy, Lo, -- -, L

are the leaves qf (the members off not properly containing
any member of7), ordered according to their left-to-right ap-
pearances as subsets of the real line. The induction hypothesis
can be seen to be true fof = Jo(r, I|n). Suppose/; and T
are twoJ (r, I|z)-trees such that

» J, is obtained by appending t@; all of the children of a
leaf of ;.

Then, we shall say thaf, is a simple extensiowf 7;. It is
easy to see that if the induction hypothesis holdsforthen

it must also hold for any simple extension Gt Starting from
Jo(r, Iln), one can perform finitely many simple extensions
to arrive at any.J (r, I|z)-tree whatsoever. We conclude that
the induction hypothesis must hold for evefyr, I|x)-tree.7.
Part a) of Lemma 3 now follows by taking = J(r, I|x) in
the induction hypothesis.

Proof of Part b) of Lemma 3:Again, letz be anA-string
of length at least!. Fix 0 < i < I. As in Lemma 1, let
(K, ---, K,,) be the sequence of-sets in7(r, I|x) of
cardinality »—¢, ordered according to their left-to-right ap-
pearance on the real line. Lé&K; , K,,, ---, K;.) be the
subsequence ofK7y, ---, K,,) whose entnes are the leaves
of J(r, I|x) of cardinalityr!=%. This is precisely the subse-
guence of(Kl, ---, K,,,) formed by thez-redundant entries
of (Ky, -+, K,,); thatis,j € {i1, 2+, 45} if and only if

x(K;) commdes withe(K;) for some: < j. Since, by Lemma
1, (z(Ky), ---, x(Ky)) is the sequencé;(x), it follows by
the definition of howS‘i,(a:) is obtained froms;(z) that S;(x)
must be equal t¢x(K;,), ---, z(K;,)), which gives us part
b) of Lemma 3.

ACKNOWLEDGMENT

J. C. Kieffer would like to thank S. Yakowitz and T. Park at
the University of Arizona and J. Massey at the Swiss Federal
stitute of Technology (Zurich, Switzerland), during his stays
Pthese institutions as part of his 1996-1997 sabbatical. The
results reported in Table | were compiled by R. Stites at the
University of Minnesota. The authors would all like to thank D.
Neuhoff for bringing theV-gram text compression algorithm to

their attention.

REFERENCES

[1] J. Bugajski and J. Russo, “Data compression with pipeline processors
having separate memories,” U.S. Patent 5245337, Sept. 1993.

[2] T. Cover and J. Thomaglements of Information Theary New York:
Wiley, 1991.

[3] I. Csiszar and J. Koérnednpformation Theory, Coding Theorems for

Discrete Memoryless SystemsBudapest, Hungary: Akadémiai Kaido,

1981.

[4] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. Inform. Theorwol. IT-21, pp. 194-203, Mar. 1975.

[5] C. Hobby and N. Ylvisaker, “Some structure theorems for stationary
probability measures on finite state sequencasyi. Math. Statistvol.
35, pp. 550-556, 1964.

[6] J. Kieffer and E. Yang, “Grammar based codes: A new class of uni-
versal lossless source codefsEE Trans. Inform. Theoryol. 46, pp.
737-754, May 2000.

KIEFFERet al: UNIVERSAL LOSSLESS COMPRESSION VIA MULTILEVEL PATTERN MATCHING 1245

[7] —, “Redundancy of MPM data compression system,Pmc. 1998 [13] T. Park, “Computational considerations in quadrisection image com-
IEEE Int. Symp. Information Thegr€ambridge, MA, p. 136. pression,” Honors thesis, Dept. Syst. Indust. Eng., Univ. Ariz., 1997.

[8] J.Kieffer, G. Nelson, and E. Yang, “Tutorial on the quadrisection method[14] E. Plotnik, M. Weinberger, and J. Ziv, “Upper bounds on the probability
and related methods for lossless data compression,” Dept. Elec. Comput. of sequences emitted by finite-state sources and on the redundancy of
Eng., Univ. Minn., Tech. Rep., 1996. the Lempel-Ziv algorithm,IEEE Trans. Inform. Theorwol. 38, pp.

[9] J. Kieffer, T. Park, Y. Xu, and S. Yakowitz, “Progressive lossless image 66-72, Jan. 1992.
coding via self-referential partitions,” iRroc. 1998 Intl. Conf. Image [15] S. Savari, “Redundancy of the Lempel-Ziv incremental parsing rule,”

Processingvol. 1, Chicago, IL, pp. 498-502. IEEE Trans. Inform. Theoryol. 43, pp. 9-21, Jan. 1997.

[10] G. Louchard and W. Szpankowski, “On the average redundancy rate dfL6] C. Teng and D. Neuhoff, “An improved hierarchical lossless text
the Lempel-Ziv code,IEEE Trans. Inform. Theorwol. 43, pp. 2-8, compression algorithm,Proc. 1995 IEEE Data Compression Canf.
Jan. 1997. pp. 292-301.

[11] A.Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” Rroc. [17] J. Ziv and A. Lempel, “Compression of individual sequences via vari-
1995 Data Compression ConSnowbird, UT, pp. 202-211. able-rate coding,l[EEE Trans. Inform. Theoryol. IT-24, pp. 530-536,

[12] G. Nelson, J. Kieffer, and P. Cosman, “An interesting hierarchical Sept. 1978.

lossless data compression algorithm,’Hroc. 1995 IEEE Information
Theory Soc. WorkshpRydzyna, Poland.

