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Abstract

The substitution of digital representations for analog images provides access to methods for digital storage and
transmission and enables the use of a variety of digital image processing techniques, including enhancement and
computer assisted screening and diagnosis. Lossy compression can further improve the efficiency of transmission and
storage and can facilitate subsequent image processing. Both digitization (or digital acquisition) and lossy compression
alter an image from its traditional form, and hence it becomes important that any such alteration be shown to improve or
at least not damage the utility of the image in a screening or diagnostic application. One approach to demonstrating in
a quantifiable manner that a specific image mode is at least equal to another is by clinical experiment simulating ordinary
practice and suitable statistical analysis. In this paper we describe a general protocol for performing such a verification
and present preliminary results of a specific experiment designed to show that 12 bpp digital mammograms compressed
in a lossy fashion to 0.015 bpp using an embedded wavelet coding scheme result in no significant differences from the
analog or digital originals. © 1997 Elsevier Science B.V.

Zusammenfassung

Die Ersetzung analoger Bilder durch digitale Darstellungen erlaubt eine digitale Speicherung und Ubertragung sowie
den Einsatz einer Vielzahl von Methoden der digitalen Bildverarbeitung, z.B. zur Verbesserung der Bildqualitit und zum
computerunterstitzten Screening bzw. zur computerunterstiitzten Diagnose. Eine verlustbehaftete Kompression kann
die Effizienz der Ubertragung oder Speicherung weiter steigern und eine nachfolgende Bildverarbeitung erleichtern.
Sowohl die Digitalisierung (oder digitale Aufnahme) als auch die verlustbehaftete Kompression dndern ein Bild beziiglich
seiner urspriinglichen Form. Deswegen ist es wichtig, zu zeigen daB eine solche Veranderung die Niitzlichkeit des
Bildes bei Screening- oder diagnostischen Anwendungen steigert oder wenigstens nicht beeintrachtigt. Eine Moglichkeit,
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auf quantifizierbare Weise zu zeigen, daB eine bestimmte Bilddarstellung einer anderen zumindest dquivalent ist, ist
ein die gewdhnliche Praxis simulierendes klinisches Experiment und eine geeignete statistische Analyse. In diesem Artikel
beschreiben wir ein allgemeines Protokoll fiir die Durchfithrung einer solchen Verifikation. Wir prasentieren weiters
vorldufige Resultate eines spezifischen Experiments, welches zeigt, daB die verlustbehaftete Kompression digitaler
Mammogramme von 12 bpp auf 0.15 bpp mittels einer eingebetteten Wavelet-Codierung zu keinen signifikanten
Unterschieden von den analogen oder digitalen Originalen fiihrt. © 1997 Elsevier Science B.V.

Résume

La substitution d'images analogiques par des représentations numériques donne accés a des méthodes de stockage et
de transmission numériques, et permet I'utilisation d’une grande variété de techniques de traitement d’images, incluant le
rehaussement, les tests de dépistage assisté ordinateur et le diagnostic. La compression avec pertes peut encore améliorer
lefficacité de la transmission et du stockage, et peut faciliter le traitement ultérieur des images. La numérisation et la
compression avec pertes altérant toutes deux une image par rapport a sa forme traditionnelle, il devient important de
montrer qu'une telle altération améliore, ou du moins ne réduit pas, 'utilit¢ de I'image dans un screening ou une
application de diagnostic. Une approche pour démontrer d’'une maniére quantifiable qu'un mode d’image spécifique est
au moins égal a un autre est 'expérimentation clinique simulant la pratique ordinaire jointe 4 une analyse statistique
adaptée. Dans cet article, nous décrivons un protocole général pour effectuer une telle vérification et présentons les
résultats préliminaires d'une expérience faite pour montrer que des mamogrammes numérisés a 12 bpp et comprimés
avec pertes a 0.15bpp a l'aide d’une technique de codage par ondelettes incluses ne présentent pas de différences

significatives par rapport aux versions originales analogique ou numérique. © 1997 Elsevier Science B.V.
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1. Introduction

X-ray mammography is the most sensitive tech-
nique for detecting breast cancer [2], with a re-
ported sensitivity of 85-95% for detecting small
lesions. Most non-invasive ductal carcinomas, or
DCIS, are characterized by tiny non-palpable calci-
fications detected at screening mammography
[16, 25, 46]. Traditional mammography is essen-
tially analog photography using X-rays in place of
light and analog film for display. For a variety of
reasons, digital technologies are likely to change
and eventually replace most of the existing analog
methods. The digital format is required for access
to modern digital storage, transmission, and digital
computer processing. Hardcopy films use valuable
hospital space and are prone to loss and damage,
which undermine the ability of radiologists to carry
out comparisons with subsequent studies. Images
in analog format are not easily distributed to mul-
tiple sites, either in-hospital or off-site. Currently
only 30% of women get regular mammograms, and
the storage problems will be compounded if this
number increases with better education or wider
insurance coverage. Digital image processing pro-

vides the possibilities for easy image retrieval, effi-
cient storage, rapid image transmission for off-site
diagnoses, and the maintenance of large banks for
purposes of teaching and research. It allows filter-
ing, enhancement, classification, and combining
images obtained from different modalities, all of
which can assist screening, diagnosis, research, and
treatment. Retrospective studies of interval cancers
(carcinomas detected in the time intervals between
mammographic screenings which were interpreted
as normal) show that observer error can comprise
up to 10% of such cancers. That is to say, carci-
nomas present on the screening mammograms
were missed by the radiologist because of fatigue,
misinterpretation, distraction, obscuration by
a dense breast, or other reasons [18, 24, 32]. To
this end, schemes for computer-aided diagnosis
(CAD) may assist the radiologist in the detection
of clustered micro-calcifications and masses
[10,27,28,37,56]. Virtually all existing CAD
schemes require images in digital format.

To take advantage of digital technologies, either
analog signals such as X-rays must be converted
into a digital format, or the signals must be directly
acquired in digital form. Digitization of an analog
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signal causes a loss of information and hence a pos-
sible deterioration of the signal. In addition, with
the increasing accuracy and resolution of analog-
to-digital converters, the quantities of digital in-
formation produced can overwhelm available re-
sources. A typical digitized mammogram with
4500 x 3200 picture elements (pixels) with 50 um
spot size and 12 bit per pixel depth requires ap-
proximately 38 Mbytes of data. Complete studies
can easily require unacceptably long transmission
times through crowded digital networks and can
cause serious data management problems in local
disk storage. Advances in technologies for trans-
mission and storage do not solve the problem. In
recent years these improvements on the Internet
have been swamped by the growing volume of data.
Even with an ISDN line, a single X-ray can take
several minutes for transmission. Compression is
desirable and often essential for efficiency of storage
and communication. The overall goal is to repres-
ent an image with the smallest possible number of
bits, or to achieve the best possible fidelity for an
available communication or storage bit rate capa-
city.

A digital compression system typically consists
of a signal decomposition such as Fourier or
wavelet, a quantization operation on the coeffi-
cients, and finally lossless or entropy coding such as
Huffman or arithmetic coding. Decompression re-
verses the above process; although if quantization
is used, the system will be lossy because quantiz-
ation is only approximately reversible. Theory and
experience argue that good compression can be
designed by focusing separately on each individual
operation, though simpler implementations may be
obtained by combining some operations. Lossless
coding is well understood, readily available [47],
and typically yields compression ratios of 2:1 to
3:1 on still frame greyscale medical images. This
modest compression is often inadequate. Lossy
coding does not permit perfect reconstruction of
the original image but can provide excellent quality
at a fraction of the bit rate [9, 26, 29, 31, 40]. The
bit rate of a compression system is the average
number of bits produced by the encoder for each
image pixel. If the original image has 12 bits per
pixel (bpp) and the compression algorithm has rate
R bpp, then the compression ratio is 12:R. Com-

pression ratios must be interpreted with care as
they depend crucially on the image type, original
bit rate, sampling density, how much background is
in the image, and how much coding of the back-
ground figures into the calculation.

Early studies of lossy compressed medical images
performed compression using variations on the
standard discrete cosine transform (DCT) coding
algorithm combined with scalar quantization and
loseless (typically Huffmann and run-length) cod-
ing. These are variations of the international stan-
dard Joint Photographic Experts Group (JPEG)
compression algorithm [36, 51]. The standard per-
mits a user-specified quantization table that de-
scribes the uniform quantizers used to quantize the
transform coefficients. Although the standard sug-
gests specific values, performance can be improved
by customizing these tables for a specific application.
The American College of Radiology—National Elec-
trical Manufacturers Association (ACR-NEMA)
standard [6] has not yet firmly recommended
a specific compression scheme, but transform cod-
ing methods are suggested. These algorithms are
well understood and have been tuned to provide
good performance in many applications.

More recent studies of efficient lossy image com-
pression algorithms have used subband or wavelet
decompositions combined with scalar or vector
quantization [3, 30, 38, 39, 41,42, 49, 55]. These
signal decompositions provide several improve-
ments, including better concentration of energy,
better decorrelation for a wider class of signals,
better basis functions for images than the smoothly
oscillating sinusoids of Fourier analysis because of
diminished Gibbs and edge effects and better locali-
zation in both time and frequency. Because of their
sliding-block operation using 2-dimensional linear
filters, they do not produce blocking artifacts (al-
though other artifacts arise at low rates).

Since lossy coding can degrade the quality of an
image, making precise the notion of ‘excellent qual-
ity’ of a compressed or processed image is a serious
issue. Analog mammography remains the gold
standard against which all other imaging modali-
ties can be judged. In a medical application it does
not suffice for an image to simply ‘look good’ or to
have a high signal-to-noise ratio (SNR), nor should
one necessarily require that original and processed
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images be visually indistinguishable. Rather it must
be convincingly demonstrated that essential in-
formation has not been lost and that the processed
image is at least of equal utility for diagnosis or
screening as the original. Image quality is typically
quantified objectively by average distortion or
SNR, and subjectively by statistical analyses of
viewers’ scores on quality (e.g., analysis of variance
(ANOVA) and receiver operating characteristic
(ROCQ) curves). Examples of such approaches may
be found in [4, 7, 20, 29, 31, 40, 53].

ROC analysis is the dominant technique for
evaluating the suitability of radiologic techniques
for real applications [23, 33, 34, 48]. Its origins are
in the theory of signal detection: a filtered version of
signal plus Gaussian noise is sampled and com-
pared to a threshold. If the threshold is exceeded,
then the signal is said to be there. As the threshold
varies, the probability of erroneously declaring
a signal absent and the probability of erroneously
declaring a signal there when it is not vary too, and
in opposite directions. The plotted curve is a sum-
mary of the tradeoff in these two quantities; more
precisely, it is plot of true positive rate or sensitivity
against false positive rate, the complement of speci-
ficity. Summary statistics, such as the area under
the curve, can be used to summarize overall quality.
In typical implementations, radiologists or other
users are asked to assign integer confidence ratings
to their diagnoses, and thresholds in these ratings
are used in computing the curves.

We have argued in our previously cited refer-
ences (summarized in Section 2} that traditional
ROC analysis violates several reasonable guide-
lines for designing experiments to measure quality
and utility in medical images because of the use of
artificial confidence ratings as thresholds in a bi-
nary detection problem and because of the statist-
ical assumptions of Gaussian or Poisson behavior.
In addition, traditional ROC analysis is not well
suited to the study of the accuracy of detection and
location when a variety of abnormalities are pos-
sible. Although extensions of ROC designed to
handle location and multiple lesions have been
proposed [8, 45], they inherit many of the more
fundamental problems of the approach and are not
widely used. Traditional ROC analysis also does
not come equipped to distinguish among the

various possible notions of ‘ground truth’ or ‘gold
standard’ in clinical experiments.

During the past decade our group at Stanford
University has worked to develop an alternative
approach to evaluating the diagnostic accuracy of
lossy compressed medical images (or any digitally
processed medical images) that mimics ordinary
clinical practice as closely as is reasonably possible,
does not require special training or artificial subjec-
tive evaluations, applies naturally to the detection
of multiple abnormalities and to measurement
tasks, and requires no assumptions of Gaussian
behavior of crucial data. While some departures
from ordinary practice are necessary and some
additional information may be gathered because it
is of potential interest, the essential goal remains
the imitation of ordinary practice and the drawing
of diagnostic conclusions based only on diagnostic
simulations. The methods are developed in detail
for CT and MR images [12—15, 35]. Extensions to
digital mammography were described in [21, 22],
and preliminary results for a pilot study are de-
scribed in [1] (a reprint of which can be found at the
World Wide Web site [44]). This paper expands on
the description, discussion, and data analysis of the
results of [1]. In particular, we here emphasize the
lossy compression performance using both tradi-
tional engineering methods of image quality and
the diagnostic accuracy measurement approach.

2. Methods

2.1. Study design

The general methods used are extensions to
digital mammography and elaborations of tech-
niques developed for CT and MR images by our
group and reported in [12-15, 35], where all de-
tails regarding the data, compression code design,
clinical simulation protocols, and statistical ana-
lyses may be found. We here describe extensions
[1,21,22] of these methods to digital mammo-
graphy. Further results are available in the Final
Project Report (available at [44]) and other papers in
progress. The design of the proposed mammogram
evaluation study incorporates elements from both the
CT and MR studies, as well as many new aspects.
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The following general principles for protocol de-
sign have evolved from our earlier work. Although
they may appear self-evident in hindsight, they pro-
vide a useful context for evaluating protocols for
judging image quality in medical imaging applica-
tions and they represent an accumulation of over
eight years of discussion and experience among
electrical engineers, statisticians, radiologists, and
medical physicists. The protocol should simulate
ordinary clinical practice as closely as possible. In
particular, participating radiologists (judges, ob-
servers) should perform in a manner that mimics
their ordinary practice as closely as reasonably pos-
sible given the constraints of good experimental
design. The studies should require little or no
special training of their clinical participants. The
clinical studies include examples of images contain-
ing the full range of possible findings, all but ex-
tremely rare conditions. The findings should be
reportable using a subset of the American College of
Radiology (ACR) Standardized Lexicon. Any stand-
ardized nomenclature would do. Statistical ana-
lyses of the trial outcomes should be based on
assumptions as to the outcomes and sources of error
that are faithful to the clinical scenario and tasks.
‘Gold standards’ for evaluation of equivalence or
superiority of algorithms must be clearly defined and
consistent with experimental hypotheses. Careful ex-
perimental design should eliminate or minimize any
sources of bias in the data that are due to differences
between the experimental situation and ordinary
clinical practice, e.g., learning effects that might
accrue if a similar image is seen using separate
imaging modalities. The number of patients should
be sufficient to ensure satisfactory size and power
for the principal statistical tests of interest.

The ROC assumptions and approach generally
differ from clinical practice. Digitization of an ana-
log image and lossy compression are not equivalent
to the addition of signal-independent noise. Radi-
ologists are not threshold detectors. Using ROC
curves to compare computer aided diagnosis
(CAD) schemes is appropriate because such
schemes almost always depend on a threshold, al-
beit in a possibly complicated way. No hard evid-
ence exists, however, to support the contention that
human radiologists behave in this way and, even if
they did, that the ROC method of asking them for

confidence ratings to interpret as thresholds in fact
measures whatever internal threshold they might
have. We believe this to be a fundamental flaw in
using ROC curves to draw conclusions about qual-
ity comparisons among radiologists or among im-
ages read by radiologists. Because of the need for
confidence ratings, the traditional ROC approach
requires special training to familiarize a radiologist
with the rating system. On the statistical side, im-
age data are not well modeled as known signals in
Gaussian noise, and hence methods that rely on
Gaussian assumptions are suspect. This is parti-
cularly true when Gaussian approximations are
invoked to compute statistical size and power on
a data set clearly too small to justify such approxi-
mations. Modern computer-intensive statistical
sample reuse techniques can help get around the
failures of Gaussian assumptions, but this does not
address the more fundamental issues.

Traditional ROC methods are not location spe-
cific, and if an actual lesion is missed, a diagnosis
can be considered correct if an incorrect lesion is
spotted elsewhere. Extensions of ROC have been
extended to address this [45], but the method is
cumbersome and inherits the remaining faults of
ROC. For clinical studies that involve other than
binary tasks, specificity does not make sense be-
cause it has no natural or sensible denominator as
it is not possible to say how many abnormalities
are absent. This can be done for a truly binary
diagnostic task for if the image is normal then
exactly one abnormality is absent. Previous studies
were able to use ROC analysis by focusing on
detection tasks which were either truly binary or
could be rendered binary. Extensions of ROC such
as FROC to permit consideration of multiple ab-
normalities have been developed [8], but these still
require the use of confidence ratings as well as
Gaussian or Poisson assumptions on the data In
our view they attempt to fit the method (ROC
analysis) to chinical practice in an artificial way,
rather than trying to develop more natural
methods for measuring how well radiologists per-
form ordinary clinical functions on competing im-
age modalities.

Traditional ROC analysis has no natural exten-
sion to problems of estimation or regression in-
stead of detection. For example, measurement
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plays an important role in some diagnostic applica-
tions and there is no ROC analysis for measure-
ment error.

Lastly, traditional ROC applications have often
been lax in clarifying the ‘gold standard’ used to
determine when decisions are ‘correct’, when in fact
a variety of gold standards are possible, each with
its own uses and shortcomings. We focus on three
definitions of diagnostic truth as a basis of com-
parison for the diagnoses on all lossy reproductions
of that image. These are:

Personal: Each judge’s readings on an original
analog image are used as the gold standard for the
readings of that same judge on the digitized version
of that same image,

Independent: formed by the agreement of the
members of an independent expert panel, and

Separate: produced by the results of further
imaging studies (including ultrasound, spot and
magnification mammogram studies), surgical bi-
opsy, and autopsy.

The first two gold standards are usually estab-
lished using the analog original films. As a result,
they are extremely biased in favor of the established
modality, i.e., the original analog film. Thus statist-
ical analysis arguing that a new modality is equal to
or better than the established modality will be
conservative since the original modality is used to
established ‘ground truth’. The personal gold stan-
dard is in fact hopelessly biased in favor of the
analog films. It is impossible for the personal gold
standard to be used to show that digital images are
better than analog ones. If there is any component
of noise in the diagnostic decision, the digital im-
ages cannot even be found equal to analog. The
personal gold standard is often useful, however, for
giving some indication of the diagnostic consist-
ency of an individual judge. The independent gold
standard is also biased in favor of the analog im-
ages, but not hopelessly so, as it is at least possible
for the readings of an individual judge on either the
digital or analog images to differ from the analog
gold standard provided by the independent panel.
If the independent panel cannot agree on a film, the
film could be removed from the study; but this
would forfeit potentially valuable information re-
garding difficult images. By suitable gathering of
data, one can instead define several possible inde-

Table 1
Data test set: 57 studies, 4 views per study

6 Benign mass

6 Benign calcifications

5 Malignant mass

6 Malignant calcifications

3 Malignant combination of mass and calcifications
3 Benign combination of mass and calcifications
4 Breast edema

4 Malignant architectural distortion

2 Malignant focal asymmetry

3 Benign asymmetric density

15 Normals

pendent gold standards and report the statistics
with respect to each. In particular, a cautious gold
standard declares a finding if any of the panel do so.
An alternative is that the panel designates a chair to
make a final decision when there is disagreement.

Whenever a believable separate gold standard is
available, it provides a more fair gold standard
against which both old (analog) and new (digital,
compressed digital) images can be compared. In
future work we plan to use histologic data and
long-term followup to establish a separate gold
standard.

Our image database was generated in the De-
partment of Radiology of the University of Virginia
School of Medicine and is summarized in Table 1.
The studies were digitized using a Lumisys Lumis-
can 150 at 12 bpp with a spot size of 50 um. Good
quality directly acquired digital mammograms
were not yet available when the experiment was
begun, so digitized mammograms were used. The
films were printed using a Kodak 2180 X-ray film
printer, a 79 um 12 bit greyscale printer which
writes with a laser diode of 680 nm bandwidth. The
57 studies included a variety of normal images and
images containing benign and malignant objects.
We have corroborative biopsy information on at
least 31 of the test subjects, which will later be used
for a separate gold standard.

2.2. Experimental protocol

Images were viewed on hardcopy film on an
alternator by judges in a manner that simulates
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ordinary screening and diagnostic practice as close-
ly as possible, although patient histories and other
image modalities were not provided. Two views
were provided of each breast (CC and MLO), so
four views were seen simultaneously for each pa-
tient. Each of the judges viewed all the images in an
appropriately randomized order over the course of
nine sessions. Two sessions were held every other
week, with a week off in between. A clear overly was
provided for the judge to mark on the image with-
out leaving a visible trace. For each image, the
judge either indicated that the image was normal,
or, if something was detected, had an assistant fill
out the Observer Form (see Appendix A) using the
American College of Radiology (ACR) Standard-
ized Lexicon by circling the appropriate answers or
filling in blanks as directed. The instructions for
assistants and radiologists along with suggestions
for prompting and a CGI1 web data entry form may
be found at the project Web site [44]. The judges
used a grease pencil to circle the detected item. The
instructions to the judges specified that ellipses
drawn around clusters should include all microcal-
cifications seen, as if making a recommendation for
surgery, and outlines drawn around masses should
include the main tumor as if grading for clinical
staging, without including the spicules (if any) that
extend outward from the mass. This corresponds to
what is done in clinical practice except for the
requirement that the markings be made on copies.
The judges were allowed to use a magnifying glass
to examine the films.

Although the judging form is not standard (there
is no standard form for evaluating mammograms),
the ACR Lexicon is used to report findings, and
hence the judging requires no special training. The
reported findings permit subsequent analysis of the
quality of an image in the context of its true use,
finding and describing anomalies and using them to
assess and manage patients.

To confirm that each radiologists identifies and
judges a specific finding, the location of each lesion
is confirmed both on the clear overlay and the
judging form. Many of these lesions were judged as
‘A’ (assessment incomplete), since it is often the
practice of radiologists to obtain additional views
in two distinct scenarios: (1) to confirm or exclude
the presence of a finding, that is, a finding that may

or may not represent a true lesion, or (2) to further
characterize a true lesion, that is, to say a lesion
clearly exists but is incompletely evaluated.

The judging form allows for two meanings of the
‘A’ code. If the judge believes that the findings is
a possible lesion, this is indicated by answering ‘yes’
to the question ‘are you uncertain if the finding
exists? Otherwise, if the lesion is definite, the judges
should give their best management decision based
on the standard two-view mammogram.

The initial question requesting a subjective rat-
ing of diagnostic utility on a scale of 1 -5 is intended
for a separate evaluation of the general subjective
opinion of the radiologists of the images. The de-
gree of suspicion registered in the Management
portion also provides a subjective rating, but this
one is geared towards the strength of the opinion of
the reader regarding the cause of the management
decision. It is desirable that obviously malignant
lesions in a gold standard should also be obviously
malignant in the alternative method.

2.3. Statistical analysis

Although long term analysis focuses on lesion-
by-lesion accuracy of detection, the preliminary
results reported here focus on patient management,
the decisions that are made based on the radi-
ologists’ reading of the image. Management is a key
issue in digital mammography. There is concern
that artifacts could be introduced, leading to an
increase in false positives and hence in unnecessary
biopsies. The management categories we emphasize
are the following four, given in order of increasing
seriousness:

RTS incidental, negative, or benign with return
to screening,

F/U probably benign but requiring six month
follow-up,

C/B call back for more information, additional
assessment needed,

BX Immediate biopsy.

These categories are formed by combining catego-
ries from the basic form of Appendix A: RTS i1s
any study that had assessment =1 or 2, F/U is
assessment = 3, C/B is assessment = indetermi-
nate/incomplete with best guess either unsure it
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Table 2

Agreement 2 x 2 table

/1 R w

R N(, 1) N(1,2)
w N2, 1) N(2,2)

exists, 2 or 3, and BX is assessment = indetermi-
nate/incomplete with best guess either 4L, 4M, 4H
or 5, or assessment = 4L, 4M, 4H or 5.

We also consider the binarization of these four
categories into two groups: normal and not normal.
But there is controversy as to where the F/U cat-
egory belongs, so we make its placement optional
with either group. The point is to see if lossy com-
pression makes any difference to the fundamental
decision made in screening: does the patient return
to ordinary screening as normal, or is there suspi-
cion of a problem and hence the demand for further
work?

Truth is determined by agreement with a gold
standard. The raw results are plotted as a collection
of 2x 2 tables, one of each category or group of
categories of interest and for each radiologist.
A typical table is shown in Table 2.

The columns correspond to image modality or
method I and the rows to II; T could be original
analog and II original digitized, or I could be orig-
inal digitized and I compressed digitized, ‘R’ and
‘W correspond to ‘right’ (agreement with gold
standard) and ‘wrong’ (disagreement with gold
standard). The particular statistics could be, for
example, the decision of ‘normal’, i.e., return to ordi-
nary screening. Regardless of statistic, the goal is to
quantify the degree, if any, to which differences exist.

One way to quantify the existence of statistically
significant differences is by an exact McNemar test,
which is based on the following argument. If there
are N(1,2) entries in the (1, 2) place and N(2, 1)
in the (2, 1) place, and the technologies are equal,
then the conditional distribution of N(1, 2) given
N(1,2)+ N(2,1) is binomial with parameters
N(1,2) + N(2,1) and 0.5; that is,

P(N(1,2) = k|N(1,2) + N(2, 1) = n) = (Z)z—",

k=01 ..., ¢

This is the conditional distribution under the null
hypothesis that the two modalities are equivalent.
The extent to which N(1,2) differs from
(N(1,2) + N(2, 1))/2 is the extent to which the tech-
nologies were found to be different in the quality of
performance with their use. Let B(n, 1/2) denote
a binomial random variable with these parameters.
Then a statistically significant difference at level
0.05, say, will be detected if the observed k is so
unlikely under the binomial distribution that a
hypothesis test with size 0.05 would reject the
null hypothesis if k were viewed. Thus if
Pr(}B(n, 1,2) — n/2] = |N(1,2) — n/2|) < 0.05, then
we declare a statistically significant difference has
occurred.

Whether and how to agglomerate the multiple
tables is an issue. Generally speaking, we stratify
the data so that any test statistics we apply can be
assumed to have sampling distributions that we
could defend in practice. It is always interesting to
simply pool the data within a radiologist across all
gold standard values, though it is really an analysis
of the off-diagonal entries of such a table that is of
primary interest. If we look at such a 4 x 4 table in
advance of deciding upon which entry to focus,
then we must contend with problems of multiple
testing, which would lower the power of our vari-
ous tests. Pooling the data within gold standard
values but across radiologists is problematical be-
cause our radiologists are patently different in their
clinical performances. This is consistent with what
we found in an earlier study of MR and the
measurement of the sizes of vessels in the chest
[13, 35]. Thus, even if one does agglomerate, there
is the issue of how.

The counts can also be used to estimate a variety
of interesting statistics, including sensitivity, predic-
tive value positive (PVP), and specificity with re-
spect to the personal and independent gold stan-
dards. An ROC-style curve can be produced by
plotting the (sensitivity, specificity) pairs for the
management decision for the levels of suspicion.
Sample reuse methods (rather than common Gaus-
sian assumptions) could be applied to provide con-
fidence regions around the sample points [19].

A Wilcoxon signed rank test [43] can be em-
ployed to assess whether the subjective scores given
to the analog originals, the uncompressed digitals,
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and the compressed images differ significantly from
each other. With the Wilcoxon signed rank test, the
significance of the difference between the bit rates is
obtained by comparing a standardized value of the
Wilcoxon statistic to two-tailed standard Gaussian
probabilities. (The distribution of this standardiz-
ation Wilcoxon is nearly Gaussian if the null hy-
pothesis is true for samples as small as 20.) Our
previous criticism of Gaussian assumptions are not
relevant when they are applied to statistics for
which the Central Limit Theorem is applicable.

Several other approaches are planned, including
estimating sensitivity, PVP, and, when appropriate,
specificity of detection and management statistics,
estimated by counts with bootstrapped confidence
regions for each modality [5, 11]. Simple means
and variances for the management statistics are
presented in Section 3.

2.4. Learning effects

The radiologists saw each study at least 5 times
during the course of the entire experiment. These
5 versions were the analog originals, the digitized
versions, and the 3 wavelet compressed versions.
Some images would be seen more than 5 times, as
there were JPEG compressed images, and there
were also some repeated images, included in order
to be able to directly measure intra-observer
variability. We therefore needed to ascertain
whether learning effects were significant. Learning
and fatigue are both processes that might change
the score of an image depending upon when it was
seen.

In this work, we looked for whether learning
effects were present in the management outcomes
using what is known in statistics as a ‘runs’ test
[17]. We illustrate the method with an example.
Suppose a study was seen exactly five times. The
management outcomes take on four possible values
(RTS, F/U, C/B, BX). Suppose that for a particular
study and radiologist, the observed outcomes were
BX three times and C/B two times. If there were no
learning, then all possible “words” of length five
with three BX’s and two C/B’s should be equally
likely. There are 10 possible words that have three
BX’s and two C/B’s. These words have the out-

comes ordered by increasing session number; that
is, in the chronological order in which they were
produced. For these 10 words, we can count the
number of times that a management outcome made
on one version of a study differs from that made on
the immediately previous version of the study. The
number ranges from one (e.g., BXBX BX C/B C/B)
to four (BX C/B BX C/B BX). The expected number
of changes in management decision is 2.4, and the
variance is 0.84. If the radiologists had learned
from previous films, one would expect that there
would be fewer changes of management prescrip-
tion than would be seen by chance. This is a condi-
tional runs test, which is to say that we are studying
the conditional permutation distribution of the
runs.

We assume that these ‘sequence data’ are inde-
pendent across studies for the fixed radiologist,
since examining films for one patient probably does
not help in evaluating a different patient. So we can
pool the studies by summing over studies the ob-
served values of the number of changes, subtracting
the summed (conditional) expected value, and
dividing this by the square root of the sum of the
(conditional variances). The attained significance
level (p-value) of the resultant Z value is the prob-
ability that a standard Gaussian is <Z.

Those studies for which the management advice
never changes have an observed number of changes
0. Such studies are not informative with regard to
learning, since it is impossible to say whether un-
wavering management advice is the result of perfect
learning that occurs with the very first version seen,
or whether it is the result of the obvious alternative,
that the study in question was clearly and indepen-
dently the same each time, and the radiologist sim-
ply interpreted it the same way each time. Such
studies, then, do not contribute in any way to the
computation of the statistic. The JPEG versions
and the repeated images, which are ignored in this
analysis, are believed to make this analysis and
p-values actually conservative. If no learning had
occurred, then the additional versions make no
difference. However, if learning did occur, then the
additional versions (and additional learning)
should mean that there would be even fewer man-
agement changes among the 5 versions that figure
in this analysis.
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2.5. Compression algorithms

We use a compression algorithm of the sub-
band/pyramid/wavelet coding class. These codes
typically decompose the image using an octave
subband, critically sample pyramid, or complete
wavelet transformation, and then code the resulting
transform coefficients in an efficient way. The de-
composition is typically produced by an analysis
filter bank followed by downsampling. Any or all of
the resulting subbands can be further input to an
analysis filter bank and downsampling operation,
for as many stages as desired.

The most efficient wavelet coding techniques ex-
ploit both the spatial and frequency localization of
wavelets. The idea is to group coefficients of com-
parable significance across scales by spatial loca-
tion in bands oriented in the same direction. The
early approach of Lewis and Knowles [30] was
extended by Shapiro in his landmark paper on
embedded zerotree wavelet coding [42] and the
best performing schemes are descendents or vari-
ations on this theme. The approach provides codes
with excellent rate-distortion tradeoffs, modest im-
plementation complexity, and an embedded bit
stream, which makes the codes useful for applica-
tions where scalability or progressive coding are
important. Scalability implies there is a ‘successive
approximation’ property in the bit stream. As the
decoder gets more bits from the encoder, the de-
coder can decode a progressively better reconstruc-
tion of the image. This feature is particularly at-
tractive for a number of applications, especially
those where one wishes to view an image as soon as
bits begin to arrive, and where the image improves
as further bits accumulate. With scalable coding,
a single encoder can provide a variety of rates to
customers with different channels or display capa-
bilities. Since images can be reconstructed to in-
creasing quality as additional bits arrive, it pro-
vides a natural means of adjusting to changing
channel capacities and a more effective means of
using a relatively slow channel.

After experimenting with a variety of algorithms,
we chose Said and Pearlman’s variation [39] of
Shapiro’s EZW algorithm because of its good per-
formance and the availability of working software
for 12 bpp originals. We use the default filters (the

9-7 biorthogonal filters) in the software compres-
sion package of Said and Pearlman [39]. These
filters are considered, for example, in Antonini [3]
and Villasenor et al. [50]. A description and dis-
cussion of the algorithm along with access to the
software may be found at the World Wide Web site
[38]. The algorithm applies a succession of thre-
sholds to each coefficient, each half the size of the
preceding. Coeflicients with magnitude smaller
than the threshold are deemed insignificant and
are effectively quantized to zero. Bits are sent
only to indicate the location of pixels that fall
above the thresholds, and they are sent in an order
determined by a subset partitioning algorithm that
takes advantage of the correlation across scales
of significance according to spatial location and
orientation. Once a pixel is deemed significant,
further bits sent regarding that pixel are devoted
to refining the accuracy of the actual location by
bit plane transmission. The bits are sent so as to
first describe the largest coefficients, which con-
tribute the most to the reconstruction accuracy.
In this way the bit stream can be stopped at any
point with a good reproduction for the given num-
ber of bits. The system incorporates the adaptive
arithmetic coding algorithm considered in Witten
et al. [54].

For our experiment additional compression was
achieved by a simple segmentation of the image
using a thresholding rule. This segmented the im-
age into a rectangular portion containing the breast
— the region of interest or ROI — and a background
portion containing the dark area and any alpha-
numeric data. The background/label portion of the
image was coded using the same algorithm, but at
only 0.07 bpp, resulting in higher distortion there.
We here report SNRs and bit rates for both the full
image and for the ROL

The image test set was compressed in this man-
ner to three bit rates: 1.75, 0.4 and 0.15 bpp, where
the bit rates refer to rates in the ROI. The average
bit rates for the full image thus depended on the size
of the ROI. An example of the Said—Pearlman
algorithm with a 12 bpp original and 0.15 bpp re-
production is given in Fig. 1. For comparison
purposes we also compressed a few images using
a perceptually optimized JPEG [52], however
those results are not included in this paper.
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Fig. 1. Original image (left) and compressed image at 0.15 bpp in the ROI (right).

3. Results and discussion

The clinical experiment took place at Stanford
University Hospital during spring 1996. The gold
standard was established by E. Sickles, M.D., Pro-
fessor of Radiology, University of California at San
Francisco, and Chief of Radiology, Mt. Zion Hos-
pital, and D. Ikeda, Assistant Professor and Chief,
Breast Imaging Section, Department of Radiology,
Stanford University, an independent panel of ex-
pert radiogists, who evaluated the test cases and
then collaborated to reach agreement. The majority
of the detected items were seen by both radiologists.
Any findings seen by only one radiologist were
included. The other type of discrepancy resolved
was the class of the detected lesions. Since the same
abnormality may be classified differently, the two
radiologists were asked to agree on a class.

3.1. SNR versus bit rate

The SNRs are summarized in Tables 3 and 4.
The SNR definition is 10log,, E/MSE, where
MSE denotes the average squared error and E de-
notes the energy of the digital original pixels. The

Table 3
Average SNR: ROI, wavelet coding

SNR

0.15bpp 04 bpp 1.75 bpp
View ROI ROI ROI
Left CC 4593dB  47.55dB  55.30dB
Right CC 4593dB  4747dB  5540dB
Left MLO 46.65dB 4849dB  56.53dB
Right MLO 46.61dB  48.35dB  56.46dB
Left side (MLO and CC) 4629dB 4802dB 5592dB
Right side (MLO and CC) 46.27dB 4791dB 5593dB
Overall 46.28dB  4797dB  5592dB

overall averages are reported as well as the aver-
ages for the specific image types or views (left and
right breast, CC and MLO view). This demon-
strates the variability among various image types as
well as the overall performance. Two sets of SNRs
and bit rates are reported: ROI only and full image.
For the ROI SNR the rates are identical and cor-
respond to the nominal rate of the code used in the
ROI. For the full images the rates vary since the
ROI code is used in one portion of the image and



200

Table 4

Average SNR: full image, wavelet coding
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SNR, bit rate

View 0.15 bpp ROI 0.4 bpp ROI 1.75 bpp ROI1
Left CC 44.30dB, 0.11 bpp 45,03 dB, 0.24 bpp 46.44 dB, 0.91 bpp
Right CC 44.53 dB, 0.11 bpp 45.21dB, 0.22 bpp 46.88 dB, 0.85 bpp
Left MLO 4491 dB, 0.11 bpp 45.73 dB, 0.25 bpp 47.28 dB, 1.00 bpp
Right MLO 4522 dB,0.11 bpp 46.06 dB, 0.25 bpp 47.96 dB, 0.96 bpp
Left side (MLO and CC) 44.60dB, 0.11 bpp 45.38 dB. 0.24 bpp 46.89 dB, 0.96 bpp
Right side (MLO and CC) 4488 dB, 0.11 bpp 45.63 dB, 0.24 bpp 47.41dB, 0.92 bpp
Overall 4474 dB, 0.11 bpp 45.51 dB, 0.24 bpp 47.14dB, 0.93 bpp
62 1 T I I
: : : : : : : : X
6ok P R P P S %
(-] R .......... e .......... ....... 4
56_ .................... ........ -
) I SO SOt SN SOUNUUUOOE SUUOUROE SOURURORE SOOI ]
m :
© :
c :
— 52 b e e e e e e e e e e aa e e pu
P ;
: x
& :
BOF oot -
X : :
48+ R .................... .......... ................................................... N
a6 B .......... ..................................................... N
44+ .......... .......... .......... ..................................................... =
% I S S S S SR S S
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8

rate in bpp

Fig. 2. Scatter plot of ROI SNR: wavelet coding.

much lower rate code is used in the remaining
background and the average depends on the size of
the ROI, which varies among the images. A scatter
plot of the ROI SNRs is presented in Fig. 2.

It should be emphasized that this is the SNR
comparing the digital original with the lossy com-
pressed versions.

3.2. Management differences

The focus of the statistical analysis of this paper
is the screening and management of patients
and how it is affected by analog versus digital
and lossy compressed digital. We also consider
the less important, but still informative, issue of
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Table 5
Agreement 2 x 2 tables for radiologist A

11/1 R w 1I/1 R w II/1 w 1171 R w
R 7 2 R 0 0 R 6 4 R 14 2
|74 1 2 |24 0 1 w 3 5 w 2 8
RTS F/U C/B BX
(A) Analog versus digital original
/1 R w 11/1 R w 11/1 R w 111 R w
R 6 3 R 0 0 R 8 2 R 14 2
w 1 2 w 0 1 w 2 6 w 1 9
RTS F/U C/B BX

(B) Analog versus digital lossy compressed: 1.75 bpp

I;I R W I R W

R 6 3 R 0 0

w 0 3 w 0 1
RTS F/U

1 R w Iyl R W

R 6 4 R 12 3

w2 6 W 4 6
C/B BX

(C) Analog versus digital lossy compressed: 0.4 bpp

I R w /1 R w

R 4 4 R 0 0

w0 3 w0 1
RTS F/U

I R w 1 R w

R 3 7 R 11 4

w4 4 W 4 6
C/B BX

(D) Analog versus digital lossy compressed: 0.15 bpp

subjective perceived quality as a function of bit
rate.

In all, there were 57 studies that figure in what we
report. According to the gold standard, the respect-
ive numbers of studies of each of the four types
management types RTS, F/U, C/B and BX were
13, 1, 18 and 25, respectively. For each of the four
possible outcomes, the analog original is compared
to each of four technologies: digitized from analog
original, and wavelet compressed to three different
levels of compression (1.75, 0.4 and 0.15 bpp).
So the McNemar 2x2 statistics based on the
generic table of Table 2 for assessing differences
between technologies were computed 48 times,
16 per radiologist, for each competing image
modality (original digital and the three lossy
compressed bit rates). For example, the 2 x 2 tables

for a single radiologist (A) comparing analog to
each of the other four modalities are shown in
Table 5. For none of these tables for any radiologist
was the exact binomial attained significant level
(p-value) 0.05 or less. For our study and for this
analysis, there is nothing to choose in terms of
being ‘better’ among the analog original, its
digitized version, and three levels of compression,
one rather extreme. We admit freely that this lim-
ited study had insufficient power to permit us to
detect small differences in management. The larger
the putative difference, the better our power to have
detected it.

Table 6 summarizes the performance of each
radiologist on the analog versus uncompressed
digital and lossy compressed digital. In all cases,
columns are ‘digital’ and rows ‘analog’. Table 6(A)
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Table 6
Radiologist agreement tables
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RTS F/U C/B BX RTS F/U C/B BX RTS F/U (/B BX
RTS 11 0 5 i RTS 4 0 0 0 RTS 8 0 6 1
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 (4] 0 0
C/B 3 0 11 7 C/B 3 0 3 3 C/B 1 0 10 1
BX 2 0 2 15 BX 1 0 7 35 BX 0 0 7 23

A: Analog versus digital

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX
RTS 11 0 6 0 RTS 2 1 0 1 RTS 11 0 4 0
F/U 0 0 0 0 F/U 0 1 0 0 F/U 0 0 0 0
C/B 2 0 15 4 C/B 3 1 3 2 C/B 1 1 8 2
BX 1 0 2 16 BX 1 0 4 37 BX 1 0 5 24

B: Analog versus lossy compressed digital: 1.75 bpp

RTS F/U C/B BX RTS F/U C/B  BX RTS F/U C/B BX
RTS 9 0 6 2 RTS 1 0 2 1 RTS 7 0 7 1
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 0 0 0
C/B 1 0 10 10 C/B 2 0 2 5 C/B 2 0 8 2
BX 1 0 2 15 BX 2 0 5 36 BX 1 0 4 25

C: Analog versus lossy compressed digital: 0.4 bpp

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX
RTS 8 0 7 1 RTS 3 1 0 0 RTS 7 0 7 0
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 0 0 0
C/B 3 1 9 8 C/B 3 0 3 2 C/B 0 0 9 3
BX 1 0 6 11 BX 1 1 5 35 BX 0 0 9 20

D: Analog versus lossy compressed digital: 0.15 bpp

Radiologist A

Radiologist B

Radiologist C

treats analog versus original digital and Tables
6(B)—(D) treat analog versus lossy compressed
digital at bit rates of 1.75, 0.4 and 0.15 bpp, respec-
tively. Statements which follow are with respect to
the independent gold standard regarding which
some information is implicit in Table 5. Consider as
an example the analog versus digital comparison of
radiologist A. Radiologist A made 20 ‘mistakes’ of
57 studies from analog, and 24 from original digital
studies. The most frequent mistake, eight for analog
and seven for digital, was classifying a gold stan-
dard ‘biopsy’ as ‘additional assessment’. Radi-
ologist B made 28 ‘mistakes’ from analog studies,

and 24 from digital. In both cases, the most fre-
quent mistake was to ‘biopsy’ what should, by the
gold standard, have been ‘additional assessment’.
There were 15 such mistakes with analog and 13
with digital. Radiologist C made 20 ‘mistakes’ from
analog studies and 17 from digital. With the former,
the most frequent mistake occurred eight times
when ‘biopsy’ was judged when ‘additional assess-
ment’ was correct. With digital, the most frequent
mistake occurred six times when ‘additional assess-
ment” was judged when ‘biopsy’ was correct. On
this basis, we cannot say that analog and digital are
different beyond chance.






