ECE 53a	Quiz \#1 SOLUTIONS	Pamela Cosman	$1 / 29 / 08$

Problem 1: (This is problem 1 from homework 2.) V_{a} is just the same as the source voltage. It is 8 V . And for V_{o}, we see it is just a voltage divider. We have to notice that V_{o} has the opposite polarity from $V_{a}=8 V$, so we need to include a minus sign in the voltage division equation:

$$
V_{o}=-\frac{2}{2+3+3} \times 8=-2 V
$$

Problem 2: (This is similar to problem 3 in the practice quiz.)

First to find the current, we note that the total voltage powering the circuit is the sum of the two voltage sources in series: $2+0.5 I_{x}$. The total resistance in the circuit is the sum of the two series resistors: $1+1.5=2.5$.
By Ohm's law, the current that flows will be the ratio:

$$
I_{x}=\frac{2+0.5 I_{x}}{2.5}
$$

and we solve this equation to obtain:

$$
I_{x}=1 A
$$

The fastest way to answer this for the resistors is to remember that one expression for power absorbed by a resistor is

$$
p=R i^{2}
$$

Since $I_{x}=1$, and it is the same current throughout the circuit, the power absorbed by the 1 Ohm resistor is

$$
p_{1}=1 \times 1^{2}=1 W
$$

and for the other resistor the power absorbed is

$$
p_{2}=1.5 \times 1^{2}=1.5 W
$$

For the independent voltage source, the power absorbed is

$$
p_{i}=-2 \times 1=-2 W
$$

where we had to write $\mathrm{p}=$-vi because the current I_{x} is going from minus to plus across the resistor. Lastly for the dependent voltage source,

$$
p_{d}=-0.5 \times 1 \times 1=-0.5 W
$$

As a check of all these, we can see that the total power absorbed sums to zero:

$$
1+1.5-2-0.5=0
$$

Problem 3: (This is one that I gave in class.)
First we can transform the 2 A current source on the right, which is in parallel with a 3Ω resistor:

That gives us a 6 V voltage source in series with a 3Ω resistor, which we can combine with the other 3Ω resistor to give the following circuit:

We transform this voltage source (in series with a 6Ω resistor) back into a current source (in parallel with a 6Ω resistor) and then combine the 6Ω and 12Ω parallel resistors to obtain:

Going back to a voltage source:

And then one last time, going back to a current source:

From this we can see it is a current divider, so

$$
I_{o}=\frac{2 \times 3}{6+3}=\frac{2}{3} A
$$

Problem 4: Here there are only independent sources, so we can find any two of the three items: $V_{o c}$, $i_{s c}$ and $R_{t h}$. I will find $V_{o c}$ and $R_{t h}$.

We find $v_{o c}$ using the following circuit:

KCL at node v_{1} yields

$$
2+1+\frac{6-V_{1}}{1}=0 \quad \Rightarrow \quad v_{1}=9
$$

That 1Ω resistor to the left of node V_{1} must have 1 A across it, so

$$
v_{o c}=9+1 \times 1=10 \mathrm{~V}
$$

To find $R_{t h}$, we need to zero out all the independent sources. The current sources become open circuits, so those branches can be erased. The voltage source becomes a wire.

The Thevenin equivalent circuit is therefore

and the current I_{0} in the 3Ω load is

$$
I_{0}=\frac{10}{2+3}=2 A
$$

