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Abstract—We improve the overall rate-distortion performance
of distributed video coding by efficient techniques of correlation
noise estimation and key frame encoding. In existing trans-
form-domain Wyner–Ziv video coding methods, blocks within
a frame are treated uniformly to estimate the correlation noise
even though the success of generating side information is different
for each block. We propose a method to estimate the correlation
noise by differentiating blocks within a frame based on the ac-
curacy of the side information. Simulation results show up to 2
dB improvement over conventional methods without increasing
encoder complexity. Also, in traditional Wyner–Ziv video coding,
the intercorrelation of key frames is not exploited since they
are simply intracoded. In this paper, we propose a frequency
band coding mode selection for key frames to exploit similarities
between adjacent key frames at the decoder. Simulation results
show significant improvement especially for low-motion and high
frame rate sequences. Furthermore, the advantage of applying
both schemes in a hierarchical order is investigated. This method
achieves additional improvement.

Index Terms—Correlation channel, distributed source coding,
key frame encoding, Wyner–Ziv coding.

I. INTRODUCTION

M otion-compensated predictive coding is a successful
method for exploiting interframe correlation and is

used in traditional video coding standards such as MPEG-x
and H.26x. In this technique, the encoder exploits spatial and
temporal correlations and can choose flexibly between different
coding modes and encoding parameters. The encoder com-
plexity is much higher than the decoder complexity. For some
recent applications, such as sensor networks, video surveil-
lance, and mobile camera phones, many simple and low-cost
encoders are required but a high-complexity decoder can be
used. Wyner–Ziv video coding which is founded on the Slepian
and Wolf [1] and Wyner and Ziv [2] theorems is a promising
solution for such applications. In this approach, the complexity
is largely shifted from the encoder to the decoder by encoding
individual frames independently (intraframe encoding) but
decoding them conditionally (interframe decoding).
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As a first implementation of distributed video coding (DVC),
Puri and Ramchandran [3] and Puri et al. [4] introduced a syn-
drome-based video coding scheme which deployed block-level
coding primitives, and no feedback was required. The algo-
rithms proposed in [5]–[9] require feedback which became the
basis for considerable further research. In [10], Brites et al.
outperformed [6] by adjusting the quantization step size and
applying an advanced frame interpolation for side informa-
tion generation. Later, in [11]–[14], enhanced techniques of
side generation were proposed to achieve better performance.
In [15] and [16], blocks were differentiated to use intra- or
Wyner–Ziv coding.

In most Wyner–Ziv coding schemes, the decoder needs some
model for the statistical dependence between the source and the
side information to make use of the side information. Accurate
modeling of correlation has a strong impact on performance by
exploiting the statistics between source and side information
[17]. The dependence between source and side information is
modeled by where denotes the side information
and denotes the source. is called the correlation noise.
In [18], the correlation noise was modeled by different distri-
butions, and the relationship between the compression ratio
and sensitivity of the estimated channel model parameter was
investigated.

In most approaches, the probability density function of is
approximated by a Laplacian distribution and its corresponding
parameters are estimated by plotting the residual histogram of
several sequences. In these methods, the estimated Laplacian
parameter is the same for all blocks within a frame, even though
the accuracy of the side information varies based on the mo-
tion compensated frame interplation (MCFI) success. In [19], a
method was proposed to estimate the pixel domain correlation
noise by online adjustment of the Laplacian parameter for each
block. In [20] and [21], some methods at frame, block, and pixel
levels were suggested for online parameter estimation of pixel
and transform-domain Wyner–Ziv (TDWZ) coding. Their pro-
posed method for transform-domain correlation noise estima-
tion was improved by Huang and Forchhammer in [22] by uti-
lizing cross-band correlation. In this paper, we propose a simple
and effective method to differentiate blocks within a frame to
estimate the correlation noise based on MCFI success at the
decoder.

Exploiting the temporal correlation of key frames is an-
other contribution of this paper. As mentioned, key frames
are usually intraencoded and decoded, so the interframe cor-
relation between them is not exploited. Extending Wyner–Ziv
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Fig. 1. TDWZ video codec.

coding to key frames as well can help to exploit the temporal
correlation and improve the rate-distortion performance. In
[23], Wyner–Ziv coding was applied for key frames and the
previously decoded key frame was considered as the pixel
domain side information for the next key frame to be decoded.
Their results showed improvement for two low-motion se-
quences. However, as shown in [24] and [25], directly applying
Wyner–Ziv coding on key frames can degrade the overall per-
formance since Wyner–Ziv coding is capable of outperforming
intracoding only when the side information is accurate enough.
Using the previously decoded key frame as the side information
for the next key frame to be encoded is usually not accurate
enough, especially for high-motion sequences. We extend the
Wyner–Ziv coding method to key frames by applying a coding
mode selection technique that tries to select the proper coding
method (Intra or Wyner–Ziv) based on the correlation charac-
teristics of the low- and high-frequency bands of each frame to
the past. In this method, the decoder decides the coding mode
and no complexity is added to the conventional Wyner–Ziv
encoder. After decoding low bands, a new method is used to
refine the side information corresponding to the remaining
frequency bands.

Finally, we propose and study a hierarchical coding structure
applying both of the proposed methods of noise classification
and key frame coding. We examine sequences with different
motion characteristics at different frame rates. The rest of this
paper is organized as follows. In Section II, TDWZ coding is
reviewed. In Section III, correlation noise classification based
on matching success is described in detail. Key frame encoding
based on frequency band classification and side information re-
finement is explained in Section IV. After presenting hierar-

chical coding in Section V, the performance of different pro-
posed methods is evaluated in Section VI.

II. TDWZ CODING

The TDWZ video codec architecture proposed in [6] is our
reference. As depicted in Fig. 1, key frames are encoded and de-
coded by a conventional intraframe codec. The frames between
them (Wyner–Ziv frames) are also encoded independently of
any other frame, but their decoding makes use of other frames.
In the following, the term decoder refers to the entire interframe
decoder of Fig. 1, whereas the term Slepian–Wolf decoder refers
to the decoder module inside the Slepian–Wolf codec.

At the encoder, a blockwise 4 4 discrete cosine transform
(DCT) is applied on Wyner–Ziv frames. If there are blocks in
the image, (for to 16) is a vector of length obtained
by grouping together the th DCT coefficients from all blocks.
To have the same quality for both Wyner–Ziv and intra modes,

is used to quantize DCT coefficients where

(1)

and is the unquantized coefficient at position .
is the element of the quantization matrix at position and

is the quantization parameter. The quantization matrix ap-
plied in our simulation is the initializing quantization matrix
borrowed from H.264 JM 9.6, as follows:
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TABLE I
LOOKUP TABLE OF � PARAMETERS FOR 16 DCT BANDS OF DIFFERENT CLASSES

The coefficients of are quantized to form a vector of quan-
tized symbols . That is, is the vector of quantization step
indices for the elements of . After representing the quantized
values in binary form, bit-plane vectors ( to ) are
extracted, where is the maximum number of bit planes for
frequency band . The maximum number of bit planes for fre-
quency band is calculated by

if
otherwise

(2)

where is the highest absolute value within frequency
band . The encoder lets the decoder know the maximum
number of bit planes for each frequency band within a frame.
Each bit-plane vector then enters the Slepian–Wolf [Turbo
or low-density parity-check accumulate (LDPCA)] encoder.
The parity bits (or accumulated syndrome bits) generated by
the Turbo (or LDPCA) encoder are stored in the buffer and
sent in chunks upon the decoder request through the feedback
channel until a desired bit error rate is met. Our simulation
setup assumed ideal error detection.

At the decoder, is the estimate of (Wyner–Ziv frame)
which is generated by applying extrapolation or interpolation
techniques on decoded key frames. For a group of pictures of
size 2, a motion compensation interpolation technique that will
be briefly explained in Section III is applied on previous and
next key frames to estimate the Wyner–Ziv frame in between.
A blockwise 4 4 DCT is applied on to produce . , the
side information corresponding to , is generated by grouping
the transform coefficients of . When all the bit planes are de-
coded, the bits are regrouped to form a vector of reconstructed
quantized symbols . At the end, the reconstructed coefficient
band is calculated as .

The Slepian–Wolf decoder and reconstruction block assume
a Laplacian distribution to model the statistical dependence be-
tween and . Although more accurate models such as gen-
eralized Gaussian can be applied, Laplacian is selected for good
balancing of accuracy and complexity. The distribution of can
be approximated as

(3)

where denotes the difference between corresponding elements
of and . In existing approaches [5]–[10], a different
parameter is assigned for each frequency band. These param-
eters are estimated by plotting the residual histogram of several
sequences using MCFI for the side information. For example,

for frequency band the differences between corresponding el-
ements in and of several sequences are grouped to form
a set . The parameter is calculated by , where is
the square root of the variance of the values. In this way, we
have a 16-element lookup table at the reconstruction block and
Slepian–Wolf decoder. An example of it is shown in the last row
of Table I where each element represents the parameter of the
corresponding DCT band.

III. CORRELATION NOISE CLASSIFICATION BASED ON

MATCHING SUCCESS

The main usage of correlation noise estimation is in the cal-
culation of the conditional probability of the Slepian–Wolf de-
coder which, in our case uses the regular degree 3 LDPCA codes
proposed in [26]. More accurate estimation of the dependence
between source and side information means that fewer accu-
mulated syndrome bits need to be sent, resulting in improved
rate-distortion performance. Traditional estimation of Laplacian
distribution parameters treats all frames and blocks within a
frame uniformly, even though the quality of the side informa-
tion varies spatially and temporally. General MCFI methods are
based on the assumption that the motion is translational and
linear over time among temporally adjacent frames. This as-
sumption often holds for relatively small motion but tends to
give a poor estimation for high-motion regions. The general ap-
proach to estimate a given block B in the interpolated frame
is to find the motion vector of the colocated block in with
reference to frame , where , and are time in-
dexes. In [27], the motion vectors obtained by block matching
in the previous step are refined by a bidirectional motion esti-
mation technique. A spatial smoothing algorithm is then used
to improve the accuracy of the motion field. If is
the final motion vector, where and are the and compo-
nents of , then the interpolated block is obtained by averaging
the pixels in and pointed to by and . These
blocks of pixels in and which are called forward and
backward interpolations, FMCFI and BMCFI, respectively can
be calculated as

(4)

(5)

The interpolated block is calculated by

(6)
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The residual energy between FMCFI and BMCFI is computed
by

(7)

where and represent the block size (in our case
). In [21], the residual between forward and backward interpo-

lations was applied to estimate the correlation noise. is
the residual frame and is calculated as

(8)

They define . The parameter for
frequency band and frame is where
is the square root of the variance of the elements of . At the
coefficient level, to have more accurate correlation noise esti-
mation, each coefficient of frame was classified into inlier
or outlier classes. As explained in [21], inlier coefficient values
are close to the corresponding DCT band average value . Out-
lier coefficients are those whose value is far from . The pa-
rameter for inlier coefficients was taken to be which was
the frame level parameter. The parameter for outlier coef-
ficients was taken to be , where

(9)

With this approach for blocks/regions where the residual error
is high, is used instead of to give less confi-
dence to areas where MCFI is less successful. But for well-inter-
polated blocks/regions, coefficient level estimation is not better
than frame level estimation. In our method, every block within a
frame is classified in order to estimate the correlation noise. By
a training stage and offline classification, we are able to estimate
the dependence between source and side information based on
the residual energy of a given block. By this method, we give
different levels of confidence to different blocks based on how
well interpolated they are.

In our method, we divide our sample of data into several
classes of residual energy. The residual energy between forward
and backward interpolation of every block within a frame for all
Wyner–Ziv frames of several sequences is calculated to form a
set . We classify elements of this set into different classes
using thresholds where . Class

is chosen when where . To help en-
sure statistically reliable classification, the threshold values are
set such that classes have roughly the same number of elements.
All coefficients corresponding to frequency band of all blocks
labeled with class are grouped together to form a set . The

parameter of the set is calculated by where
is the square root of the variance of the elements.

Based on the previous procedure, there are different classes
of correlation estimation for each frequency band. We have,
therefore, an by 16 (since a 4 4 DCT is applied) lookup
table of parameters at the decoder. The component , of this
table represents the parameter of frequency band of class

where and . Development of
this table is done offline.

During decoding, for a given block of the Wyner–Ziv frame,
the decoder evaluates the matching success of MCFI by calcu-
lating the residual energy between forward and backward inter-
polation and chooses one of the defined classes by comparing
to the threshold values. Once the block class is determined, the

parameter of each frequency band is found through the lookup
table.1 In our simulation, the number of classes is set to 8 since
in that case, as discussed below, we can have enough elements
in each class to have a reliable distribution model. Threshold
values are calculated offline for each quantization parameter,
separately. Table I shows the computed lookup table for quan-
tization parameter equal to 0.4. Each row represents the pa-
rameter of different DCT bands of a given class. The last row
represents the calculated parameter of different DCT bands
based on the existing method where there is no classification.
As we can see, going from class 1 down to class 8 in each
column, the parameter of each DCT band is a monotonically
decreasing function of residual energy satisfying our expecta-
tion. Also, the parameter of each class is an increasing func-
tion of frequency in each direction meaning that the param-
eters of and are
monotonically increasing. This suggests we have sufficient data
within each class, since the parameters follow the same trends
as they do when there is no classification. As shown in Table I,
the parameters of the last row (corresponding to no classi-
fication) lie between class 6 and class 7. So, for high-motion
sequences with most blocks classified to class 6 or higher, we
expect less improvement than for low-motion sequences with
most blocks classified to class 5 or lower.

Fig. 2(a) and (b) shows the distribution of frequency band
corresponding to the traditional method (no classifica-

tion) and class 1, respectively. As we can see, the width of the
approximated Laplacian distribution for frequency band
of class 1 is smaller than the width of the distribution for the
traditional method meaning that the prediction will be more ac-
curate on average when using the classification.

IV. KEY FRAME ENCODING BASED ON FREQUENCY BAND

CLASSIFICATION AND SIDE INFORMATION REFINEMENT

In conventional TDWZ coding, key frames are encoded and
decoded by a conventional intraframe coder. So, the spatial cor-
relation within a block is exploited by applying a DCT, but
the temporal correlation between adjacent key frames is not
exploited [24]. To extend the Wyner–Ziv coding idea to key
frames to exploit similarities between them, previously decoded
key frames can be used as the side information. If the side in-
formation is not a sufficiently accurate estimate of the source,
Wyner–Ziv coding can do worse than intracoding. So, we need
tools to evaluate the quality of the side information to select
the proper coding method. Wyner–Ziv coding and intracoding
blocks are already part of existing Wyner–Ziv codecs; there-
fore, applying a method switching between Wyner–Ziv and in-
tracoding to exploit interframe correlation between consecutive

1We described this method in a preliminary version in [28]; however, in that
work, the training set used to develop the lookup table was the same as the test
set. In the current study, training and test data are disjoint.
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Fig. 2. Approximated Laplacian distribution for frequency band (1, 2): (a) without classification; (b) for class no. 1.

key frames does not add complexity to the encoder as long as the
decision step is done at the decoder. Since the temporal correla-
tion of low-frequency bands is usually high, Wyner–Ziv coding
can often outperform intracoding. For high-frequency bands,
measuring the distortion between source and side information of
the low-frequency bands at the decoder can help to estimate the
accuracy of the side information for high-frequency bands [25].
Side information that is simply a previous decoded key frame
can be refined to a more accurate one for high-frequency bands
by using decoded low-frequency bands. The Wyner–Ziv coding
mode was described in detail in Section II. In this section, after
describing the intracoding mode, we present our mode selection
scheme with side information refinement.

A. Intracoding

For the intramode, the quantized DCT coefficients are ar-
ranged in a zigzag order to maximize the length of zero runs. The
codeword represents the run length of zeros before a nonzero
coefficient and the size of that coefficient. A Huffman code for
the pair (run, size) is used because there is a strong correlation
between the size of a coefficient and the expected run of zeros
which precedes it. In our simulation, Huffman and run length
coding tables are borrowed from the Joint Photographic Experts
Group (JPEG) standard.

B. Coding Mode Selection and Side Information Refinement

Fig. 3 shows our proposed codec applying coding mode se-
lection for key frames. To separate different frequency bands of
the key frame to be encoded, first a DCT is applied. For fre-
quency band , the th DCT coefficients from all blocks are
grouped to form vector . Low-frequency bands are encoded
and decoded by Wyner–Ziv coding. The previously decoded
key frame is used to generate the side information for low-fre-
quency bands. To provide the corresponding side information
for each frequency band, a DCT is applied on the previously re-
constructed key frame, and the th DCT coefficients from all
blocks are grouped to form vector . Once the decoder re-
ceives and decodes all low bands, a block-matching algorithm
is used for motion estimation of each block with reference to the
previously decoded key frame. In block-matching algorithms,

each macroblock in the new frame is compared with shifted re-
gions of the same size from the previous frame, and the shift
that results in the minimum error is selected as the best motion
vector for that macroblock. Since here only reconstructed low
bands of the new key frame are available at the decoder, the best
match is found using the mean squared error (MSE) of low-fre-
quency components. The MSE of low bands of two blocks
and with pixels is calculated as

(10)

where is the total number of low bands and and are
the DCT transform of and , respectively. The motion-com-
pensated frame is the new side information for the remaining
frequency bands. In our simulation, motion estimation for the
refinement step is a full search in a pixel search area. To
select the proper coding method for high-frequency bands, we
need to estimate the accuracy of the side information. At this
point, decoded low bands constitute the only available informa-
tion of the frame to be encoded. Since the side information is
a noisy version of the source, measuring the distortion between
decoded low bands of the current key frame and those of the
motion compensated one at the decoder can help to give an es-
timation of the distortion for high bands. This distortion is cal-
culated as

(11)

where denotes the reconstructed at the decoder and
denotes a vector formed by grouping the th DCT coeffi-

cient from all blocks of the motion-compensated frame at the
decoder. is the number of elements in each frequency band
which is the number of DCT blocks in a frame. If is less
than a threshold , the side information is likely accurate
enough that Wyner–Ziv coding can outperform intracoding for
high-frequency bands. Otherwise, intracoding is applied for
them. The decoder sends a single bit per frame through the
feedback channel to indicate the selection. The added effect of
sending a single bit per frame through the feedback channel
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Fig. 3. Proposed video codec with frequency band coding mode selection for key frames.

on the latency of the system is negligible, since in traditional
Wyner–Ziv coding, feedback bits might be sent for each bit
plane to request more accumulated syndrome bits to meet the
desired bit error rate. The conventional DVC decoder allows for
all the bands to be decoded in parallel, whereas the proposed
scheme essentially cuts in half the amount of parallelization
that could be done. So, instead of having a time in which to
decode (in parallel) all the bands, the decoder would have to
decode the low bands in and then the high bands in .
To allow random access and limit error propagation, we can
switch OFF our proposed key frame encoding once in a while
to use intracoding instead, as is done in conventional IPPP-
or IBBP-type coders, where I, P and B denote intracoded,
predicted and bidirectionally interpolated frames, respectively.
The whole process of Wyner–Ziv coding of low bands, side
information refinement, and finding the proper coding method
for high bands is called adaptive coding for the rest of this
paper.

As more bands are considered to be low, the greater accu-
racy is expected for the side refinement step in this method, al-
though there would be some exceptions based on video con-
tent. But if we increase the number of low bands, fewer bands
would be left to take advantage of the improved side informa-
tion. As depicted in Fig. 4, the performance is improved when

, , and are considered as low bands com-
pared with the case that only is considered. However, the
performance is degraded by considering the six lowest frequen-
cies of the 4 4 DCT in zigzag order as low bands. Therefore,
in our simulation, , , and are considered
as low-frequency bands, and the rest are considered high-fre-
quency bands.

Fig. 4. PSNR of key frames versus rate for different numbers of frequency
bands considered as low bands.

V. HIERARCHICAL CODING

In traditional Wyner–Ziv coding, key frames occur every
other frame and are intracoded to provide high-quality side
information for the Wyner–Ziv frames in between. Many key
frames encoded as intra leads to increasing rate and overall
rate-distortion degradation. MCFI methods tend to be less suc-
cessful when the distance between frames gets higher, so less
frequent key frames results in less accurate side information
for the corresponding Wyner–Ziv frame. Less accurate side
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Fig. 5. Proposed hierarchical coding.

information means more accumulated syndrome bits need to be
sent to satisfy the bit error expectation. In the previous section,
we proposed a method to exploit similarities between key
frames. In this section, we propose a more practical structure
taking advantage of both adaptive coding and correlation noise
classification techniques. Most Wyner–Ziv coders consider
key frames every two frames. We started with this spacing
and saw what improvement could be obtained by key frame
prediction. The next step beyond this is key frame spacing of 4.
As shown in Fig. 5, in this hierarchical arrangement, key frames
occur every four frames and there are two types of Wyner–Ziv
frames: Wyner–Ziv frames with four-frame distance, WZ-4,
and Wyner–Ziv frames with two-frame distance, WZ-2, which
will be explained in detail. Lookup tables of correlation noise
classification for the two types are different and are obtained
offline by using several sequences as training data. Compared
to the traditional structure with one frame delay, latency in this
structure is increased to a delay of three frames. In traditional
Wyner–Ziv video coding where key frames occur every other
frame, decoding of a Wyner–Ziv frame cannot be started unless
the previous and next key frames were decoded.

A. Key Frames

As depicted in Fig. 5, key frames occur every four frames
and they are used to generate side information corresponding to
WZ-4 frames which will be explained later. The first key frame
is intracoded since no other information is available. Applying
the proposed adaptive coding method in Section IV will be very
helpful to exploit temporal correlation of key frames in high
frame rate videos or low-motion sequences. Otherwise, simply
applying intracoding would be a better choice. In Figs. 7–9, both
methods are applied for key frames, and results for different
types of video content and frame rates are compared.

B. WZ-4 Frames

As shown in Fig. 5, these frames are at two-frame distance
from key frames and four-frame distance from each other. The

MCFI method proposed in [27] is applied on previous and next
key frames to generate their corresponding side information.
Since here the side information comes from both temporal direc-
tions and MCFI is applied, we can apply the proposed correla-
tion noise classification method in Section II. For a given block
of a WZ-4 frame, the decoder evaluates the matching success
of MCFI by calculating the residual energy between forward
and backward interpolation and chooses one of the defined
classes by comparing to the threshold values. Once the block
class is determined, the parameter of each frequency band
is found through the lookup table. Once low bands are recon-
structed at the decoder, they are used to refine the side informa-
tion, and the rest of the frequency bands are Wyner–Ziv encoded
with the refined side information.

C. WZ-2 Frames

As depicted in Fig. 5, these frames lie between key frames and
WZ-4 frames. The MCFI method proposed in [27] is applied on
their key frame and WZ-4 frame immediate neighbors which
are at one-frame distance from them. For this type of frame also,
side information comes from both sides, so the correlation noise
classification technique is applicable. Since here the frame dis-
tance is only one frame from each side, the obtained side infor-
mation is more accurate than for WZ-4. Empirically, for WZ-2
frames, having low bands is not very helpful to provide more
accurate side information than the one attained by MCFI. So,
the refinement step is not applied for them.

VI. SIMULATION RESULTS

Figs. 7–9(a)–(d) show the rate-distortion performance for the
test sequences Claire, Mother-daughter, Foreman, and Car-
phone QCIF (176 144) sequences at 30, 15, and 10 frames/s.
Fig. 8(e) shows the rate-distortion performance for the Soccer
QCIF sequence at 15 frames/s.

In all offline processes such as setting threshold values and
correlation noise classification lookup tables, training video



2470 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 6. PSNR versus rate for conventional Wyner–Ziv method applying correlation noise classification.

sequences are different from test video sequences. Our training
sequences are Container, Salesman, Coastguard, and Akiyo.

In our simulation, . For
adaptive coding, which is described in Section IV, for each
one of these quantization parameters, a threshold value is set.
We tried different values between 50 and 1800 with step sizes
20 to 100 for several video sequences at different quantiza-
tion parameters. The value of the step size depends on the
quantization parameter, with larger step sizes for larger quan-
tization parameters. Threshold values

corresponding to
quantization parameters ,
were chosen as they work well for the training sequences with
different characteristics. Threshold values are obtained for
training sequences at 30 frames/s and used for test sequences
at frame rates of 30, 15, and 10 frames/s. For correlation noise
classification, for each type of Wyner–Ziv frame and each
quantization step, a different lookup table is calculated.

Table II shows the average number of times that key frame
high bands are Wyner–Ziv coded in the Adaptive coding

TABLE II
AVERAGE FRACTION OF TIME KEY FRAME HIGH BANDS ARE

WYNER-ZIV CODED

method. In Figs. 7–9, the results of applying different methods
are compared. With “Intra,” all frames are intraencoded and
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Fig. 7. PSNR versus rate for different coding methods for 30 frames/s sequences.

decoded by using the method explained in Section IV-A.
The complexity of this method is as low as JPEG. In this
paper, whenever intracoding was needed, this method was
used. “Conventional” is based on the method in [10], but we
modified the algorithm in two ways. First, the assumption of
availability of original key frames at the decoder is removed
since it is not valid from a practical point of view. Second, the
quantization part is replaced with the quantization procedure
explained in Section II. Although not depicted in the figures,
our simulation results show that this change in quantization

method improves the performance of [10]. Our quantization
method is applied for all proposed methods. We use the same
quantization method for all the approaches in order to high-
light the performance improvement due to correlation noise
classification and key frame encoding. In the “Conventional”
method, key frames (odd frames) are encoded and decoded as
intra using the method explained in Section IV-A, and even
frames are encoded as Wyner–Ziv frames. When Wyner–Ziv
coding equipped with correlation noise classification is ap-
plied for Wyner–Ziv frames of the conventional method, the
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Fig. 8. PSNR versus rate for different coding methods for 15 frames/s sequences.

Fig. 9. PSNR versus rate for different coding methods for 10 frames/s
sequences.

method is called “ ” The result of this
method is compared to the best-proposed method (coefficient

level of transform domain) in [21]. When the adaptive method
is applied for key frames (odd frames), and the Wyner–Ziv
method equipped with correlation noise classification is ap-
plied for even frames, the method is called “Adaptive-WZ+.”
“Hierarchical-key-intra” and “Hierarchical-key-adaptive” are
the names of the methods explained in Section V where intra
and adaptive are applied for key frames, respectively. Results
are also compared to “H.264 intra” and “H.264 I-B-I.” In this
paper, all methods are using intra method as low complexity as
JPEG. It is further explained in Section VI-A.

Simulation results show that applying the correlation noise
classification proposed in Section III results in up to 2 dB im-
provement over “Conventional” and 1 dB improvement over
the best proposed method (coefficient level) in [21] (Claire 10
frames/s at 240 kb/s). The proposed adaptive method combined
with correlation noise classification results in up to 5 dB im-
provement over “ - ” (Claire 30 frames/s at
400 kb/s). The gain is more for low-motion and higher frame
rate sequences where the intercorrelation is high. For high-mo-
tion sequences at lower frame rate, we do not expect improve-
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ment since the intercorrelation is very low. As shown in Figs. 8
and 9(c) for Foreman, as a high-motion sequence at 15 and 10
frames/s, the performance of “ - ” is very close to
that of “ - ” but with a slight degradation. For
very high-motion sequences like Soccer at 15 frames/s where
the MCFI method gives a poor side information, the whole idea
of Wyner–Ziv coding fails, meaning that intracoding outper-
forms Wyner–Ziv coding. For such cases, all of these methods
for exploiting correlation between consecutive key frames are
useless. “Hierarchical-key-adaptive” is capable of beating all
methods for most cases and results in up to 1 dB additional
improvement. The exceptions are Foreman at 15 frames/s, 10
frames/s, and Soccer at 15 frames/s. For these high-motion and
low-frame-rate cases, since in the hierarchical structure, key
frames are four frames apart, the temporal correlation between
key frames is very low. So, applying intracoding for key frames
would be a better alternative. As shown in Figs. 8 and 9, “Hi-
erarchical-key-intra” can beat “Hierarchical-key-adaptive” for
these cases. Although even “Hierarchical-key-intra” results in
degradation for Soccer as the whole idea of Wyner–Ziv coding
fails for this sequence.

A. Complexity

Since, in this paper, all methods are using an intra method
as low complexity as JPEG to have a fair comparison, intra
predictions, Hadamard transform, and context adaptive binary
arithmetic coding (CABAC) are turned OFF for I frames
of “H.264 intra” and “H.264 I-B-I.” Certainly, adding these
features can improve the performance of all methods (as par-
tially shown in Fig. 6), at the cost of additional complexity.
For example, CABAC entropy coding provides about 15%
bit reduction at the expense of a computation and memory
increase (up to 30%) compared to universal variable length
coding (UVLC) [29]. The use of Hadamard coding results in
a complexity increase of roughly 20%, while not significantly
impacting the quality versus bit rate [30]. The intra prediction
in H.264 employs the rate-distortion optimization technique
which remarkably increases the computational complexity.
According to Saponara et al. [31], motion estimation and
entropy coding occupy about 53% and 18% of the encoder
computational consumption, respectively. However, it should
be noted that the diversity of the operation configuration for
motion estimation (subpixel motion estimation and multiple
reference frame, etc.) also has a great effect on encoding
complexity. For example, motion estimation with quarter-pixel
precision typically consumes 60% (with one reference frame)
and 80% (with five reference frames) of the total encoding time
[32], and the percentage becomes even larger when the search
range increases.

In the context of Wyner–Ziv video coding, the main goal is
providing a low-cost and low-complexity encoder. Although
most of the H.264 encoder complexity is due to motion es-
timation, the computational requirements of CABAC and
intraprediction modes may be still too high for some applica-
tions [33]. There is a tradeoff between compression gain and
complexity, and based on the application, either one can be
sacrificed.

VII. CONCLUSION

We proposed three new techniques to improve the overall
rate-distortion performance of Wyner–Ziv video coding: 1) a
new method of correlation noise estimation based on block-
matching classification at the decoder; 2) an advanced mode se-
lection scheme for frequency bands of key frames followed by
side information refinement; and 3) a hierarchical Wyner–Ziv
coding approach including the other two schemes. Simulation
results showed that the proposed correlation noise classification
results in up to 1 dB improvement over the best method in [21].
With the possible cost of additional buffering at the encoder, the
proposed key frame encoding with side refinement combined
with correlation noise classification results in up to 5 dB im-
provement over the Conventional method equipped with corre-
lation noise classification. Experimental results showed that one
can achieve up to 1 dB additional improvement by applying the
hierarchical method at the cost of extra latency. All the proposed
methods keep the encoder low complexity.
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