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ABSTRACT

Genetic analysis of nervous system function relieson the rigorous
description of behavioral phenotypes. However, standard methods for classifying
the behavioral patterns of mutant Caenorhabditis elegansrely on human
observation and are therefore subjective and imprecise. Herewe describethe
application of machinelearning to quantitatively define and classify the behavioral
patternsof C. elegans nervous system mutants. We have used an automated
tracking and image processing system to obtain measur ements of a wide range of
mor phological and behavioral features from recordings of representative mutant
types. Using principal component analysis, werepresented the behavioral patterns
of eight mutant types as data clouds distributed in multidimensional feature space.
Cluster analysisusing the k-means algorithm made it possible to quantitatively
assess therelative similarities between different behavioral phenotypes and to
identify natural phenotypic clustersamong thedata. Sincethe patterns of
phenotypic similarity identified in this study closely paralleled the functional
similarities of the mutant gene products, the complex phenotypic signatures
obtained from these image data appear ed to represent an effective diagnostic of the
mutants underlying molecular defects.

INTRODUCTION

Among the organisms most amenabl e to the genetic analysis of behavior isthe
nematode Caenorhabditis elegans. C. elegans has a simple nervous system consisting of
302 neurons of known position, cell lineage, and synaptic connectivity (Sulston and
Horvitz 1977; Sulston et al.1983; White et al. 1986). Moreover, because of their short
generation time, small genome size, and accessibility to germline transformation, these
animals are highly amenable to molecular and classical genetics. In principle, the well-
defined nervous system of C. elegans makes it possible to obtain a reductionist
understanding of the neuronal and molecular basis for phenotypes of behaviora mutants.
Although precise assays for behavioral abnormalities are critical for neurogenetic studies
in C. elegans, standard assays for complex behaviors such as locomotion are typically
imprecise and subjective. For example, mutants displaying abnormal or uncoordinated
(“Unc”) movement (Brenner 1974; Hodgkin 1983) are usually classified into descriptive
categories such as “kinker", "coiler", "shrinkers", "loopy", "slow", and "sluggish".
Although mutants with common molecular defects generally have qualitatively similar
behavioral phenotypes, the subjectivity inherent in classifying behavioral patterns by eye
makes it difficult if not impossible to assess which mutants have genuinely similar
phenotypes based on published descriptions alone.

To address this problem, we have explored the use of machine vision approaches
to quantitatively characterize and classify C. elegans uncoordinated mutants. In previous
work, we built atracking and imaging system that could follow and record an individual
animal's movements over long time periods and save digital image data representing the
animal's body posture over the course of the recording (Baek et al. 2002). Algorithms
were a so devised to measure 94 features of a given mutant's body shape or locomotion
pattern, making it possible to comprehensively assay multiple aspects of behavior
simultaneously. By using these features, it was possible to reliably distinguish examples
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of representative mutant types from one another using a binary decision tree algorithm
(CART). Wetherefore reasoned that it might also be possible to use these features to
obtain a specific, quantitative definition of a particular mutant phenotype that would be
diagnostic of a specific molecular defect and would facilitate quantitative comparisons
between different mutant strains.

In this study, we have used image data collected by our automated tracking system
to investigate the natural clustering of C. elegans behavioral phenotypes. From a
complex data set consisting of 253 features measured from behavioral recordings of 797
individual s representing 8 distinct genotypes, we used principal component analysis to
represent each mutant type as a cloud of data pointsin low-dimensional feature space.
We have also used k-means clustering and Euclidean distance measurements to explore
the natural structure of the behavioral data and to compare the similarities of mutant
phenotypic patterns. These results therefore constitute a quantitative definition of several
important C. elegans behavioral phenotypes, and demonstrate that mutant phenotypes can
be clustered using a complex behavioral signature based on quantitative image features.

MATERIALSAND METHODS

Strains and culture methods: Routine culturing of C. elegans was performed as
described (Brenner 1974). All worms analyzed in these experiments were young adults;
fourth-stage larvae were picked the evening before the experiment and tracked the
following morning after cultivation at 22°. Experimental animals were allowed to
acclimate for 5 minutes before their behavior was analyzed. Plates for tracking
experiments were prepared fresh the day of the experiment; a single drop of a saturated
LB culture of E. coli strain OP50 was spotted onto afresh NGM agar plate and alowed to
dry for 1 hour before use.

The alleles and predicted products of the genes used in these experiments were as
follows: unc-38 (x20), nicotinic acetylcholine receptor alpha-subunit (null alele); unc-
29(x29), nicotinic acetylcholine receptor non-al pha-subunit (null allele); goa-1(n1134),
G-proteing-al pha-subunit (strong loss-of-function allele); unc-36 (e251); voltage-gated
calcium channel apha-2-subunit (strong loss-of-function alele); unc-2(mu74); N-type
voltage-gated calcium channel alpha-1-subunit (null alele); egl-19(n582); L-type voltage-
gated calcium channel alpha-1-subunit (partia loss-of-function alele); nic-1(1j22), type 1
glycosyltransferase (partia loss-of-function alele).

Acquisition of image data: C. elegans locomotion was tracked with a Zeiss Stemi 2000-
C Stereomicroscope mounted with a Cohu High Performance CCD video camera
essentially as described (Baek et al. 2002). Briefly, a computer-controlled tracker (Parker
Automation, SMC-1N) was used to maintain the worms in the center of the optical field
of the stereomicroscope during observation. To record the locomotion of an animal, an
image frame of the animal was snapped every 0.5 second for at least five minutes.

Among those image pixels with values less than or equal to the average value minus three
times the standard deviation, the largest connected component was found. The image was
then trimmed to the smallest axis-aligned rectangle that contained this component, and
saved as eight-bit grayscale data. The dimensions of each image, and the coordinates of



the upper left corner of the rectangle box containing the worm body in the tracker field
were a so saved simultaneously as the references for the location of an animal in the
tracker field at the corresponding time point when the images are snapped. The
stereomicroscope was fixed to its largest magnification (50 X) during operation.
Depending on the type and the posture of aworm, the number of pixels per trimmed
image frame varied. The number of pixels per millimeter was fixed at 312.5 pixel/mm for
al worms.

I mage Pre-processing: To obtain the clean binary image, the background intensity level
of the grayscale image was found first by taking the maximum of the values of the four
corner points of the trimmed image (at |east one of the corner pointsis always not part of
the worm body). After finding the background level (b), a 5x5 moving window was
scanned over the trimmed image, and the mean (m) and standard deviation (s) of the
pixels inside the window were computed at every pixel position. If m waslessthan 0.7b
or swas larger than 0.3m, then the pixel was considered to be a pixel of the worm body
and was assigned avalue 1. In order to clean up the spots inside the worm body, a
morphological closing operator (binary dilation followed by erosion) was applied
(Gonzalez and Woods 2002). Next, the sequential algorithm for component labeling was
used to remove unwanted isolated objects (Jain et al, 1995). The connected components
were labeled by scanning theimage in x and y directions sequentially, and the largest
component was selected to guarantee that there will be only one object, the worm, in the
binary image.

Image Featur e Extraction: All of the software for binarization, skeletonization, and
feature extraction was coded in C and implemented on a UNIX machine. Some features
(e.g., the area of the worm, that is, the number of pixels which make up the single binary
object in the frame) could be computed on a single frame; these were computed for al
600 frames in the sequence. The average value, the maximum value and the minimum
value were then computed for these 600 measurements. Some of the maximum and
minimum values are outliers introduced by noise or errors during image capture and
processing. To avoid using these extreme values, it was more useful to summarize the
group statistics with such quantities as the 90" and 10" percentile values out of the
population of 600 numbers. Hereafter we use max and min to denote the 90" and 10™
percentile values. Other features could not be extracted from a single frame, for example,
the movement between two frames, or the movement within 10 seconds (20 frames).
Since there are approximately 600 frames total in a sequence, the movement between two
frames could be computed 300 times if we take pairs of frames in a non-overlapping
fashion, or it could be calculated 599 times taking pairs of framesin a sliding window or
overlapping fashion. Likewise, for the movement within 20 frames, we could compute
581 values for overlapping 20-frame intervals. Quantities of this type were calculated in
adliding window fashion. As before, the average, max, min, and other order statistics can
be computed from this set of numbers. Features that describe worm body transparency
(median pixel value) , and head and tail movement relative to centroid were al'so
measured (W. Geng, unpublished). A complete list of features used in classification,
along with their mean and variance for each genotype, isincluded as supplementa data.



RESULTS
Collection and normalization of behavioral feature data

To explore the natural clustering of behavioral phenotypes using defined
guantitative parameters, we collected digital image data from 8 representative genotypes:
the standard wild-type strain N2, and 7 loss-of-function mutants affecting different
molecules involved in nervous system function. For each genotype, 100 five-minute
recordings (98 for unc-29, 99 for unc-2) were made of individual adult hermaphrodites,
with images captured at a frequency of 2 Hz. For each recording, 253 parameters
describing aspects of the animal’'s movement, body texture, or body posture were
measured; the feature measurements for a single recording were designated as a single
multidimensional data point. We then analyzed the clustering of these 797 data points
with the goal of determining the optimal substructure of the behavioral data. In
particular, we sought to determine how the feature data clustered in multidimensional
space and to then correlate the clustering pattern of the feature data with the known
biology of the mutant types in the study.

Standardizing inputs on a set of carefully selected features plays an important role
in pattern recognition. Since our features were measured in different units, it was
necessary to normalize them on a common scale to avoid one feature dominating others.
The outliers introduced by noise and errors during the feature extraction process tend to
givefase clustersin clustering analysis; thus, the scaling method also needs to be
carefully selected to suppress outliers. We evaluated three standard normalization
methods: Min-max (linear transformation of the original input range into [-1,1]), Zscore

(defined as x = T~ mean(f) , where f isthe original input feature), and sigmoidal
stdev(f)
1- e_x

method (Grossman 2002). The Sigmoidal method is defined as y = s wherex is

-X 1

the output of Zscore scaling. Figure 1b shows a comparison among different scaling
methods. The Sigmoida method was chosen because it obtains a better balance of
limiting outliers and equalizing feature variance on our dataset given our goal of natural
clustering.

Representation of phenotypic patternsin multidimensional feature space

To visualize the phenotypic patterns as defined by the selected parameters, we
used principal component analysis (PCA) (Duda et al. 2001) to obtain a two-dimensional
projection of our 253-dimensional data. We observed (Figure 2a) that the data points for
each mutant type formed a data cloud that occupied a specific region of feature space. To
investigate the distribution of these clouds, we computed the centroid for each mutant
type (i.e., the center of the data cloud as measured by Euclidean distance), and considered
thisto be the prototype for that mutant type (Table 2). Consistent with our expectation,
the maority of the worm samples for each type were closer to its respective prototype
than were samples from other mutant types (Table 3). Interestingly, the distances
between the centers of the mutant data clouds also showed a strong correspondence to the



similarities between the described mutant phenotypes. For example, the clouds for the 4
mutants (unc-2, unc-36, unc-29, and unc-38) described in the literature as "kinkers'
mapped close together in feature space, whereas the wild-type, goa-1, nic-1 and egl-19
clouds were more widely separated from the other types and from each other. Moreover,
the closest two clusters were unc-29 and unc-38 (3.5), encode nicotinic receptor subunits
with overlapping functiona expression. unc-2 and unc-36 (distance 3.6), the next closest
clusters, respectively encode a-1 and a-2 voltage-gated calcium channel subunits with
nearly coincident expression patterns. Thisindicates that a ssmple Euclidean distance in
feature space can be used to quantify the relative similarity between different mutant

types.
Featur e selection and classification of phenotypes

Since one of our main objectivesisto identify parameters that define particular
mutant types, we wished to identify a small number of features that provide
discriminative information. A variance plot (Figure 1a) shows that the top 43 principal
components (17% of total PCs) capture over 94% of total variance. This gives a strong
indication that afew carefully selected features would represent the data well.

To identify best features for distinguishing any two worm types, we screened the
entire feature set using a backward elimination process based on the linear Lagrangian
Support Vector Machine classifier (Mangasarian and Musicant 2001; Model et al 2001).
The support vector machine classifier was used because it generalizes well. The process
started from the full feature set. In each iteration, one feature was eliminated from the
remaining feature set by evaluating al the possible subsets (n subsets, each containing n-1
features) and selecting the subset that achieves the smallest training error as our next
feature set. We used alow training error as an approximation of the importance of that
feature. All the features can thus be ranked according to when they are eliminated from
the backward elimination process. We repeated this process for all 8 mutant typesin a
pairwise fashion and generated 28 sequences of ranked features.

Feature subsets that are effective to distinguish al worm types were then selected
progressively by choosing the most frequent features that appear on the top of all 28
sequences. For example, the first feature was selected as the feature that appeared most
frequent asthe No. 1 featurein all 28 sequences. The second feature was selected as the
feature appears most frequently asthe No. 1 or No. 2 featuresin all 28 sequences besides
the feature that was already in the subset. A simple 1-nearest neighbor (1-NN) classifier
with 10-fold cross-validation (Duda et al. 2001) was used to evaluate subset performance.
To avoid over-fitting, a 10-fold cross validation technique was used. For each feature
subset in each trial, we divided data from each worm type randomly into 10 sections.

One section (80 worms) was held out for testing and the other 9 sections (720 worms)
were used as training data. In subsequent stepsin the trial, different testing and training
sections were chosen. The classification error was calculated as the average of the 10
iterations for each of the 28 class pairs. For each subset, 50 trials were performed to give
an aggregated classification error rate for that subset. We also compared the classification
error of thefirst few principal components using the three scaling methods (Figure 1b).



A small set of features can be readily identified to approximate the dataset by
following the cross-validation error curve. Table 4 shows the classification results by
using al 253 and a subset of 39 features. The 39-feature subset was selected at the first
significant dip location (at k=39) on the error curve. The data were well represented using
asubset of 39 features for discriminating phenotypes. These features included severd
measurements of speed and reversals averaged over different time periods, and worm
head and tail width and brightness information (Table 1).

Natural clustering of phenotypic data

To further investigate the clustering of the data points, we applied the k-means
clustering agorithm to find the natural clustersin the behavioral data. For thisanalysis,
each data point was treated individually without regard to mutant type. The k-means
algorithm is an elementary but very popular clustering method. It enjoys the benefits of
making no assumptions about the underlying data probability distributions, and is thus
applicable to many problems. Suppose there are to be k clusters with respective centers
C ={c,,...c,} and their corresponding non-overlapping divisions of feature space defined

as D={D,,...D,}.Let ||.||2denote “squared Euclidean distance”. Our dataare
X :i=1,2,....797. Wewould like to choose C ={c,,...c,} so that

k

C=argmin) >
c j=1 x,0Dy

Lloyd (1957) demonstrated that an alternating descent algorithm will always converge.
The Lloyd algorithm for k-means clustering is an iterative descent algorithm. Starting
with aninitial set of k representative points, al the pointsin the data set are assigned to
whichever of the k pointsis closest according to some distance measure, usually
Euclidean distance. Next, each of the k representative pointsis relocated to be the
centroid of the data points which just got assigned to it. At this point, we have a new set
of k representative points, and can go back to the assignment step. The algorithm iterates
between these steps of data point assignment and cluster centroid cal culation, until
convergenceisreached. Thefina convergence, in general, depends on theinitial choice
of k representative points. The agorithm does not necessarily find the global optimum,
and so often many random initialization seeds are used. We generated sufficiently many
(10,000) random initializations for each k and tracked the error at the convergence to be
reasonably confident that the globa minimum was found. Figures 3a-b show the cluster
centersidentified by the k-means algorithm; for each case, the centers are marked by
black squares. Although the actual k-means clustering was done using all 253 selected
features, the data were visualized by showing the first two principal components.

‘xi —C; H . While thereis no closed form solution to the minimization,

A key issuein k-means clustering is to determine the optimal number of clusters
for the data set. We used two algorithmsto determine the optimal cluster number for our
behavioral data: the gap statistic (Tibshirani et al. 2001) and the information theoretic
method (Sugar and James 2003).

The idea of the Gap Statistic is to standardize the graph of log(W, ) by comparing
it to its expectation under an appropriate null reference distribution of the data. W, isthe



total within-cluster sum of squares around the cluster centers, when there are k clusters.
Since we have 797 pointsin our data set, the null reference distribution is generated by
drawing 797 samples from a distribution that is uniform along each feature data
dimension. Thisis repeated B times. The expectation of the null reference

B
E{10g(W,,)} can be estimated as1/ B log(W,,) , where W, is the within-cluster sum of
b=1

squares of theb" reference dataset, and B is the number of reference datasets. The
distance between these two curvesis defined as the Gap,

B
Gap(k) =1/ BZIog(\Nk*b) —-log(W,) , for k=1,...K, where K is the maximum number of
b=1
clusters defined by the user according to the expected range of clusters. We use a
maximum of 10 centers (K =10) and 5 reference datasets (B = 5). The sampling

distribution can be measured by s, =sd,v1+1/B , where sd, isthe standard deviation

of the reference null distribution. The formulato calculate the optimal number of clusters

Ky CaN be obtained as the first location where the gap curve starts to drop or level off.

That isthefirst k that satisfies gap(k) = gap(k +1) —as,,,, whereaisamultiplier
adjusted to rgject null mode. Hereitisset to 3.

The Information Theoretic approach triesto find the optimal number of clusters
by fitting the within-cluster sum of squares curve (distortion curve) with two hyperbolic
curves breaking at the location of the optimal k. The location of the break can be
measured in atransformed domain when applying a negative power to the distortion
curves. The magnitude of the power is controlled by the dimensionality of the data . Here
it isset to—7. The transformed distortion curve usually can be approximated reasonably
well by a piecewise linear function consisting of two straight lines with a break, or elbow,
at the location of the optimal k. The optimal number of clusters can be easily obtained by
finding the biggest jump, which is the difference between the successive points on the
transformed distortion curve. The paper provides theoretic justification and points out
that this method can also provide suboptimal solutions by finding smaller jumps in the
curve. Thisis particularly appealing given our objective of exploring the substructure of
the data.

As shown in Figure 3c-d, both methods identified 6 clusters as the optimal
number (Table 4). Inthisoptimal classification, the calcium channel mutants unc-36 and
unc-2 were grouped into a single cluster and the nicotinic receptor mutants unc-29 and
unc-38 into another cluster. In addition, the information theoretic approach identified an
additional suboptimal solution of 8 clusters with each cluster composed primarily of a
single mutant type (Figure 3d and Table 5). Together, these results demonstrated that
worms of the same mutant type tend to exhibit similar behavioral patterns and further
showed that cluster analysis can be used to assess phenotypic similarities between
different mutant classes.

DISCUSSION

Quantitative definition of behavioral mutant phenotypes



We have shown here that quantitative morphological and locomotion features
obtained from digital video recordings can be used to distinguish the behavioral
phenotypes of C. elegans mutants. As shown in Table 3, areduced set of approximately
40 featuresis sufficient to identify visibly dissimilar mutant types with very high
reliability. Furthermore, these features can often be used to distinguish between types
with highly similar phenotypes (e.g. unc-2 and unc-36) that can not be reliably identified
even by an experienced human observer. Thus, the parametersin the reduced feature set
arelikely to have great utility in assessing subtle or modest abnormalities in behavior
caused by hypomorphic mutant alleles or by incompletely penetrant dsRNA inhibition.

These studies have also provided insight into the nature of specific mutant
phenotypes. For example, unc-36, unc-29, unc-38 and unc-2 have all been categorized as
"weak kinkers', aterm that has been difficult to define precisely. From Table 1, itis
apparent that these mutants share many common effects on the variables used in our
classification; in particular, all have a substantially higher angle change rate and
substantially lower centroid movement and global speed parameters than wild-type. This
combination of characters (increased body bending and a decreased rate of movement)
thus provides an operational definition of the "kinker" phenotype. Likewise, the
combination of increased centroid movement and increased angle change rate provides a
functional definition of goa-1's "hyperactive loopy" phenotype, while increased length
and length/eccentricity and decreased angle change rate and speed define the "long, slow
and floppy" phenotype of egl-19. In some cases, significant phenotypic differences were
identified that were unnoticed (or unreported) in previous observer-based studies. For
example, both goa-1 and unc-36 mutants showed particularly large reductionsin the ratio
of head-to-tail movement, an abnormality whose neural basis could be investigated in
future studies. Thus, it has been possible not only to obtain precise quantitative
descriptions of phenotypic classes whose definitions had previously been subjective and
qualitative, but also to resolve subtle differences within broad classes such as kinker
uncs.

With the collection of larger data sets, it should be possible to use this approach to
define and subdivide other widely-cited phenotypic classes of C. elegans. For example, it
should be possible to obtain precise definitions for other classes of uncoordinated
mutants, such as coilers, shrinkers, and loopy mutants. 1n addition, although we have
focused here on the analysis of phenotypes associated with abnormal locomotion, the
image parameters we have used in this study could aso be used to categorize other
classes of behavioral or developmental mutants that involve alterations in body
morphology. Such studies would provide valuable insight into the nature of these
additiona phenotypic types; in addition, it would be interesting from an informatics
perspective to learn how the inclusion of genes whose focus of action is outside the
neuromuscular system would impact the importance of features used in classification.

Prospectsfor using behavioral phenotypesfor bioinformatic analysis

The application of machine-based pattern recognition methods also allowed usto
probe the similarities between different behavioral patterns based on their clustering in
multidimensional feature space. In general, the pattern of phenotypic clustering mirrored



the known similarities in molecular function and cellular site of action of the mutant gene
products. For example, the unc-29 and unc-38, which respectively encode a and 3
nicotinic receptor subunits with overlapping expression patterns, formed a single cluster
in the optimal clustering and had centers that were the closest together by Euclidean
distance (Figure 3a). Likewise, unc-2 and unc-36 mutants, which are defectivein the a-1
and a-2 subunits respectively of the neuronal N-type calcium channel, formed asingle
cluster in the optimal k-means clustering, and the centers of these two types data clouds
were relatively close in feature space. In fact, the centers for all four of these types (which
have all been designated as kinker Uncs and all encode excitatory ion channels whose
focus of action is primarily at body muscle neuromuscular junctions) were closer to one
another than to the other Unc mutants or to wild-type. Thus, the quantitative phenotypic
signature obtained through behavioral tracking appeared to correspond well to the
underlying functional defects of the mutants we analyzed.

We anticipate that this type of comprehensive quantification of mutant behaviora
phenotypes will have powerful applications in functional genomic studies. Clustering and
pattern recognition analysis of microarray-derived gene expression profiles has provided
important information about the likely functions of novel gene productsin C. elegans and
other organisms (Kim et al. 2001). In principle, abehavioral phenotype represents a
similarly complex quantitative signature whose direct linkage to nervous system activity
makes it particularly useful for classifying genes that function in excitable cells. In
several genome-wide deletion and RNAi-based knockout surveys undertaken in C.
elegans, the identification and classification of behavioral and other non-lethal
phenotypes has been a crucial limiting factor (Fraser et al. 2000; Zipperlen et al 2001).
Using the machine-based phenotyping approaches described here, it should be possible to
record the behavior of an uncharacterized knockout strain, compare its phenotypic pattern
to adatabase of known mutants, and make an informed initial hypothesis about the
molecular pathways in which the mutant gene product participates.
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Featuresused in mutant characterization

TABLE 1

Statistics Worm Type
Variable

w.t. goa-1  nic-1  unc-36 unc-38 unc-29 egl-19  unc-2

CNTMVAVG Mean  0.05 0.05 0.02 0.02 0.02 0.03 0.02 0.01

(centroid movt. avg) Std 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

CNTMVMAX Mean  0.22 0.24 0.11 0.09 0.12 0.14 0.14 0.08

(centroid movt. max) Std 0.04 0.04 0.03 0.02 0.04 0.04 0.04 0.03
LNECRAVG Mean 299.92 262.80 220.26 283.35 282.80 301.24 337.51 301.30

(length/eccent. avg) Std 1423 1416 2238 1495 1795 1837 1656 17.15
LNECRMIN Mean 285.58 243.60 20550 265.65 262.86 277.03 317.83 278.26

(length/eccent. min) Std 1367 1289 1960 1087 1220 1591 1834 1151
LNMFRMAX Mean 1633.88 1206.41 807.41 1451.85 1231.37 1346.92 2077.69 1383.64
(length/MER. max) Std 14095 131.67 199.91 147.69 137.48 17826 21569 208.13

ANCHRMAX Mean  3.89 6.74 7.44 6.35 6.02 5.85 3.47 6.90

(angle change max) Std 0.40 0.92 177 0.80 0.83 0.87 0.62 1.00

ANCHSMAX Mean  2.69 4.46 5.16 3.88 3.98 3.91 242 4.17

(angle change std max) Std 0.24 0.62 112 0.43 0.51 0.58 0.35 0.52

RV20MAX Mean  4.84 4.95 0.63 2.32 2.32 3.05 2.30 142

(max reversal rate in 20s) Std 1.16 1.05 0.66 0.53 0.82 1.00 0.92 0.61

RV20AVG Mean  1.22 1.66 0.05 0.54 0.40 0.57 0.41 0.27

(reversal rate 20s average) Std 0.54 0.51 0.07 0.22 0.21 0.27 0.30 0.13

RV40MAX Mean  7.13 7.37 0.72 3.24 3.15 4.18 3.12 1.93

(max reversal rate in 40s) Std 2.03 1.83 0.82 0.81 119 1.40 1.47 0.73

RVEOMAX Mean 892 9.36 0.74 4.04 3.76 5.00 3.85 2.27
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(max reversal rate in 605) Std 2.74 240 0.86 112 1.56 1.76 197 0.85
RV8OMAX Mean 1050 11.31 0.79 4.67 4.33 5.77 451 2.63
(max reversal rate in 805) Std 341 2,99 0.96 147 1.88 218 248 1.06
RV100MAX Mean 1181 13.05 0.81 5.29 4.79 6.24 4.95 2.89
(max reversal rate in 100s) Std 4.15 3.48 1.05 1.70 2.16 2.46 2.83 1.28
RV120MAX Mean 1293 14.84 0.85 5.88 5.20 6.94 5.37 3.20
(max reversal ratein 120s) Std 4.86 3.97 111 1.94 2.39 2.79 3.20 1.40
TOTRV Mean 2920 39.76 1.08 12.50 9.27 13.28 9.77 6.29
(total reversal) Std 1263 1234 1.64 4.98 4.94 5.98 7.07 3.13
TOTMOVE Mean 13644.8513594.72 576.09 3134.27 2807.24 3360.12 5853.53 1415.46
(dist. moved 5 min) Std  3194.92 414215 206.39 1313.27 1197.43 1517.06 1883.90 795.85
PRP50MAX Mean 1476.94 1140.73 30.04 415.05 437.87 507.94 700.22 269.31
(max disp., 25 sec) Std 364.64 33286 3054 19480 187.24 239.78 22943 13597
PRP4AOMAX Mean 127591 1038.62 27.20 358.08 371.42 439.09 593,53 235.57
(max disp., 20 sec) Std 290.06 28534 26.03 156.10 151.63 199.79 17645 109.61
PRP30OMAX Mean 1028.84 864.90 2492 291.26 294.31 364.63 466.44 196.71
(max disp., 15 sec) Std 217.09 218.06 23.19 11460 11589 155.88 13321 8591
PRP2OMAX Mean 740.83 67340 2053 211.72 214.07 273.01 340.68 143.19
(max disp., 10 sec) Std 146.34 12436 1639 7252 7940 11615 86.81 56.67
PRP1IOMAX Mean 41231 37643 1551 11826 120.07 160.58 198.66 81.64
(max disp., 5 sec) Std 7439 5569 1037 3393 3928 6460 4641 27.71
MVHLFAVG Mean 2427 24.48 0.99 6.39 6.13 8.29 11.01 3.65
(avg speed, .5 sec) Std 5.62 7.34 0.35 2.29 251 3.64 3.24 177
MVHLFMAX Mean 5956 53.11 5.66 1814 1969 2574 3565 1215
(max speed, .5 sec) Std 8.35 8.46 341 6.63 5.92 7.86 33.15 3.42
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LNGTHAVG Mean 28894 24339 207.58 266.00 262.89 27615 320.12 276.03
(avg length) Sid 1334 1280 1962 1015 1157 1351 1414 10.70
LNGTHMAX Mean 29911 25446 217.35 27624 27391 28861 33120 288.04
(max length) Sid 1368 1330 2036 1088 1242 1374 1449 1101
LNGTHMIN Mean 277.77 23203 197.68 25551 25159 263.03 307.94 264.12
(min length) Sid 1306 1258 1872 1000 1093 1413 1769 13.13
CNLNRAVG Mean 009 010 013 009 010 009 008 0.9
(avg center width/length) | Sd 001 001 001 001 001 001 000 001
CNLNRMAX Mean 010 011 014 009 011 010 008 0.0
(max center width/length) | Std 001 001 001 001 001 001 001 001
CNLNRMIN Mean 009 009 012 008 009 009 007 008
(min center width/ length) | Std 001 001 001 001 001 001 001 001
HCTHRMAX Mean 049 057 053 057 051 051 048 059
(max head to center thickness Std ~ 0.02 003 004 004 002 003 009 003
HEADBRAVG Mean 7948 8196 8112 8410 8180 8250 88.86 84.37
(avg head brightness) Sid 504 763 722 812 58 629 58 7.5
TAILBRMIN Mean 49.79 4907 5807 7115 5325 5175 6556 6829
(min tail brightness) Sid 361 483 691 780 38 355 574 771
TAILBRMAX Mean 67.29 6417 7320 9253 7082 6814 8553 87.92
(max tail brightness) S 490 682 742 864 532 547 742 881
HTBRRMAX Mean 165 178 147 124 164 169 136 131
(head/tail brightnessmax) | Std 042 017 019 008 013 013 012 011
HANGCRMAX Mean 11.09 1197 1424 1240 1132 1061 1000 13.98
(head anglechangemax) | Sd 066 093 207 123 080 089 044 163
HDMVHFAVG Mean 2349 2313 745 7.2 1029 1288 1158  7.29
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(head movt. .59) Std 4.93 5.93 241 1.78 261 4.19 3.53 2.04

HTMVRAVG Mean 2.46 1.62 2.76 1.50 222 2.00 1.68 2.00

(head/tail movt.avg) Std 0.33 0.18 0.44 0.15 0.37 0.33 0.24 0.26
HDHFTOTMV Mean 13219.0812843.83 4325.98 3388.97 4676.34 5148.65 6048.65 2755.74
(head movt. 5min) Std  2844.91 3295.47 1524.75 836.87 1169.66 1606.87 1631.36 849.89
TLHFTOTMV Mean 8379.06 11730.28 1737.28 3024.35 2971.15 3652.05 4747.09 1751.84
(tail movt. 5min) Std  1931.21 3173.85 620.67 816.82 1016.01 1348.93 1337.85 556.15

The mean and standard deviation value of each feature for each worm type are given in the table.
Variables used were: CNTMVAV G--average of centroid movement; CNTMVMAX--maximum centroid
movement; LNECRAV G--average length/eccentricity ratio; LNECRMIN--minimum length/eccentricity
ratio; LNMFRMAX--maximum length/MER (minimum enclosing rectangle) fill ratio, ANCHRMAX--
maximum angle change rate; ANCHSM A X --maximum angle change rate standard deviation;
RV20MAX,RV20AVG,RV40MAX,RVE0MAX,RVBOMAX,RV100MAX,RV120MAX --maximum
reversal rate sampled at 20, 40, 60, 80, 100,and 120 sec; TOTRV —reversal, 5 min; TOTMOV E--distance
moved, 5 min; PRPSOMAX ,PRPAOMAX, PRP30OMAX, PRP20MAX, PRP10M AX--maximum distance
moved, sampled at 50, 40, 30, 20 and 10 sec; MVHLFAVG, MVHLFMAX--average, maximum distance
moved, 0.5 sec; LNGTHAVG, LNGTHMAX, LNGTHMIN--average, maximum, and minimum length;
CNLNRAVG,CNLNRMAX,CNLNRMIN—average, maximum, and minimum center thickness/length
ratio; HCTHRMAX — maximum head/center thickness ratio; HEADBRAV G — average head brightness;
TAILBRMIN, TAILBRMAX — minimum and maximum tail brightness; HANGCRMAX — maximum angle
change rate in head section; HDMVHFAV G — average head distance moved with regard to center , .5 sec;
HTMVHFAV G — average head distance /tail distance moved with regard to center , 5 min; HDHFTOTMV
— head distance moved with regard to center, 5 min; TLHFTOTMYV — tail distance moved with regard to
center, 5 min.

TABLE 2

Euclidean distance between prototype centers

w.t. goa-1 nic-1 unc-36 unc-38 unc-29 egl-19  unc-2

w.t. - 6.5 11.0 8.4 7.0 5.7 5.9 8.7
goa-1 - 9.0 6.6 6.9 5.8 8.5 71
nic-1 - 6.6 5.6 8.0 10.6 6.6
unc-36 - 5.2 51 6.1 3.6
unc-38 - 3.5 6.8 4.1
unc-29 - 5.2 4.2
egl-19 - 71
unc-2 -

Euclidean distance between prototype centers (cluster centers) measured in 253-dimension feature
space. Wild-type--nic-1 are the furthest; unc-29--unc-38 and unc-2 --unc-36 are among the closest. This
indicates a simple Euclidean distance in feature space can be used to quantify the relative similarity between
mutant types.
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TABLE 3

1-NN cross-validation results using 253 features

wild goa-1 niccl  unc-36 unc-38 unc-29 egl-19 unc-2

wild 1.00 0 0 0 0 0 0 0
goa-1 0.01 0.94 0 0.01 0.02 0.01 0 0
nic-1 0 0 0.99 0 0 0 0 0.01
unc-36 0 0 0 0.84 0.05 0 0 011
unc-38 0 0 0.01 0 0.80 0.19 0 0
unc-29 0 0 0.01 0 0.37 0.60 0 0.02
egl-19 0 0 0 0.03 0.01 0.01 0.95 0
unc-2 0 0 0 0.08 0.04 0 0.01 0.87

1-NN cross-validation results using 39 features

wild goa-1 nic-cl  unc-36 unc-38 unc-29 egl-19 unc-2

wild 1.00 0 0 0 0 0 0 0
goa-1 0.01 0.95 0 0.01 0.02 0.01 0 0
nic-1 0 0 0.99 0 0 0 0 0.01
unc-36 0 0 0 0.87 0.03 0 0 0.09
unc-38 0 0 0.02 0 0.78 0.20 0 0
unc-29 0 0 0.01 0 0.36 0.62 0 0.01
egl-19 0 0 0 0.03 0.01 0 0.95 0
unc-2 0 0 0 0.09 0.04 0 0.01 0.86

10-fold cross-validated classification result using 1-Nearest Neighbor classifier. The percentage
number shows the probability the mutant type specified in the row is classified as being mutant type
specified in the column by this classifier. A subset of 39 features achieved a similar performance to the full
set.
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TABLE 4

Data pointsclassified into 6 clusters

Center #1 #2 #3 #4  #5  #6
wild 97 2 0 0 1 0
goa-1 2 94 0 3 1 0
nic-1 0 0O 100 O 0 0
unc-36 0 0 0 90 10 0
unc-38 0 0 2 7 91 0
unc-29 1 0 1 9 82 5
egl-19 0 0 0 1 0 99
unc-2 0 0 2 74 22 1

Data points were classified into 6 clusters (optimal number of clusters) based on their shortest distance to
the cluster centersidentified by the k-means algorithm. For the 6-cluster result, unc-38 and unc-29 are
clustered together, as are unc-2 and unc-36.

TABLE 5

Data pointsclassified into 8 clusters

Center #1 #2 #3 #4  #5 #6  #7  #8
wild 97 2 0 0 1 0 0 0
goa-1 2 93 O 4 1 0 0 0
nic-1 0 0 97 1 2 0 0 0
unc-36 0 0 0 70 5 2 0 23
unc-38 0 0 1 4 69 24 O 2
unc-29 0 0 0 5 26 64 1 2
egl-19 0 0 0 2 0 1 97 O
unc-2 0 0 1 15 15 1 1 66

Data points were classified into 8 clusters (suboptimal number of clusters) based on their shortest distance
to the cluster centersidentified by the k-means a gorithm. For the 8-cluster result, the majority of the
samples belong to the right clusters.
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FIGURE 1. Feature data pre-processing and representation. (A) Percentage of the total variance captured by the first few principal
components (PCs) shows the evidence that feature data may be represented in lower-dimensional space. The top 43 principal components
(PCs) capture over 94% of the total variance. (B) Comparison between different scaling methods and feature subset. The blue, red,
and magenta curves represent the 1 Nearest Neighbor (1-NN) classification error rate using Min-Max, Sigmoidal, and Zscore scaling
respectively. The error was an average of 50 trials of 10-fold cross-validation result for each method. The features were selected from
the first few Principal Components of the entire 253 input features. All three scaling methods achieved similar performance, with the
sigmoidal method slightly outperforming the other two. The fact that the error curves level off indicates most of the useful information
for classification is heavily concentrated in the very first few PCs. The black curve shows the same cross-validation test but with a subset
of features selected by a backward elimination method. The black curve also shows the adverse effect of increasing error rate with more
features added.
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FIGURE 2: Distribution of behavioral data points in feature space. (A) The plot shows all 797 data points represented in their first
two principal components space using sigmoidal scaling. The data points from the same mutant type are marked by the same color.
The data points tend to form fairly tight data clouds for each worm type around each respective prototype, indicating a strong similarity
within the mutant types.
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FIGURE 3: Natural clustering results. A) and B) Cluster centers found by k-means algorithm, k=6 and 8. The prototype centers were
marked as black squares. (C) Gap plot by gap statistic method. The optimal number of clusters, marked by red circle, was identified as
the gap curve first started to level off. (D) Jump plot by information theoretic method. The optimal and suboptimal number of clusters,
marked by red circles, were identified as the most and second most significant peaks.



