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ABSTRACT 

  Genetic analysis of nervous system function relies on the r igorous 
descr iption of behavioral phenotypes.  However, standard methods for  classifying 
the behavioral patterns of mutant Caenorhabditis elegans rely on human 
observation and are therefore subjective and imprecise.  Here we descr ibe the 
application of machine learning to quantitatively define and classify the behavioral 
patterns of C.  elegans nervous system mutants.  We have used an automated 
tracking and image processing system to obtain measurements of a wide range of 
morphological and behavioral features from recordings of representative mutant 
types.  Using pr incipal component analysis, we represented the behavioral patterns 
of eight mutant types as data clouds distr ibuted in multidimensional feature space.  
Cluster  analysis using the k-means algor ithm made it possible to quantitatively 
assess the relative similar ities between different behavioral phenotypes and to 
identify natural phenotypic clusters among the data.  Since the patterns of 
phenotypic similar ity identified in this study closely paralleled the functional 
similar ities of the mutant gene products, the complex phenotypic signatures 
obtained from these image data appeared to represent an effective diagnostic of the 
mutants' under lying molecular  defects.   

 
INTRODUCTION 

 Among the organisms most amenable to the genetic analysis of behavior is the 
nematode Caenorhabditis elegans.  C. elegans has a simple nervous system consisting of 
302 neurons of known position, cell lineage, and synaptic connectivity (Sulston and 
Horvitz 1977; Sulston et al.1983; White et al. 1986). Moreover, because of their short 
generation time, small genome size, and accessibility to germline transformation, these 
animals are highly amenable to molecular and classical genetics. In principle, the well-
defined nervous system of C. elegans makes it possible to obtain a reductionist 
understanding of the neuronal and molecular basis for phenotypes of behavioral mutants.   
Although precise assays for behavioral abnormalities are critical for neurogenetic studies 
in C. elegans, standard assays for complex behaviors such as locomotion are typically 
imprecise and subjective.  For example, mutants displaying abnormal or uncoordinated 
(“Unc”) movement (Brenner 1974; Hodgkin 1983) are usually classified into descriptive 
categories such as “kinker", "coiler", "shrinkers", "loopy", "slow", and "sluggish". 
Although mutants with common molecular defects generally have qualitatively similar 
behavioral phenotypes, the subjectivity inherent in classifying behavioral patterns by eye 
makes it difficult if not impossible to assess which mutants have genuinely similar 
phenotypes based on published descriptions alone. 

 To address this problem, we have explored the use of machine vision approaches 
to quantitatively characterize and classify C. elegans uncoordinated mutants.  In previous 
work, we built a tracking and imaging system that could follow and record an individual 
animal's movements over long time periods and save digital image data representing the 
animal's body posture over the course of the recording (Baek et al. 2002).  Algorithms 
were also devised to measure 94 features of a given mutant's body shape or locomotion 
pattern, making it possible to comprehensively assay multiple aspects of behavior 
simultaneously.  By using these features, it was possible to reliably distinguish examples 



 

 3

of representative mutant types from one another using a binary decision tree algorithm 
(CART).  We therefore reasoned that it might also be possible to use these features to 
obtain a specific, quantitative definition of a particular mutant phenotype that would be 
diagnostic of a specific molecular defect and would facilitate quantitative comparisons 
between different mutant strains. 

 In this study, we have used image data collected by our automated tracking system 
to investigate the natural clustering of C. elegans behavioral phenotypes.  From a 
complex data set consisting of 253 features measured from behavioral recordings of 797 
individuals representing 8 distinct genotypes, we used principal component analysis to 
represent each mutant type as a cloud of data points in low-dimensional feature space.  
We have also used k-means clustering and Euclidean distance measurements to explore 
the natural structure of the behavioral data and to compare the similarities of mutant 
phenotypic patterns.  These results therefore constitute a quantitative definition of several 
important C. elegans behavioral phenotypes, and demonstrate that mutant phenotypes can 
be clustered using a complex behavioral signature based on quantitative image features.  
 

MATERIALS AND METHODS 

Strains and culture methods: Routine culturing of C. elegans was performed as 
described (Brenner 1974). All worms analyzed in these experiments were young adults; 
fourth-stage larvae were picked the evening before the experiment and tracked the 
following morning after cultivation at 22°. Experimental animals were allowed to 
acclimate for 5 minutes before their behavior was analyzed. Plates for tracking 
experiments were prepared fresh the day of the experiment; a single drop of a saturated 
LB culture of E. coli strain OP50 was spotted onto a fresh NGM agar plate and allowed to 
dry for 1 hour before use.  

 The alleles and predicted products of the genes used in these experiments were as 
follows: unc-38 (x20), nicotinic acetylcholine receptor alpha-subunit (null allele); unc-
29(x29), nicotinic acetylcholine receptor non-alpha-subunit (null allele); goa-1(n1134), 
G-proteino-alpha-subunit (strong loss-of-function allele); unc-36 (e251); voltage-gated 
calcium channel alpha-2-subunit (strong loss-of-function allele); unc-2(mu74); N-type 
voltage-gated calcium channel alpha-1-subunit (null allele); egl-19(n582); L-type voltage-
gated calcium channel alpha-1-subunit (partial loss-of-function allele); nic-1(lj22), type 1 
glycosyltransferase (partial loss-of-function allele). 

Acquisition of image data: C. elegans locomotion was tracked with a Zeiss Stemi 2000-
C Stereomicroscope mounted with a Cohu High Performance CCD video camera 
essentially as described (Baek et al. 2002).  Briefly, a computer-controlled tracker (Parker 
Automation, SMC-1N) was used to maintain the worms in the center of the optical field 
of the stereomicroscope during observation.  To record the locomotion of an animal, an 
image frame of the animal was snapped every 0.5 second for at least five minutes.  
Among those image pixels with values less than or equal to the average value minus three 
times the standard deviation, the largest connected component was found.  The image was 
then trimmed to the smallest axis-aligned rectangle that contained this component, and 
saved as eight-bit grayscale data.  The dimensions of each image, and the coordinates of 
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the upper left corner of the rectangle box containing the worm body in the tracker field 
were also saved simultaneously as the references for the location of an animal in the 
tracker field at the corresponding time point when the images are snapped.  The 
stereomicroscope was fixed to its largest magnification (50 X) during operation.  
Depending on the type and the posture of a worm, the number of pixels per trimmed 
image frame varied. The number of pixels per millimeter was fixed at 312.5 pixel/mm for 
all worms. 

Image Pre-processing: To obtain the clean binary image, the background intensity level 
of the grayscale image was found first by taking the maximum of the values of the four 
corner points of the trimmed image (at least one of the corner points is always not part of 
the worm body).  After finding the background level (b), a 5x5 moving window was 
scanned over the trimmed image, and the mean (m) and standard deviation (s) of the 
pixels inside the window were computed at every pixel position.  If m was less than 0.7b 
or s was larger than 0.3m, then the pixel was considered to be a pixel of the worm body 
and was assigned a value 1.  In order to clean up the spots inside the worm body, a 
morphological closing operator (binary dilation followed by erosion) was applied 
(Gonzalez and Woods 2002).  Next, the sequential algorithm for component labeling was 
used to remove unwanted isolated objects (Jain et al, 1995).  The connected components 
were labeled by scanning the image in x and y directions sequentially, and the largest 
component was selected to guarantee that there will be only one object, the worm, in the 
binary image. 

Image Feature Extraction: All of the software for binarization, skeletonization, and 
feature extraction was coded in C and implemented on a UNIX machine.  Some features 
(e.g., the area of the worm, that is, the number of pixels which make up the single binary 
object in the frame) could be computed on a single frame; these were computed for all 
600 frames in the sequence.  The average value, the maximum value and the minimum 
value were then computed for these 600 measurements.  Some of the maximum and 
minimum values are outliers introduced by noise or errors during image capture and 
processing.  To avoid using these extreme values, it was more useful to summarize the 
group statistics with such quantities as the 90th and 10th percentile values out of the 
population of 600 numbers. Hereafter we use max and min to denote the 90th and 10th 
percentile values. Other features could not be extracted from a single frame, for example, 
the movement between two frames, or the movement within 10 seconds (20 frames).  
Since there are approximately 600 frames total in a sequence, the movement between two 
frames could be computed 300 times if we take pairs of frames in a non-overlapping 
fashion, or it could be calculated 599 times taking pairs of frames in a sliding window or 
overlapping fashion.  Likewise, for the movement within 20 frames, we could compute 
581 values for overlapping 20-frame intervals.  Quantities of this type were calculated in 
a sliding window fashion.  As before, the average, max, min, and other order statistics can 
be computed from this set of numbers. Features that describe worm body transparency 
(median pixel value) , and head and tail movement relative to centroid were also 
measured (W. Geng, unpublished).  A complete list of features used in classification, 
along with their mean and variance for each genotype, is included as supplemental data. 
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RESULTS 

Collection and normalization of behavioral feature data 

 To explore the natural clustering of behavioral phenotypes using defined 
quantitative parameters, we collected digital image data from 8 representative genotypes:  
the standard wild-type strain N2, and 7 loss-of-function mutants affecting different 
molecules involved in nervous system function.  For each genotype, 100 five-minute 
recordings (98 for unc-29, 99 for unc-2) were made of individual adult hermaphrodites, 
with images captured at a frequency of 2 Hz.  For each recording, 253 parameters 
describing aspects of the animal's movement, body texture, or body posture were 
measured; the feature measurements for a single recording were designated as a single 
multidimensional data point.  We then analyzed the clustering of these 797 data points 
with the goal of determining the optimal substructure of the behavioral data.  In 
particular, we sought to determine how the feature data clustered in multidimensional 
space and to then correlate the clustering pattern of the feature data with the known 
biology of the mutant types in the study. 

 Standardizing inputs on a set of carefully selected features plays an important role 
in pattern recognition.  Since our features were measured in different units, it was 
necessary to normalize them on a common scale to avoid one feature dominating others. 
The outliers introduced by noise and errors during the feature extraction process tend to 
give false clusters in clustering analysis; thus, the scaling method also needs to be 
carefully selected to suppress outliers. We evaluated three standard normalization 
methods: Min-max (linear transformation of the original input range into [-1,1]), Zscore 
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the output of Zscore scaling. Figure 1b shows a comparison among different scaling 
methods. The Sigmoidal method was chosen because it obtains a better balance of 
limiting outliers and equalizing feature variance on our dataset given our goal of natural 
clustering.  

Representation of phenotypic patterns in multidimensional feature space 

 To visualize the phenotypic patterns as defined by the selected parameters, we 
used principal component analysis (PCA) (Duda et al. 2001) to obtain a two-dimensional 
projection of our 253-dimensional data.  We observed (Figure 2a) that the data points for 
each mutant type formed a data cloud that occupied a specific region of feature space.  To 
investigate the distribution of these clouds, we computed the centroid for each mutant 
type (i.e., the center of the data cloud as measured by Euclidean distance), and considered 
this to be the prototype for that mutant type (Table 2). Consistent with our expectation, 
the majority of the worm samples for each type were closer to its respective prototype 
than were samples from other mutant types (Table 3).  Interestingly, the distances 
between the centers of the mutant data clouds also showed a strong correspondence to the 
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similarities between the described mutant phenotypes.  For example, the clouds for the 4 
mutants (unc-2, unc-36, unc-29, and unc-38) described in the literature as "kinkers" 
mapped close together in feature space, whereas the wild-type, goa-1, nic-1 and egl-19 
clouds were more widely separated from the other types and from each other.  Moreover, 
the closest two clusters were unc-29 and unc-38 (3.5), encode nicotinic receptor subunits 
with overlapping functional expression.  unc-2 and unc-36 (distance 3.6), the next closest 
clusters, respectively encode α-1 and α-2 voltage-gated calcium channel subunits with 
nearly coincident expression patterns.  This indicates that a simple Euclidean distance in 
feature space can be used to quantify the relative similarity between different mutant 
types. 

Feature selection and classification of phenotypes 

 Since one of our main objectives is to identify parameters that define particular 
mutant types, we wished to identify a small number of features that provide 
discriminative information. A variance plot (Figure 1a) shows that the top 43 principal 
components (17% of total PCs) capture over 94% of total variance. This gives a strong 
indication that a few carefully selected features would represent the data well.  

 To identify best features for distinguishing any two worm types, we screened the 
entire feature set using a backward elimination process based on the linear Lagrangian 
Support Vector Machine classifier (Mangasarian and Musicant 2001; Model et al 2001).  
The support vector machine classifier was used because it generalizes well. The process 
started from the full feature set. In each iteration, one feature was eliminated from the 
remaining feature set by evaluating all the possible subsets (n subsets, each containing n-1 
features) and selecting the subset that achieves the smallest training error as our next 
feature set.  We used a low training error as an approximation of the importance of that 
feature. All the features can thus be ranked according to when they are eliminated from 
the backward elimination process. We repeated this process for all 8 mutant types in a 
pairwise fashion and generated 28 sequences of ranked features.  

 Feature subsets that are effective to distinguish all worm types were then selected 
progressively by choosing the most frequent features that appear on the top of all 28 
sequences. For example, the first feature was selected as the feature that appeared most 
frequent as the No. 1 feature in all 28 sequences. The second feature was selected as the 
feature appears most frequently as the No. 1 or  No. 2 features in all 28 sequences besides 
the feature that was already in the subset.  A simple 1-nearest neighbor (1-NN) classifier 
with 10-fold cross-validation (Duda et al. 2001) was used to evaluate subset performance. 
To avoid over-fitting, a 10-fold cross validation technique was used. For each feature 
subset in each trial, we divided data from each worm type randomly into 10 sections.  
One section (80 worms) was held out for testing and the other 9 sections (720 worms) 
were used as training data. In subsequent steps in the trial, different testing and training 
sections were chosen.   The classification error was calculated as the average of the 10 
iterations for each of the 28 class pairs. For each subset, 50 trials were performed to give 
an aggregated classification error rate for that subset. We also compared the classification 
error of the first few principal components using the three scaling methods (Figure 1b).  
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 A small set of features can be readily identified to approximate the dataset by 
following the cross-validation error curve. Table 4 shows the classification results by 
using all 253 and a subset of 39 features. The 39-feature subset was selected at the first 
significant dip location (at k=39) on the error curve. The data were well represented using 
a subset of 39 features for discriminating phenotypes. These features included several 
measurements of speed and reversals averaged over different time periods, and worm 
head and tail width and brightness information (Table 1). 

Natural cluster ing of phenotypic data  

 To further investigate the clustering of the data points, we applied the k-means 
clustering algorithm to find the natural clusters in the behavioral data. For this analysis, 
each data point was treated individually without regard to mutant type. The k-means 
algorithm is an elementary but very popular clustering method. It enjoys the benefits of 
making no assumptions about the underlying data probability distributions, and is thus 
applicable to many problems. Suppose there are to be k clusters with respective centers 

},{ 1 kccC �= and their corresponding non-overlapping divisions of feature space defined 

as },{ 1 kDDD �= . Let 
2

. denote “squared Euclidean distance” . Our data are 

:ix i=1,2,….797. We would like to choose },{ 1 kccC �= so that 
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−=
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j Dx
ji

C
ki
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2
minarg . While there is no closed form solution to the minimization, 

Lloyd (1957) demonstrated that an alternating descent algorithm will always converge.  
The Lloyd algorithm for k-means clustering is an iterative descent algorithm.  Starting 
with an initial set of k representative points, all the points in the data set are assigned to 
whichever of the k points is closest according to some distance measure, usually 
Euclidean distance. Next, each of the k representative points is relocated to be the 
centroid of the data points which just got assigned to it.  At this point, we have a new set 
of k representative points, and can go back to the assignment step.  The algorithm iterates 
between these steps of data point assignment and cluster centroid calculation, until 
convergence is reached.  The final convergence, in general, depends on the initial choice 
of k representative points.  The algorithm does not necessarily find the global optimum, 
and so often many random initialization seeds are used. We generated sufficiently many 
(10,000) random initializations for each k and tracked the error at the convergence to be 
reasonably confident that the global minimum was found. Figures 3a-b show the cluster 
centers identified by the k-means algorithm; for each case, the centers are marked by 
black squares. Although the actual k-means clustering was done using all 253 selected 
features, the data were visualized by showing the first two principal components.   

 A key issue in k-means clustering is to determine the optimal number of clusters 
for the data set.  We used two algorithms to determine the optimal cluster number for our 
behavioral data:  the gap statistic (Tibshirani et al. 2001) and the information theoretic 
method (Sugar and James 2003).  

 The idea of the Gap Statistic is to standardize the graph of )log( kW  by comparing 

it to its expectation under an appropriate null reference distribution of the data. kW  is the 
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total within-cluster sum of squares around the cluster centers, when there are k clusters. 
Since we have 797 points in our data set, the null reference distribution is generated by 
drawing 797 samples from a distribution that is uniform along each feature data 
dimension. This is repeated B times. The expectation of the null reference 

)}{ log( *
kbWE can be estimated as �

=

B

b
kbWB

1

* )log(/1 , where *
kbW  is the within-cluster sum of 

squares of the thb reference dataset, andB is the number of reference datasets.  The 
distance between these two curves is defined as the Gap, 

�
=

−=
B

b
kkb WWBkGap

1

* )log()log(/1)( , for k=1,…K, where K is the maximum number of 

clusters defined by the user according to the expected range of clusters. We use a 
maximum of 10 centers (K =10) and 5 reference datasets (B = 5). The sampling 

distribution can be measured by Bsds kk /11+= , where ksd  is the standard deviation 

of the reference null distribution. The formula to calculate the optimal number of clusters 

optk can be obtained as the first location where the gap curve starts to drop or level off. 

That is the first k that satisfies 1)1()( +−+≥ kaskgapkgap , wherea is a multiplier 

adjusted to reject null mode. Here it is set to 3.  

 The Information Theoretic approach tries to find the optimal number of clusters 
by fitting the within-cluster sum of squares curve (distortion curve) with two hyperbolic 
curves breaking at the location of the optimal k. The location of the break can be 
measured in a transformed domain when applying a negative power to the distortion 
curves. The magnitude of the power is controlled by the dimensionality of the data . Here 
it is set to –7. The transformed distortion curve usually can be approximated reasonably 
well by a piecewise linear function consisting of two straight lines with a break, or elbow, 
at the location of the optimal k. The optimal number of clusters can be easily obtained by 
finding the biggest jump, which is the difference between the successive points on the 
transformed distortion curve. The paper provides theoretic justification and points out 
that this method can also provide suboptimal solutions by finding smaller jumps in the 
curve. This is particularly appealing given our objective of exploring the substructure of 
the data.  

 As shown in Figure 3c-d, both methods identified 6 clusters as the optimal 
number (Table 4).  In this optimal classification, the calcium channel mutants unc-36 and 
unc-2 were grouped into a single cluster and the nicotinic receptor mutants unc-29 and 
unc-38 into another cluster.  In addition, the information theoretic approach identified an 
additional suboptimal solution of 8 clusters with each cluster composed primarily of a 
single mutant type (Figure 3d and Table 5).  Together, these results demonstrated that 
worms of the same mutant type tend to exhibit similar behavioral patterns and further 
showed that cluster analysis can be used to assess phenotypic similarities between 
different mutant classes. 

DISCUSSION 

Quantitative definition of behavioral mutant phenotypes  
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 We have shown here that quantitative morphological and locomotion features 
obtained from digital video recordings can be used to distinguish the behavioral 
phenotypes of C. elegans mutants.  As shown in Table 3, a reduced set of approximately 
40 features is sufficient to identify visibly dissimilar mutant types with very high 
reliability.  Furthermore, these features can often be used to distinguish between types 
with highly similar phenotypes (e.g. unc-2 and unc-36) that can not be reliably identified 
even by an experienced human observer.  Thus, the parameters in the reduced feature set 
are likely to have great utility in assessing subtle or modest abnormalities in behavior 
caused by hypomorphic mutant alleles or by incompletely penetrant dsRNA inhibition. 

 These studies have also provided insight into the nature of specific mutant 
phenotypes.  For example, unc-36, unc-29, unc-38 and unc-2 have all been categorized as 
"weak kinkers", a term that has been difficult to define precisely.  From Table 1, it is 
apparent that these mutants share many common effects on the variables used in our 
classification; in particular, all have a substantially higher angle change rate and 
substantially lower centroid movement and global speed parameters than wild-type.  This 
combination of characters (increased body bending and a decreased rate of movement) 
thus provides an operational definition of the "kinker" phenotype.  Likewise, the 
combination of increased centroid movement and increased angle change rate provides a 
functional definition of goa-1's "hyperactive loopy" phenotype, while increased length 
and length/eccentricity and decreased angle change rate and speed define the "long, slow 
and floppy" phenotype of egl-19.  In some cases, significant phenotypic differences were 
identified that were unnoticed (or unreported) in previous observer-based studies.  For 
example, both goa-1 and unc-36 mutants showed particularly large reductions in the ratio 
of head-to-tail movement, an abnormality whose neural basis could be investigated in 
future studies.  Thus, it has been possible not only to obtain precise quantitative 
descriptions of phenotypic classes whose definitions had previously been subjective and 
qualitative, but also to resolve subtle differences within broad classes such as kinker 
Uncs.   

 With the collection of larger data sets, it should be possible to use this approach to 
define and subdivide other widely-cited phenotypic classes of C. elegans.  For example, it 
should be possible to obtain precise definitions for other classes of uncoordinated 
mutants, such as coilers, shrinkers, and loopy mutants.  In addition, although we have 
focused here on the analysis of phenotypes associated with abnormal locomotion, the 
image parameters we have used in this study could also be used to categorize other 
classes of behavioral or developmental mutants that involve alterations in body 
morphology.  Such studies would provide valuable insight into the nature of these 
additional phenotypic types; in addition, it would be interesting from an informatics 
perspective to learn how the inclusion of genes whose focus of action is outside the 
neuromuscular system would impact the importance of features used in classification.   

Prospects for  using behavioral phenotypes for  bioinformatic analysis  

 The application of machine-based pattern recognition methods also allowed us to 
probe the similarities between different behavioral patterns based on their clustering in 
multidimensional feature space.  In general, the pattern of phenotypic clustering mirrored 
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the known similarities in molecular function and cellular site of action of the mutant gene 
products.  For example, the unc-29 and unc-38, which respectively encode α and β 
nicotinic receptor subunits with overlapping expression patterns, formed a single cluster 
in the optimal clustering and had centers that were the closest together by Euclidean 
distance (Figure 3a). Likewise, unc-2 and unc-36 mutants, which are defective in the α-1 
and α-2 subunits respectively of the neuronal N-type calcium channel, formed a single 
cluster in the optimal k-means clustering, and the centers of these two types' data clouds 
were relatively close in feature space. In fact, the centers for all four of these types (which 
have all been designated as kinker Uncs and all encode excitatory ion channels whose 
focus of action is primarily at body muscle neuromuscular junctions) were closer to one 
another than to the other Unc mutants or to wild-type.  Thus, the quantitative phenotypic 
signature obtained through behavioral tracking appeared to correspond well to the 
underlying functional defects of the mutants we analyzed.   

 We anticipate that this type of comprehensive quantification of mutant behavioral 
phenotypes will have powerful applications in functional genomic studies. Clustering and 
pattern recognition analysis of microarray-derived gene expression profiles has provided 
important information about the likely functions of novel gene products in C. elegans and 
other organisms (Kim et al. 2001). In principle, a behavioral phenotype represents a 
similarly complex quantitative signature whose direct linkage to nervous system activity 
makes it particularly useful for classifying genes that function in excitable cells. In 
several genome-wide deletion and RNAi-based knockout surveys undertaken in C. 
elegans, the identification and classification of behavioral and other non-lethal 
phenotypes has been a crucial limiting factor (Fraser et al. 2000; Zipperlen et al 2001). 
Using the machine-based phenotyping approaches described here, it should be possible to 
record the behavior of an uncharacterized knockout strain, compare its phenotypic pattern 
to a database of known mutants, and make an informed initial hypothesis about the 
molecular pathways in which the mutant gene product participates. 
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TABLE 1 

Features used in mutant character ization  

Worm Type 
Variable 

Statistics 

 w.t. goa-1 nic-1 unc-36 unc-38 unc-29 egl-19 unc-2 

CNTMVAVG Mean 0.05 0.05 0.02 0.02 0.02 0.03 0.02 0.01 

(centroid movt. avg) Std 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

CNTMVMAX Mean 0.22 0.24 0.11 0.09 0.12 0.14 0.14 0.08 

(centroid movt. max) Std 0.04 0.04 0.03 0.02 0.04 0.04 0.04 0.03 

LNECRAVG Mean 299.92 262.80 220.26 283.35 282.80 301.24 337.51 301.30 

(length/eccent. avg) Std 14.23 14.16 22.38 14.95 17.95 18.37 16.56 17.15 

LNECRMIN Mean 285.58 243.60 205.50 265.65 262.86 277.03 317.83 278.26 

(length/eccent. min) Std 13.67 12.89 19.60 10.87 12.20 15.91 18.34 11.51 

LNMFRMAX Mean 1633.88 1206.41 807.41 1451.85 1231.37 1346.92 2077.69 1383.64 

(length/MER. max) Std 140.95 131.67 199.91 147.69 137.48 178.26 215.69 208.13 

ANCHRMAX Mean 3.89 6.74 7.44 6.35 6.02 5.85 3.47 6.90 

(angle change max) Std 0.40 0.92 1.77 0.80 0.83 0.87 0.62 1.00 

ANCHSMAX Mean 2.69 4.46 5.16 3.88 3.98 3.91 2.42 4.17 

(angle change std max) Std 0.24 0.62 1.12 0.43 0.51 0.58 0.35 0.52 

RV20MAX Mean 4.84 4.95 0.63 2.32 2.32 3.05 2.30 1.42 

(max reversal rate in 20s) Std 1.16 1.05 0.66 0.53 0.82 1.00 0.92 0.61 

RV20AVG Mean 1.22 1.66 0.05 0.54 0.40 0.57 0.41 0.27 

(reversal rate 20s average) Std 0.54 0.51 0.07 0.22 0.21 0.27 0.30 0.13 

RV40MAX Mean 7.13 7.37 0.72 3.24 3.15 4.18 3.12 1.93 

(max reversal rate in 40s) Std 2.03 1.83 0.82 0.81 1.19 1.40 1.47 0.73 

RV60MAX Mean 8.92 9.36 0.74 4.04 3.76 5.00 3.85 2.27 
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(max reversal rate in 60s) Std 2.74 2.40 0.86 1.12 1.56 1.76 1.97 0.85 

RV80MAX Mean 10.50 11.31 0.79 4.67 4.33 5.77 4.51 2.63 

(max reversal rate in 80s) Std 3.41 2.99 0.96 1.47 1.88 2.18 2.48 1.06 

RV100MAX Mean 11.81 13.05 0.81 5.29 4.79 6.24 4.95 2.89 

(max reversal rate in 100s) Std 4.15 3.48 1.05 1.70 2.16 2.46 2.83 1.28 

RV120MAX Mean 12.93 14.84 0.85 5.88 5.20 6.94 5.37 3.20 

(max reversal rate in 120s) Std 4.86 3.97 1.11 1.94 2.39 2.79 3.20 1.40 

TOTRV Mean 29.20 39.76 1.08 12.50 9.27 13.28 9.77 6.29 

(total reversal) Std 12.63 12.34 1.64 4.98 4.94 5.98 7.07 3.13 

TOTMOVE Mean 13644.85 13594.72 576.09 3134.27 2807.24 3360.12 5853.53 1415.46 

(dist. moved 5 min) Std 3194.92 4142.15 206.39 1313.27 1197.43 1517.06 1883.90 795.85 

PRP50MAX Mean 1476.94 1140.73 30.04 415.05 437.87 507.94 700.22 269.31 

(max disp., 25 sec) Std 364.64 332.86 30.54 194.80 187.24 239.78 229.43 135.97 

PRP40MAX Mean 1275.91 1038.62 27.20 358.08 371.42 439.09 593.53 235.57 

(max disp., 20 sec) Std 290.06 285.34 26.03 156.10 151.63 199.79 176.45 109.61 

PRP30MAX Mean 1028.84 864.90 24.92 291.26 294.31 364.63 466.44 196.71 

(max disp., 15 sec) Std 217.09 218.06 23.19 114.60 115.89 155.88 133.21 85.91 

PRP20MAX Mean 740.83 673.40 20.53 211.72 214.07 273.01 340.68 143.19 

(max disp., 10 sec) Std 146.34 124.36 16.39 72.52 79.40 116.15 86.81 56.67 

PRP10MAX Mean 412.31 376.43 15.51 118.26 120.07 160.58 198.66 81.64 

(max disp., 5 sec) Std 74.39 55.69 10.37 33.93 39.28 64.60 46.41 27.71 

MVHLFAVG Mean 24.27 24.48 0.99 6.39 6.13 8.29 11.01 3.65 

(avg speed, .5 sec) Std 5.62 7.34 0.35 2.29 2.51 3.64 3.24 1.77 

MVHLFMAX Mean 59.56 53.11 5.66 18.14 19.69 25.74 35.65 12.15 

(max speed, .5 sec) Std 8.35 8.46 3.41 6.63 5.92 7.86 33.15 3.42 
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LNGTHAVG Mean 288.94 243.39 207.58 266.00 262.89 276.15 320.12 276.03 

(avg length) Std 13.34 12.80 19.62 10.15 11.57 13.51 14.14 10.70 

LNGTHMAX Mean 299.11 254.46 217.35 276.24 273.91 288.61 331.20 288.04 

(max length) Std 13.68 13.30 20.36 10.88 12.42 13.74 14.49 11.01 

LNGTHMIN Mean 277.77 232.03 197.68 255.51 251.59 263.03 307.94 264.12 

(min length) Std 13.06 12.58 18.72 10.00 10.93 14.13 17.69 13.13 

CNLNRAVG Mean 0.09 0.10 0.13 0.09 0.10 0.09 0.08 0.09 

(avg center width/length) Std 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 

CNLNRMAX Mean 0.10 0.11 0.14 0.09 0.11 0.10 0.08 0.10 

(max center width/length) Std 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

CNLNRMIN Mean 0.09 0.09 0.12 0.08 0.09 0.09 0.07 0.08 

(min center width/ length) Std 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

HCTHRMAX Mean 0.49 0.57 0.53 0.57 0.51 0.51 0.48 0.59 

(max head to center thickness Std 0.02 0.03 0.04 0.04 0.02 0.03 0.09 0.03 

HEADBRAVG Mean 79.48 81.96 81.12 84.10 81.80 82.50 88.86 84.37 

(avg head brightness) Std 5.04 7.63 7.22 8.12 5.86 6.29 5.88 7.25 

TAILBRMIN Mean 49.79 49.07 58.07 71.15 53.25 51.75 65.56 68.29 

(min tail brightness) Std 3.61 4.83 6.91 7.80 3.82 3.55 5.74 7.71 

TAILBRMAX Mean 67.29 64.17 73.20 92.53 70.82 68.14 85.53 87.92 

(max tail brightness) Std 4.90 6.82 7.42 8.64 5.32 5.47 7.42 8.81 

HTBRRMAX Mean 1.65 1.78 1.47 1.24 1.64 1.69 1.36 1.31 

(head/tail brightness max) Std 0.12 0.17 0.19 0.08 0.13 0.13 0.12 0.11 

HANGCRMAX Mean 11.09 11.97 14.24 12.40 11.32 10.61 10.00 13.98 

(head angle change max) Std 0.66 0.93 2.07 1.23 0.80 0.89 0.44 1.63 

HDMVHFAVG Mean 23.49 23.13 7.45 7.12 10.29 12.88 11.58 7.29 
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(head movt. .5s) Std 4.93 5.93 2.41 1.78 2.61 4.19 3.53 2.04 

HTMVRAVG Mean 2.46 1.62 2.76 1.50 2.22 2.00 1.68 2.00 

(head/tail movt.avg) Std 0.33 0.18 0.44 0.15 0.37 0.33 0.24 0.26 

HDHFTOTMV Mean 13219.08 12843.83 4325.98 3388.97 4676.34 5148.65 6048.65 2755.74 

(head movt. 5min) Std 2844.91 3295.47 1524.75 836.87 1169.66 1606.87 1631.36 849.89 

TLHFTOTMV Mean 8379.06 11730.28 1737.28 3024.35 2971.15 3652.05 4747.09 1751.84 

(tail movt. 5min) Std 1931.21 3173.85 620.67 816.82 1016.01 1348.93 1337.85 556.15 
  

 The mean and standard deviation value of each feature for each worm type are given in the table.  
Variables used were:  CNTMVAVG--average of centroid movement; CNTMVMAX--maximum centroid 
movement; LNECRAVG--average length/eccentricity ratio; LNECRMIN--minimum length/eccentricity 
ratio; LNMFRMAX--maximum length/MER (minimum enclosing rectangle) fill ratio; ANCHRMAX--
maximum angle change rate; ANCHSMAX--maximum angle change rate standard deviation; 
RV20MAX,RV20AVG,RV40MAX,RV60MAX,RV80MAX,RV100MAX,RV120MAX --maximum 
reversal rate sampled at 20, 40, 60, 80, 100,and 120 sec; TOTRV – reversal, 5 min; TOTMOVE--distance 
moved, 5 min; PRP50MAX ,PRP40MAX, PRP30MAX, PRP20MAX, PRP10MAX--maximum distance 
moved, sampled at 50, 40, 30, 20 and 10 sec; MVHLFAVG, MVHLFMAX--average, maximum distance 
moved, 0.5 sec; LNGTHAVG, LNGTHMAX, LNGTHMIN--average, maximum, and minimum length; 
CNLNRAVG,CNLNRMAX,CNLNRMIN—average, maximum, and minimum center thickness/length 
ratio; HCTHRMAX – maximum head/center thickness ratio; HEADBRAVG – average head brightness; 
TAILBRMIN, TAILBRMAX – minimum and maximum tail brightness; HANGCRMAX – maximum angle 
change rate in head section; HDMVHFAVG – average head distance moved with regard to center , .5 sec; 
HTMVHFAVG – average head distance /tail distance moved with regard to center , 5 min;  HDHFTOTMV 
– head distance moved with regard to center, 5 min; TLHFTOTMV – tail distance moved with regard to 
center, 5 min. 

TABLE 2 

Euclidean distance between prototype centers 

 w.t.  goa-1 nic-1 unc-36 unc-38 unc-29 egl-19 unc-2 
w.t. - 6.5 11.0 8.4 7.0 5.7 5.9 8.7 
goa-1  - 9.0 6.6 6.9 5.8 8.5 7.1 

nic-1   - 6.6 5.6 8.0 10.6 6.6 

unc-36    - 5.2 5.1 6.1 3.6 

unc-38     - 3.5 6.8 4.1 

unc-29      - 5.2 4.2 

egl-19       - 7.1 

unc-2        - 

  

 Euclidean distance between prototype centers (cluster centers) measured in 253-dimension feature 
space. Wild-type--nic-1 are the furthest; unc-29--unc-38 and unc-2 --unc-36 are among the closest. This 
indicates a simple Euclidean distance in feature space can be used to quantify the relative similarity between 
mutant types. 
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TABLE 3 

1-NN cross-validation results using 253 features 

 wild goa-1 nic-1 unc-36 unc-38 unc-29 egl-19 unc-2 

wild  1.00 0 0 0 0 0 0 0 
goa-1 0.01 0.94 0 0.01 0.02 0.01 0 0 

nic-1 0 0 0.99 0 0 0 0 0.01 

unc-36 0 0 0 0.84 0.05 0 0 0.11 

unc-38 0 0 0.01 0 0.80 0.19 0 0 

unc-29 0 0 0.01 0 0.37 0.60 0 0.02 

egl-19 0 0 0 0.03 0.01 0.01 0.95 0 

unc-2 0 0 0 0.08 0.04 0 0.01 0.87 

 

1-NN cross-validation results using 39 features 

 wild goa-1 nic-1 unc-36 unc-38 unc-29 egl-19 unc-2 

wild  1.00 0 0 0 0 0 0 0 
goa-1 0.01 0.95 0 0.01 0.02 0.01 0 0 

nic-1 0 0 0.99 0 0 0 0 0.01 

unc-36 0 0 0 0.87 0.03 0 0 0.09 

unc-38 0 0 0.02 0 0.78 0.20 0 0 

unc-29 0 0 0.01 0 0.36 0.62 0 0.01 

egl-19 0 0 0 0.03 0.01 0 0.95 0 

unc-2 0 0 0 0.09 0.04 0 0.01 0.86 

 

 10-fold cross-validated classification result using 1-Nearest Neighbor classifier.  The percentage 
number shows the probability the mutant type specified in the row is classified as being mutant type 
specified in the column by this classifier. A subset of 39 features achieved a similar performance to the full 
set. 
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TABLE 4 

Data points classified into 6 clusters 

Center  #1  #2 #3 #4 #5 #6 
wild  97 2 0 0 1 0 
goa-1 2 94 0 3 1 0 

nic-1 0 0 100 0 0 0 

unc-36 0 0 0 90 10 0 

unc-38 0 0 2 7 91 0 

unc-29 1 0 1 9 82 5 

egl-19 0 0 0 1 0 99 

unc-2 0 0 2 74 22 1 

 

Data points were classified into 6 clusters (optimal number of clusters) based on their shortest distance to 
the cluster centers identified by the k-means algorithm. For the 6-cluster result, unc-38 and unc-29 are 

clustered together, as are unc-2 and unc-36. 

 

 

TABLE 5 

Data points classified into 8 clusters 

Center  #1 #2 #3 #4 #5 #6 #7 #8 
wild  97 2 0 0 1 0 0 0 
goa-1 2 93 0 4 1 0 0 0 

nic-1 0 0 97 1 2 0 0 0 

unc-36 0 0 0 70  5 2 0 23 

unc-38 0 0 1 4 69 24 0 2 

unc-29 0 0 0 5 26 64 1 2 

egl-19 0 0 0 2 0 1 97 0 

unc-2 0 0 1 15 15 1 1 66 

  

Data points were classified into 8 clusters (suboptimal number of clusters) based on their shortest distance 
to the cluster centers identified by the k-means algorithm. For the 8-cluster result, the majority of the 
samples belong to the right clusters.  
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FIGURE 1: Feature data pre-processing and representation. (A) Percentage of the total variance captured by the first few principal
components (PCs) shows the evidence that feature data may be represented in lower-dimensional space. The top 43 principal components
(PCs) capture over 94% of the total variance. (B) Comparison between different scaling methods and feature subset. The blue, red,
and magenta curves represent the 1 Nearest Neighbor (1-NN) classification error rate using Min-Max, Sigmoidal, and Zscore scaling
respectively. The error was an average of 50 trials of 10-fold cross-validation result for each method. The features were selected from
the first few Principal Components of the entire 253 input features. All three scaling methods achieved similar performance, with the
sigmoidal method slightly outperforming the other two. The fact that the error curves level off indicates most of the useful information
for classification is heavily concentrated in the very first few PCs. The black curve shows the same cross-validation test but with a subset
of features selected by a backward elimination method. The black curve also shows the adverse effect of increasing error rate with more
features added.
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FIGURE 2: Distribution of behavioral data points in feature space. (A) The plot shows all 797 data points represented in their first
two principal components space using sigmoidal scaling. The data points from the same mutant type are marked by the same color.
The data points tend to form fairly tight data clouds for each worm type around each respective prototype, indicating a strong similarity
within the mutant types.
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FIGURE 3: Natural clustering results. A) and B) Cluster centers found by k-means algorithm, k=6 and 8. The prototype centers were
marked as black squares. (C) Gap plot by gap statistic method. The optimal number of clusters, marked by red circle, was identified as
the gap curve first started to level off. (D) Jump plot by information theoretic method. The optimal and suboptimal number of clusters,
marked by red circles, were identified as the most and second most significant peaks.


