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PURPOSE: To evaluate the effects of
lossy image (noninvertible) compres-
sion on diagnostic accuracy of tho-
racic computed tomographic images.

MATERIALS AND METHODS: Sixty
images from patients with mediasti-
nal adenopathy and pulmonary nod-
ules were compressed to six different
levels with tree-structured vector
quantization. Three radiologists then
used the original and compressed
images for diagnosis. Unlike many
previous receiver operating charac-
teristic-based studies that used confi-
dence rankings and binary detection
tasks, this study examined the sensi-
tivity and predictive value positive
scores from nonbinary detection
tasks.

RESULTS: At the 5% significance
level, there was no statistically sig-
nificant difference in diagnostic accu-
racy of image assessment at compres-
sion rates of up to 9:1.

CONCLUSION: The techniques pre-
sented for evaluation of image qual-
ity do not depend on the specific
compression algorithm and provide a
useful approach to evaluation of the
benefits of any lossy image process-
ing technique.

T HE need for data compression in
medical imaging is increasing

with the growing use of digital imag-
ing modalities. A tertiary care hospital

of average size, for example, with a
mostly digital diagnostic radiology
department, must maintain over 1
terabyte (1 trillion bytes) of image
data that it produces each year (1).
Storage and transmission of such a
large number of digital images pose a
substantial computational challenge
despite technologic advances. Al-
though digital images can be stored in

a hard-copy format, long-term storage
on film is not completely satisfactory,

as film occupies valuable space and
is often lost, misfiled, damaged, or

needed in more than one location at a
time. In addition, an image reduced to

analog form is no longer available for
digital processing such as window
and level manipulation, cine display,
or transmission for off-site or com-
puter-aided diagnoses.

Image compression can be divided
into two general categories: lossless

and lossy. Lossless algorithms allow

perfect reconstruction of the original
image after compression and typically

provide compression ratios of be-
tween 2:1 and 4:1 on medical images,

depending on the particular imaging
modality (2-5). Lossy compression
schemes provide higher ratios but
only at the cost of irrecoverable data
loss (6-11). In this study, we evaluate
vector quantization, a compression
technique that has worked well on
nonmedical images and has several
useful properties: It is simple and fast

to implement in software, requires no
real-time adaptation or special pur-
pose hardware, and has a natural use
in progressive transmission.

Because a lossy compressed image
differs from the uncompressed origi-
nal, methods for evaluating medical
image quality have been examined in
many recent studies (9-17). In gen-
eral, image quality is quantified with
signal-to-noise ratios or with statisti-
cal analyses of viewer quality ratings.
Most such studies used receiver oper-
ating characteristic (ROC) curves,
which have several drawbacks that
are discussed later. This study exam-
med the effects of lossy compression
on the diagnostic quality of computed
tomographic (CT) images of patients
with two common abnormalities: me-
diastinal adenopathy and pulmonary
nodules. Images could contain mul-
tiple abnormalities, and the evalua-
tion task was structured to simulate

the actual clinical tasks of radiologists.
This approach necessitates a depar-
ture from most traditional evaluation
tasks and statistical analysis methods.

However, the statistical methods de-
veloped in this study are applicable to
the evaluation of any compression
technique.

MATERIALS AND METHODS

Tree-structured Vector
Quantization

Vector quantization is based on the con-
cept of dividing an image into small blocks
of pixels. Each block from an original im-
age is compressed or encoded by selecting
a good approximation from a relatively
small collection of possible blocks called
code words. The collection of code words
is called a code book. When a code word is

chosen as a good match to the original
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pixel block, its index in binary form pro-
vides a digital representation for the origi-

nal pixel block. These indexes represent
the image in compressed form. When the
image is to be viewed, decompression is a
memory lookup to retrieve the code word
corresponding to each index. If the input

pixel block has N pixels (typically 2 x 2 =

4) and the binary index consists of r binary
numbers, then the bit rate of the compres-
sion algorithm is R = rIN bits per pixel
(bpp). If the original image has 12 bpp
(each pixel requires 12 bits for representa-
tion) and the compression algorithm pro-
duces an image of R bits per pixel, the
compression ratio is given as 12:R.

There are two key issues in the design
and application of a vector quantizer:
How does one choose a good code book,
and how does the encoder find a good
code word from the code book? The code
book can be generated from training im-
ages with statistical clustering techniques.
Training images are divided into small

blocks (eg, 2 x 2 pixels) called training
vectors. Vectors that are most representa-
five of pixel blocks found in that type of
image are chosen with the recursive Lloyd
clustering algorithm (18,19). Once the

code book has been created, new images
are encoded according to a nearest neigh-
bor or minimum distortion rule. The en-
coder searches the entire code book to
find the best possible match to the original
pixel block, where “best” means the code
word yielding the smallest mean-squared
error distortion. This approach is referred
to as full-search quantization. A faster and
more flexible method is to structure the
code book as a binary tree. A binary tree
begins with a root node that has two
branches (daughter nodes). Each of these
nodes either has two further daughter

nodes or is a terminal node (leaf). A pixel
block (code word) is associated with each
node of the tree. An original pixel block is
encoded into a leaf code word with a se-
nes of comparisons. Beginning with the
root node, the original pixel block is com-
pared with the two vectors associated
with the daughter nodes. The encoder
chooses the best match, proceeds to that
node, and compares it against the next
pair of vectors. It continues in this fashion
until a leaf is reached. The path traversed

through the tree from the root node to the
leaf is the binary index of the selected

code word. The tree-structured encoder is
far less complex than the full-search en-
coder because it makes R binary compari-
sons instead of 2R to select a good code
word.

A tree-structured code book can be de-
signed by combining ideas from classifica-
tion trees (20) with the Lloyd clustering
algorithm (19,21,22). A binary tree associ-
ates the centroid of all vectors with the
root node and creates new code words by
successively splitting the leaves of the tree.
Splitting a leaf replaces one code word
with a choice of two possible code words
for representing a vector. Average distor-
lion decreases, but the number of bits re-

quired to index the tree increases, that is, a
larger tree produces a lower distortion but

a higher bit rate. Without consideration of
the effects on possible future splits, the
growing algorithm finds the leaf that,
when split, yields the largest decrease in
distortion per increase in average length.
This greediness is offset in part by grow-
ing the tree beyond the target rate and
then optimally pruning it back to maxi-
mize the compression-to-distortion ratio.
The result is an unbalanced tree that
implements a variable rate code. The aver-
age rate in bits per pixel is the average
number of binary decisions needed to
reach a leaf of the tree. This algorithm is
known as pruned tree-structured vector
quantization (PTSVQ).

Vector quantizer performance can be
enhanced by incorporating prediction into
the compression. Instead of encoding the
pixel blocks directly, the blocks are first
expressed as predictions that are based on
neighboring pixels (19,23-25). The differ-

ence between the predicted and the actual
vectors is called the residual vector, and it
is this residual vector that is quantized
rather than the pixel block itself. To recon-
struct the image for viewing, the decoder
retrieves the code word for the residual
block from memory and adds that code
word representation to the block predic-
tion that is based on the vectors encoded
up to that point. The overall system is re-
ferred to as predictive PTSVQ. The code
was implemented in C on a SPARC 1 +

workstation (Sun Microsystems, Mountain
View, Calif) (19,21,22).

Image Selection and Evaluation

For each disease category (mediastinal
adenopathy and pulmonary nodules), 20
training images and 30 test images were
selected. As discussed earlier, the training
images are used only for developing the
code book. The judging radiologists saw
only the test images, and, to avoid giving

the code book an unfair advantage, pa-
tient studies represented in the training
set were not used as test images. Images
consisted of isolated 5- and 10-mm sec-
tions from clinical thoracic studies per-
formed with a CT scanner (9800; GE Medi-
cal Systems, Milwaukee, Wis) with the
following parameters: 120 kV; 140 mA;
scan time, 2 seconds per section; bore size,
38 cm; field of view, 32-34 cm; resolution,
512 x 512 pixels; and pixel depth, 12 bits.

Although no formal research was under-
taken to accurately determine what consti-
tutes “representative” CT images, two ra-
diologists (H.C.D., C.J.B.) were consulted
concerning the typical range of appear-

ance of adenopathy and nodules that oc-
curs in daily clinical practice. The training
and test images were chosen to be ap-
proximately representative of this range
and included images of both normal and
abnormal chests. The lung nodules ranged
in size from 0.4 to 3.0 cm, with almost all
nodules between 0.4 and I .5 cm, and the
abnormal lymph nodes were between 0.6

and 3.5 cm. The study had a lower per-
centage of normal chest images than
would be encountered in daily practice.

The training images were used to de-
sign a compression system for each dis-

ease category. In each case, a binary tree of

the residual training vectors was grown to
a depth of 2.8 bpp and then pruned back
to six different target bit rates, ranging
from 2.65 to 0.55 bpp. The digital data for
the test images from the adenopathy se-
nes (N = 30) and lung series (N = 30)
were sent over the network from the scan-
ner to the workstation, where each image
was compressed and reconstructed at six

different compression levels. The data for

the compressed versions were sent back to
the GE 9800 scanner to be displayed with
a standard 12-on-i format on 14 x 17-inch
film. Each film had six images from the
lymph node series displayed with soft-

tissue window settings and six images

from the nodule series displayed with

lung window settings.
The images were evaluated indepen-

dently by three radiologists with three

separate sets of films. The judges (includ-

ing C.J.B.) were blinded in that no infor-
mation concerning patient study or com-
pression level was indicated on the film.

For each test image, each radiologist
viewed the uncompressed original and

five of the six compressed versions of each
section. One hundred twenty images were
judged per session in three sessions that
were at least 2 weeks apart. At each ses-
sion, each judge saw each section at two
of the seven levels of compression and the
two images never appeared with fewer
than three pages separating them. Abnor-

malities were marked directly on the hard-

copy films with a grease pencil, although

mediastinal lymph nodes were not

marked unless their smallest cross-sec-
tional diameter measured 10 mm or
greater. The viewing time and distance
and the lighting conditions were not con-
strained, but the judges were asked to

view the pages in the given randomized
order and not to return to previously
viewed pages. These design efforts were
undertaken both to simulate ordinary di-
agnostic tasks and to minimize learning

about particular sections. The radiologists
were not specially trained for this judging
task, nor were their responses calibrated
to any scale, as the goal of this study was
specifically to evaluate compression per-

formance in the context of radiologists
performing tasks that resembled their

everyday work.

Statistical Analysis

To quantify the accuracy of diagnosis
for subsequent statistical analysis, it was
necessary to establish a standard of refer-

ence for each image that could be used to
compare readings from the compressed

versions. Such a standard of reference is
often referred to in the statistical literature

as a “gold” standard. One solution is to
use each judge’s readings of an original

(uncompressed) image as the standard for

the readings of that same judge from the
compressed versions of that same image.

We refer to this as a personal standard of



reference. Another choice is to use the
consensus of the three judges on the 60
original images as they had been evalu-
ated during the judging sessions. Use of
the consensus standard of reference en-
tails having to eliminate sections with ir-
reconcilable differences. Among the 60
images in the study, there were 12 for
which the judges could not agree on
which structures were abnormal on the
original, even when they discussed the
images together. The personal standard of
reference allows all of the images to be
used, but, as discussed later, the disadvan-
tage is that it defines the original images
as having perfect diagnoses, and therefore

precludes comparison of the compressed
images with the uncompressed originals.

For each compressed image, one can
count for each judge the number NTP of
abnormalities that matched those identi-

fled on the standard of reference (true-
positive findings), the number of marks

NFP indicating anomalies that were consid-
ered normal tissue on the standard of ref-
erence (false-positive findings), and the

number NFN of anomalies indicated on
the standard of reference that were not
marked. The standard of reference pro-

vides the total number NT = NTP + NFN of
anomalies on that image for that judge.
The sensitivity or true-positive rate is de-
fined by NTp/NT and has the interpretation

of being the probability that an abnormal-
ity is detected if it is present. The predic-
tive value positive (PVP) is defined by
NTP/(NTP + N�p) and is the probability

that something is actually an abnormality
if it has been marked as one (26).

The performance of the compression

algorithm is indicated with scatterplots,
quadratic spline fits, and associated confi-
dence regions for sensitivity and PVP ver-
sus bit rate data. Regression splines are

simple and flexible models for tracking

data; the fitting is by least squares analysis
(27). The fitting tends to be “local” in that
the fitted average value at a particular bit
rate is influenced primarily by observed
data at nearby bit rates. Ours are quadratic
splines with single knots at 1.5 bpp. The
curve is continuous and has a continuous

derivative. It has four unknown param-
eters and can be expressed as y = a0 +

a1x + a2x2 + b2 [max(0, x - 1.5)12, where x is
bit rate and the max function selects the
larger of its two arguments. The underly-

ing probability model that governs the 450
observed values ofy (= sensitivity or PVP)

is as follows. The random vector of qua-

dratic spline coefficients (a0, a1, a�, b2) has a

single realization for each (judge, image)

pair. As the bit rate varies, the values for
the chosen five compression levels plus
independent mean 0 noise are observed.

The expected value of y is E(y) = E(a0) +
E(a1)x + E(a2 )x2 + E(b2)[max(0, x - 1.5)]2,

where the expectation (E) is with respect

to the unconditional distribution of the
random vector (a0, a1, a�, b2). Associated
with each spline fit is the residual root
mean square, an estimate of the standard
deviation of the individual measurements
from an analysis of variance of the spline
fits.

The standard method for computing
simultaneous confidence regions for such

curves is the S or Scheff#{233}method (28),
which is valid under Gaussian assump-
tions that are not true for our data. There-

fore, we use the statistical technique called
the “bootstrap” (29,30), specifically a varia-

tion of the “correlation model” (31) that is
related to the bootstrap-based prediction
regions of Olshen et al (32). We denote the
estimate of PVP for the lung study at a bit

rate of bpp by E[y(bpp)] and denote the

four-dimensional vector of estimated least
squares coefficients (a0, a1, #{225}�.,b2)t by E(a).
The residual mean square that results
from the fit is written S2

The bootstrapping is conducted by first

drawing a sample of size three, with re-
placement from our group of three judges.
This bootstrap sample may include one,

two, or all three of the judges. For each

chosen judge (including multiplicities, if
any), we draw a sample of size 30, with
replacement from the set of 30 original
images. It can be shown that typically

about 63% = [100(1 - e�)]% of the images
will appear at least once in each bootstrap
sample of images. For each chosen judge

and original image, we include all five of
the observed values of y in the bootstrap
sample. The intuitive justification for the
bootstrap is that the bootstrap sample of

450 (bpp, y) pairs bears the same relation-
ship to the real sample of 450 as the real
sample does to “nature.”

In this model, the bit rate is treated as a

nonrandom predictor that we control by

choosing a pruned subtree, and the judges

and images are “random effects” because
our three judges and 30 images have been

sampled from arbitrarily large numbers of
possibilities. For each bootstrap sample,

we computed the bootstrap design matrix
D � of size 450 x 4 and the bootstrap esti-
mates E*[Y(bpp)], E*(a), and S2�. This pro-

cess of sampling and computing estimates

was repeated 1,000 times, and the values

were saved. For a particular bit rate, the
confidence region is �n the form a0 +

d1(bpp) + #{226}2(bpp)2+ b2 [tnax(0, bpp -

1.5)12 ± �F�S2�’d’(DtD)’d, where dt =

{i, bpp, [bppj2,[max(0, bpp - i.5)]2}, D is the

450 x 4 design matrix corresponding to
the real observed values, and �F is chosen

59 that for 95% of the bo9tstrap samples

[E*(a) _ E(a)] f[D*ID*] [E*(a) � E(a)J �

FS2*.
Although the scatterplots, spline fits,

and confidence regions provide excellent
summaries of the effect of the algorithm

on the judge’s performances, the Behrens-
Fisher t test (33) is used to quantify statisti-

cally significant differences in perfor-
mance at various bit rates. A variation of
the two-sample t test, the Behrens-Fisher

test, accounts for inequality of variances in
the different test images; the test is quite
robust when data are not Gaussian, as our

data clearly are not. The use of this statis-
tic is illustrated with the following ex-

ample. Suppose judge 1 has judged N

lung images at both levels A and B. These
images can be divided into nine groups,

according to whether the original image

for that judge contained zero, one, . . . or

eight abnormalities. Let N, be the number
of images in the ith group. Let � repre-
sent the difference in sensitivities (or PVP)
for the jth image inthe ith group seen at
levels A and B. Let z� be the average dif-

ference as in the following equation:

�i=��iz�ij.

We define the following:

and then the Behrens-Fisher t statistic is
given by this equation:

�i�i

tBF

Our � are fractions with denominators
of not more than eight; thus, they are ut-
terly non-Gaussian. Therefore, computa-
tions of attained statistical significance (P
values) are based on the restricted permu-
tation distribution of tRF. For each of the N
images, we can permute the results from

the two levels (A -� B and B -� A) or not.
There are 2N points possible in the full per-
mutation distribution, and we calculate tBF

for each one. If there were no difference

between the bit rates, it should not matter
whether we use level A minus level B or
vice versa to compute the differences �,
and we would not expect the “real” tBF to
be an extreme value among the 2N values
of tBF that correspond to the full permuta-
tion distribution. If k is the number of per-
muted tBF values that exceed the real one,

then (k + 1)/2N is the attained one-sided
statistical significance level for the test of

the null hypothesis that the lower bit rate
performs at least as well as the higher one.
The one-sided test of statistical signifi-
cance is chosen to be conservative and to
argue most strongly against compression.

Because the radiologists would see an
image at six different compression levels

during the course of the study, we needed
to ascertain whether learning effects were
statistically significant. Learning and fa-
tigue are processes that might change the

score of an image, depending on when it
was seen. In each session, each image was

seen at two levels, and the ordering of the
pages ensured that they never appeared

with fewer than three pages separating
them. To examine the possibility of intra-
session learning and fatigue, we examined
the paired data in which the first occur-
rence of a given image in a session was
paired with the second occurrence of that

same image (at a different compression
level) in the same session. Each image in
the pair was either “perfect” (sensitiv-

ity = 1, PVP = 1) or not. There were thus
four types of pairs: those with both mem-
bers perfect, those with only the first oc-

currence perfect, those with only the sec-
ond occurrence perfect, and those with
neither one perfect. In the McNemar
analysis (34), we concern ourselves with

two of the four types: those pairs in which
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Figure 1. (a) Original (uncompressed) chest CT image demonstrates three nodules (arrows
and arrowhead) according to all three personal standards. One of the nodules (open arrow)

was overlooked by two judges at level A; another (arrowhead) was missed by one judge at
level A. (b) Level E image has 2.19 bpp and 5.5:1 compression. (c) Level C image has 1.33 bpp

and 9:1 compression. (d) Level A image has 0.57 bpp and 21:1 compression.
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the members differ. If it did not matter
whether an image was seen first or sec-
ond-then conditional on the numbers of
the other two types-each would have a
binomial distribution with a parameter of �4.

As an example of the calculation, judge
1, in evaluating lung nodules over the
course of three sessions, saw 89 pairs of
images, in which an image seen at one
compression level in a given session was
paired with the same image seen at a dif-
ferent level in the same session. Of the 89
pairs, both images in the pair were judged
perfectly 55 times; both images were
judged incorrectly 11 times. We concern
ourselves with the other 23 pairs: 13 times
the image seen first was incorrect, whereas
the second one was correct; 10 times the
image seen second was incorrect, when

the first one was correct. The probability
that a fair corn ffipped 23 times will pro-
duce a heads/tails split at least as great as
13 to 10 is 0.68; thus, this result is not sta-
tistically significant. In addition to its use
in analyzing learning effects, the McNe-
mar test was also used to compare the
compression levels in a paired fashion, as
a secondary analysis to the Behrens-Fisher
statistic. It differs from the Behrens-Fisher
statistic in that it combines sensitivity and
PVP scores and it dichotomizes the results
into perfect and not perfect (35,36).

RESULTS

The six bit rates achieved for com-
pressed images of both lung and me-
diastinal images were nearly identi-
cal: 0.57, 1.18, 1.33, 1.79, 2.19, 2.63 bpp
in the lung and 0.56, 1.18, 1.34, 1.79,

2.20, 2.64 bpp in the mediastinum.

These levels are subsequently referred
to as A, B, C, D, E, and F, respectively,
and correspond approximately to
compression ratios of 21:1, 10:1, 9:1,
7:1, 5.5:1, and 4.5:1. Because PTSVQ
produces variable rate compression,
the 30 images in a given disease cat-
egory will compress to a set of bit
rates clustered around each target bit

rate. The achieved rates represent an
average across the 30 images for a
given target bit rate. Examples of im-
ages from both disease categories at
various compression rates are shown
in Figures 1 and 2.

The Table shows the numbers of
original test images (total, 30) that
contain the listed number of abnor-
malities for each disease type accord-
ing to each judge. Also, the rows
marked “All” show the number of
original test images (total, 24) that

contain the listed number of abnor-
malities according to the consensus
standard. Simple x2 tests for homoge-
neity show that for both the lung and
the mediastinum judges did not differ
beyond chance from equality in the
numbers of abnormalities they found.
In particular, if for the lung we cat-

egorize abnormalities found as 0, 1,2,
3, or at least 4, the x2 statistic is 3.16

(on eight degrees of freedom). Six
cells have expectations below 5-a
traditional concern-but an exact test
would not have a different conclu-
sion. Similar comments apply to the
mediastinum, where the x2 value (on
six degrees of freedom) is 8.83. How-

ever, the Table does not fully indicate
the variability among the judges. For
example, the Table shows that each
judge found six lung nodules on an
original test image only once. How-
ever, this did not occur with the same
test image for all three judges.

With sensitivity and PVP values
defined relative to the consensus
standard of reference, no differences
were found between the original im-
ages and the three least compressed
levels (levels D, E, and F) at the 5%
significance level, whether the find-
ings of the judges were pooled or
evaluated separately. With the per-
sonal standard of reference, as dis-

cussed later, it is not appropriate to

compare the compressed levels with
the original images. When used to
compare the compressed levels
among themselves, the sensitivity de-

fined relative to the personal standard
of reference showed that level A was
statistically significantly different

from most of the other levels for two
judges in evaluating the mediastinum
(P < .001), and level B was different

from level F for one judge in evaluat-
ing the lung (P = .031). There were no

statistically significant differences in
PVP between any levels.

Figure 3 shows the sensitivity of

detecting pulmonary nodules and

mediastinal lymph nodes as a func-

tion of bit rate for images pooled
across judges, sessions, and compres-
sion levels (n = 450 = 30 images x 3
judges x 5 compressed versions seen

for each image). The PVP for both
nodules and lymph nodes is shown in
Figure 4. Values of sensitivity and
PVP are simple fractions such as V2
and � because there are at most eight

abnormalities found in each image
and generally fewer than that. Aver-
age sensitivity is above 0.85 (out of a
perfect score of 1.0) for all bit rates

except level A at 0.56 bpp, whereas
average PVP is above 0.85 at all bit
rates. Figures 5 and 6 show the sensi-
tivity and PVP outcomes for the three
judges considered separately. Figures
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Figure 2. (a) Original (uncompressed) chest CT image demonstrates one mediastinal lymph

node (arrowhead), which was correctly identified by all judges at all levels of compression.
(b) Level E image has 2.20 bpp and 5.5:1 compression. (c) Level C image has 1.34 bpp and 9:1

compression. (d) Level A image has 0.56 bpp and 21:1 compression.

Number of Test Images That Contain the Listed Number of Abnormalities

Type Judge

No. of Abnormalities

0 1 2 3 4 5 6 7 8

Lung 1 3 11 7 6 2 0 1 0 0
Lung 2 4 9 10 4 2 0 1 0 0
Lung 3 3 8 8 5 2 2 1 0 1
Lung All 4 9 4 5 2 0 0 0 0
Mediastinum 1 3 14 7 6 0 0 0 0 0
Mediastinum 2 2 22 2 4 0 0 0 0 0
Mediastinum 3 3 22 4 1 0 0 0 0 0
Mediastinum All 3 17 2 2 0 0 0 0 0

3-6 display sensitivity and PVP de-

fined relative to the personal stan-

dards.

DISCUSSION

This study departs from the major-

ity of similar studies in both the

choice of compression algorithm and
in the statistical methods used to

evaluate the compressed images. The

statistical techniques reported here
can be applied to evaluate any com-

pression technique. Virtually all re-

ported studies of lossy compression of

medical images use some form of
transform coding based on the dis-

crete cosine transform. This technique

has been made into an international
standard (37), and there are many

software and hardware implementa-

tions. There are many variations and

combinations of other techniques,

including full-frame or large-block
discrete cosine transforms combined

with adaptive scalar quantization of
transform coefficients and lossless
coding such as the Huffman, Lempel-

Ziv, and arithmetic codes (18,19,38).

Tree-structured vector quantization

can be tailored to specific types of

data to a greater or lesser degree by

the choice of training images. For ex-

ample, use of training images from a
single scanner that correspond to a
single part of the body would cause

the tree-structured vector quantiza-
tion to perform best for other images
from the same scanner showing the
same body features. With a more re-
strictive set of training images, the
code book can be tailored to specific
diseases or even to specific patients.
With a less restrictive set, it can be

made appropriate for different scan-
ners and for many anatomic locations.
Training images can in fact be dis-

pensed with altogether, as the cluster-
ing algorithm can be run on math-
ematic models of various types of
data. In this study, we used restrictive
sets of training images and therefore
produced task-specific code books.

Task specificity precludes the use of
the results of this study to conclude

with certainty that these code books
will yield similar diagnostic accuracy
for all possible abnormalities of the

imaged organs.
This study had the modest goal of

developing methods for examining
diagnostic accuracy for specific and
well-defined diagnostic tasks. This is
the first step toward demonstration
that a compression technique causes

no loss of accuracy for a variety of
diagnostic tasks on a common image,
which is a necessary goal if com-
pressed images are to be used for mi-
tial diagnosis and not just for recall,
archival, and educational purposes.
Such an extension of our methods is
straightforward, with suitable expan-
sion of the training set, use of univer-
sal or adaptive vector quantizers (19),
and modification of the clinical simu-

lations to detect multiple or unspeci-
fled abnormalities.

No clinical experiment, however,
can guarantee that there is no loss of

accuracy for all conceivable abnor-
malities, including those not yet dis-
covered. This shortcoming is shared
by all compression schemes, including
JPEG (Joint Photographic Experts
Group)- and other discrete cosine
transform-based coding schemes, that
allow the user to specify quantization
tables and therefore can also be tai-

bred to be more or less task specific.

It is also implicit in traditional ROC-
and analysis of variance-based analy-
ses of diagnostic accuracy for specific
binary detection tasks.

To evaluate the quality of lossy
compressed images in the context of a

diagnostic application, it is necessary

to quantify the consistency of abnor-

malities observed on compressed im-
ages and that observed on the origi-

nal uncompressed images. What is
important is not whether compressed
images allow for completely accurate
diagnoses, but rather whether they
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Figure 3. Sensitivity for detecting abnormalities on 450 images as a function of bit rate.

Graphs show sensitivity for detecting pulmonary nodules with a root mean square (estimate
of standard deviation) of 0.216 (a) and for lymph nodes with a root mean square of 0.262 (b).
x = data points (sensitivity, bit rate) for entire data set (all images, judges, and compression
levels), o = the average of the x’s for each target bit rate, solid curves = quadratic splines fit to
the data with a single knot at 1.5 bpp, dashed and dotted curves = two-sided 95% confidence
regions.
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allow for accurate diagnoses at least
as often as do original images. The
personal standard of reference de-
fines a judge’s reading on an original
image to be perfect and uses that
reading as the basis of comparison for
the compressed versions of that im-
age. With any random noise in the
judging process, compressed images
cannot be as accurate as originals. The
presence of a substantial noise corn-
ponent is suggested by the fact that
there were several images on which a
judge changed his or her diagnosis
back and forth, marking, for example,
one lesion on the original image as
well as on levels B and E, and mark-
ing two lesions on levels A, D, and F.
When such cases are compared with a
consensus standard of reference,
some of the times the consensus will
determine that there is only one le-
sion and the original image scores

perfectly.
For other images exhibiting the

same kind of fluctuation, the consen-
sus standard may cause a decision of
two lesions and the original image
will have a sensitivity of only 0.5.
Thus, what appears to be noise in the
diagnosis will tend not to favor the
original images or any particular com-
pression level on the average. With
the personal standard, however, the
decision based on the original image
is always correct, so that the random
noise is interpreted as incorrect diag-

noses on the compressed versions.
Because the compressed levels have
this severe disadvantage, the personal
standard of reference is primarily use-
ful for comparing the six compressed
levels among themselves.

The consensus standard has some
biases also, but these are small in com-
parison. Because the consensus was
achieved for only 48 original images

of the 60 studied, there is an un-
known bias that results from having
12 test images eliminated from the
study. Although these 12 images were
clearly more controversial and diffi-
cult to diagnose than the others, it
cannot be said whether the removal
of diagnostically controversial images
from the study biases the results in
favor of compression or against it.
Their failure to have a standard de-
fined was based only on the uncom-
pressed versions, and it cannot be
said a priori that the compression al-
gorithm would present more diffi-
culty in compressing such images.
The consensus, when achieved, could
be attained either by initial concor-
dance among the readings of the
three radiologists or by subsequent
discussion of the readings, during

which one or more of the judges
might change his or her decision. The
consensus was clearly more likely to
be attained for those original images
for which the judges were in perfect
agreement initially and thus for
which the original images would
have perfect diagnostic accuracy rela-

tive to that standard. Therefore, this

standard has a slight bias favoring the
original images also, which is thought
to help make the study safely conser-
vative and not unduly promotional of
our compression techniques.

Because the personal standard has
the advantage of using all of the im-
ages in the study and the consensus
standard has the advantage of having
little bias between original and com-

pressed images, we can capitalize on
both sets of advantages with a two-

step comparison. Sensitivity and PVP
values relative to the consensus stan-
dard show that there are no substan-
tial differences between the slightly
compressed images (levels D-F) and
the original images. This is true for
both disease categories, judges evalu-
ated separately and pooled, and use

of both the Behrens-Fisher test to ex-
amine the sensitivity and PVP sepa-

rately and the McNemar test to com-
bine them. With this assurance, the

personal standard can then be used to
look for differences between the more

compressed levels (A-C) and the less
compressed levels (D-F). The most

compressed level (A: 0.56 bpp, 21:1
compression ratio) is unacceptable, as

observations made with these images

were statistically significantly differ-
ent from those with less compressed
images for two judges (P < .001).

Level B (1.18 bpp) is also unaccept-
able, although barely, because the
only statistically significant difference

was between the sensitivities at levels
B and F for a single disease category
and a single judge (P = .031). No dif-

ferences were found between level C
and the less compressed levels, and
there were no statistically significant

differences at the 5% significance
level between levels D, E, and F.

One concern of this study is the

question of whether a judge could
remember and benefit from what was

seen on the earlier of two images dur-
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used to fill the role of specificity in
measuring false-positive reporting. A
judge who is too aggressive in finding
an abnormality could have high sen-

I sitivity at the expense of low PVP,
. . . . - whereas a judge who is too stringent

: about what defines an abnormality

0� could have a high PVP at the expense
0r� � of low sensitivity. Just as an image is
0.5 1.0 15 2.0 2.5 3.0 judged perfectly if both sensitivity

0 �0 ( pp� and specificity (when possible to mea-

sure both) are one, an image is also
judged perfectly if both sensitivity

and PVP are one.
The free-response ROC observer

performance experiment, a version of

the standard ROC that has not yet
been widely used (41-44), allows an

arbitrary number of abnormalities per
image, and the observer indicates his

or her perceived locations and a con-
fidence rating for each. Although free-
response ROC resolves the binary

. . . task limitations and location insensi-
tivity of traditional ROC, free-re-

0� sponse ROC does retain the con-
0.� , � . - . . .. j strained five-point integer rating

system for observer confidence and
b�, ,�t, (bpp) makes certain normality assumptions

about the resultant data. In our study,
use of the Behrens-Fisher t statistic
on the sensitivity and PVP scores al-
lowed the radiologists to make diag-
noses in their usual fashion of locat-
ing and marking all visible lesions,
with no need for associated confi-
dence rankings and no normality

assumptions about the resultant

bi� ,o, bpp
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Figure 6. PVP for detecting abnormalities as a function of bit rate. Graphs show PVP for de-

tecting pulmonary nodules (a) and mediastinal lymph nodes (b). See Figure 5 for explanation

of x. The three curves are quadratic splines fit to the data separately for the three judges.
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ing the same session. We examined

the possibility of intrasession learning
with the McNemar test, as described

previously. No differences at the 5%

statistical significance level were

found between images seen first and

those seen second, with the judges

considered separately or pooled, for

either disease category, and with ei-

ther the personal or consensus stan-

dard (P values ranged from .06 to 1.0).
A regression analysis with the actual

sensitivity and PVP observations simi-

larly indicated that page order and
session order had no statistically sig-

nificant effect at the 5% significance

level on the diagnostic result.

Many studies of diagnostic accu-

racy of lossy image compression have
argued that compression ratios from
5:1 to 29:1 can be obtained with no

loss in diagnostic accuracy (9-11,13-

18). Virtually all of these studies have
been based on ROC analysis (39,40).

ROC curves are plots of sensitivity

(true-positive rate) against specificity
(true-negative rate). ROC analysis has

three drawbacks. It requires confi-

dence rankings, which are a depar-
ture from normal diagnostic practice.

In a typical ROC study, judges are
asked to decide whether an abnor-

mality is present on an image and to
assign an integer rating (one to five)
to their level of confidence in that de-
cision. Second, ROC analysis is not
location specific. A case in which an
observer overlooks the lesion that is

present on an image but mistakenly

identifies some noise feature as a le-

sion on that image would be scored as
a true-positive event. The third and
most serious drawback is that tradi-

tional ROC analysis is not appropriate
for nonbinary detection tasks. There

is no difficulty assigning a numeric
value to sensitivity, since the number

of abnormalities present can be ascer-
tamed. Measuring the specificity,
however, requires one to know the

number of abnormalities absent on an
image. In truly binary diagnostic tasks

such as pneumothorax detection, if
the image is normal, exactly one ab-

normality is absent and specificity is
measurable. For nonbinary tasks in

which there can be many abnormali-

ties, however, specificity does not
make sense because it is not possible

to say how many abnormalities are
absent. It does not seem realistic to
segment the images with the proviso
that each segment has to contain ei-
ther zero abnormalities or one. For

data.
In summary, we have introduced

the appropriate statistical tools for a
novel approach to testing diagnostic
accuracy. The approach is valid for
nonbmnary detection tasks and per-
mits a realistic simulation of ordinary
diagnostic tasks. We have used this
approach to demonstrate that predic-
tive PTSVQ provides lossy compres-
sion of images to bit rates as low as 1.3
bpp (compression ratios of up to 9:1)
while maintaining diagnostic accu-
racy of pulmonary nodules and medi-

astinal lymph nodes on thoracic CT
images. We believe that our approach
represents a useful and appropriate

way of analyzing this type of nonbi-

nary detection task and that the corn-
pression technique considered shows
promise as a useful tool for image

management in digital medical imag-

ing systems. #{149}
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