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Abstract—Disposable wireless video sensors have many poten-
tial applications but are subject to stringent energy constraints.
We studied the minimization of end-to-end distortion under an
total energy constraint, by means of optimizing FEC code rate,
number of source bits, and energy allocation between video
encoding and wireless transmission. A two-step approach is
employed. First, the FEC rate is optimized by exhaustive search.
Then a binary-search-based algorithm is proposed to optimize
the energy allocation and number of source bits. Experiments
show that the algorithm achieves a PSNR gain up to 1dB over
some reasonable baselines. A simpler suboptimal algorithm is
also tested and exhibits similar performance.

I. INTRODUCTION

Video surveillance in remote areas can be useful for moni-

toring pipelines or reservoirs against terrorists, border patrol,

measuring snowpack levels or other environmental conditions,

or studying endangered species. While remote areas may

lack infrastructure, many cheap disposable wireless video

sensors can be deployed to form a flexible surveillance system.

Whether using a fixed battery or energy harvesting, such

sensors need to be energy efficient. Most of the energy

consumption comes from three operations: video capture,

encoding, and transmission. This paper focuses on the joint

optimization of video encoding and transmission.

Many papers have considered joint optimization of video

encoding and wireless transmission in the sense of bit al-

location, but fewer involve energy constraints. In [1], the

minimization of video transmission energy over source rate

and transmitting power is studied. The source rate and trans-

mitting power are jointly constrained by a fixed distortion

budget. In [2], minimization of the total energy consumed

by both video encoding and transmission is studied. A rate-

complexity-distortion (RCD) model is used to introduce the

video encoding energy (source energy) into discussion. Each

source bit is assumed to be allocated a sufficient amount

of transmission energy so that channel errors are negligible.

One limitation of this work is that the transmission model

is simplified; no details about transmission, including the

optimality of the FEC code rate, are considered.

We study the joint optimization of video encoding and

transmission for wireless video sensors operating in a remote

area. In this scenario, energy is limited but bandwidth is

abundant. Under an energy constraint, we consider the min-

imization of the end-to-end distortion, by jointly optimizing

energy allocation, source rate, and FEC code rate. We study

the optimization problem using a specific transmission model,

and an empirical RCD model describing the behavior of the

HEVC/H.265 video encoder. This paper is arranged as follows.

Section II formulates the optimization problem. Sections III

and IV develop the RCD and transmission models. Section V

introduces two algorithms that efficiently solve the optimiza-

tion problem, and Section VI presents simulation results.

II. PROBLEM FORMULATION

Consider a scenario where wireless video sensors monitor a

a remote area. A drone flies over periodically to collect data.

When the drone is close (e.g., 100m), the sensor transmits the

data. In daily operation, the sensors capture/encode video, add

FEC, divide the bitstream into packets, and store the data in a

buffer (Fig. 1). At the receiver, after the FEC code is decoded,

packets containing uncorrectable errors are discarded, and

error concealment is employed in the video decoder.
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Fig. 1. System diagram.

Video quality is measured by the end-to-end distortion,

which is the mean square error (MSE) between the original

video and the decoder reconstruction. Several papers (e.g.,

[3]) showed that this can be approximated by the sum of

the source distortion, Ds, (MSE between the original video

and the encoder reconstruction) and channel distortion, Dchan

(MSE between the encoder and decoder reconstructions).

We constrain the total energy spent on a unit length (1

second) of video. This total energy is the sum of energies

consumed by encoding and transmission: ETX = Es + Et.

Energy for FEC encoding and digital modulation are small

compared to that of the analog synthesizer & filter [4], and are

ignored. Then Et consists of only the energy consumption of

the analog circuits and the energy transmitted. No bandwidth

constraint is imposed as the sensors operate in remote areas,
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where radio spectrum is sparsely occupied. Transmission time

is also not constrained as video delivery is not real time.

The energy constraint gives rise to an allocation problem:

If more energy is allocated to encoding, the encoder can find

more efficient representations of the video and reduce the

Ds. With more energy for transmission, either higher power

or more FEC redundancy can be used to reduce the Dchan.

Another tradeoff concerns the number of source bits (bits

generated by the video encoder), denoted by Bs. For any given

energy allocation (given Es, Et), increasing Bs means Ds is

lower, but the increase in number of source bits needs to be

compensated by either reducing the number of FEC parity bits

or spending less transmission energy on each code bit, making

the data more vulnerable to channel noise. These two tradeoffs

lead to the following optimization problem, in which we look

for the energy allocation and the number of source bits that

minimize the end-to-end distortion:

min
Es,Et,Bs

[Ds(Es,Bs)+Dchan(Et, Bs)] s.t.Es+Et = ETX

(1)

Here we consider no explicit constraint on Bs. We assume

the buffer has enough space for the compressed video data.

Substituting the constraint into the objective function gives

min
Es,Bs

[Ds(Es, Bs) +Dchan(ETX − Es, Bs)] (2)

In the following, we will construct the functions Ds(Es, Bs)
and Dchan(Et, Bs), and introduce a procedure to solve (2). We

use MFSK modulation for its energy efficiency, Reed-Solomon

coding as the FEC, and the HM-16.1.1 HEVC/H.265 standard

software (random access main profile, with periodic I-frame

refresh and bidirectional B frames).

III. SOURCE MODEL

In this section, we construct the function Ds(Es, Bs) in

(1). The encoder can vary the quantization parameter (QP)

and 5 other configuration parameters (Table I). There are many

QP-configuration pairs. With different QPs and configurations,

the encoder generates from a given video different numbers

of source bits Bs, consuming different amounts of encoding

energy Es, and resulting in different source distortions Ds.

Although Es, Bs, Ds take discontinuous values corresponding

to the discrete QPs and configurations, we treat Es and Bs as

continuous variables and Ds as a function of the two, forming

a surface over the Es-Bs plane. By fitting the surface with a

parametric model, we model Ds as a function of Bs and Es.

In a rate-complexity-distortion (RCD) model (e.g., [2], [5]),

the authors incorporate energy (or power) considerations into

a rate-distortion model, taking the source distortion to be a

function of the source rate and source complexity. The source

complexity (denoted Cs) is a normalized measurement of

the computational complexity of the video encoding process,

and is defined as being proportional to the number of CPU

clock cycles required to encode a fixed length of video. The

complexity is normalized so that it varies within the range

TABLE I
VIDEO ENCODER PARAMETERS.

Name Meaning Range used
QP Quantization parameter {22, . . . , 37}

CUD Maximum coding unit depth {1, 2, 3, 4}
TUMD Maximum transform unit depth {2, 3}
HME Hadamard transform {0, 1}
SR Search range {8, 16, 32, 64}

BSR Search range for bi-prediction refinement {2, 4}

0 to 1, with 1 being the complexity of the configuration

that requires the heaviest computation (the most CPU clock

cycles). According to [2], the complexity Cs can be mapped

to the source energy Es using the model Es = β ·Cγ
s , where

γ is a constant, and β is the energy consumed by encoding

one second of video with the most complex configuration. We

use γ = 2.5 as in [2]. With this mapping between Cs and Es,

the RCD model is equivalent to a rate-energy-distortion model,

which is the Ds(Es, Bs) function we need. We build the RCD

model by using a parametric model to fit rate-complexity-

distortion data obtained by encoding sample videos:

Ds = e−a1·Bs+b1 · (1 + e−a2·Cs+b2) +Dfloor (3)

In this model, exponential functions are ussd to model

the decreasing trend of Ds, as in [2]. Other model features

are based on observations made on experimental data. Fig.

2 illustrates data obtained by encoding a video with 164

selections of QP and configuration. Each (Bs, Cs, Ds)-point

corresponds to a specific pair of QP and configuration. Points

with the same QP are connected with a dashed line.
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Fig. 2. RCD data for sample video Traffic. Points generated with the same
QP are connected by a dashed line.

In Fig. 2(a), each little cluster of points labeled by a QP

value corresponds to a set of different Cs values. One can

observe that when Bs is large, Ds drops to the same floor level

despite different values of Cs, which is reflected by Dfloor in

(3). In Fig. 2(b), with different QP used, Ds drops to different

levels when Cs becomes large. Since Bs depends almost solely

on QP , these facts together suggest that Ds drops to a Bs-

dependent floor when Cs becomes large. This Bs-dependent

floor is modeled as e−a1·Bs+b1 +Dfloor in (3).
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IV. TRANSMISSION MODEL

In this section, we derive Dchan(Et, Bs) in (1) in two steps.

First, channel distortion Dchan is derived as a function of

transmission parameters. Second, we constrain both Et, Bs,

and minimize Dchan over the transmission parameters.

A. Channel Distortion and Packet Loss Rate

Most works (e.g., [6]) on end-to-end distortion estimation

aim at providing information for error-resilient mode deci-

sions, proposing algorithms that use, for example, pixel values

and motion vectors to trace the expected distortion on the

block level or even the pixel level. Though such algorithms

accurately reflect the effect of error concealment and error

propagation, they are not suitable for our purposes. First,

tracing error propagation requires the motion vector, which

depends on the encoding configuration, which is yet to be

selected. Second, tracing error propagation on the block, or

pixel level requires a considerable amount of computation,

conflicting with our goal of energy efficiency.

We approximate the channel distortion as being proportional

to the packet loss rate p: Dchan = c · p, where c is a

curve fitting parameter. This assumption is reasonable as

sparse packet losses tend to influence disjoint sets of frames

and the distortions are additive. In this approximation, we

ignore the direct dependence of Dchan on the video encoding

configuration. Though changing encoding configuration can

affect motion estimation and influences the error propagation,

we observe that this influence is small when compared to

Dchan’s dependence on p. Fig. 3 shows the approximation

is good despite different configurations used.
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Fig. 3. Channel distortion versus packet loss rate.

We assume the channel coherence time is smaller than

the transmission duration of a packet, so packet losses are

independent, and the packet loss rate, p, can be written as

p = E
i
[pi] = E

i
[1− (1−WER)Ni ]

≈ E
i
[Ni ·WER] = E

i
[Ni] ·WER = N ·WER

(4)

where pi is the probability that the i-th packet is lost, Ni is

the number of codewords in the i-th packet, N is the average

number of codewords in a packet, and WER is the probability

that a RS codeword is uncorrectable. It can be shown that

N = (Bs/Nf )/(n · r ·m), where Nf is the number of frames

in 1 second of video, and r is the RS code rate, n is the number

of RS code symbols in a codeword, and m is the number of

bits represented by a code symbol. WER is:

WER =

n∑
j=t+1

(
n

j

)
· SERj · (1− SER)n−j , (5)

where t = n
2 ·(1−r) is the error correction ability, and SER =

1 − (1 − Pe)
m

log2M is the probability that a RS code symbol

contains error before FEC decoding. Under the assumption of

Rayleigh fading and independent MFSK symbol errors, the

probability of error in detection of an MFSK symbol is

Pe =

M−1∑
j=1

(−1)j+1 ·
(
M − 1

j

)

· 1

(2σ2 · Eb

N0
· log2M + 1) · j + 1

(6)

where Eb is transmitted energy per code bit, N0 is noise

power spectral density, σ2 is half of the second moment of

the channel coefficient’s amplitude, and M is constellation

size.

B. Optimization of FEC code rate

Summarizing the results in IV.A, Dchan can be written as

Dchan = c · 1

Nf · n ·m ·Bs · 1
r
·WER(Eb, r,M, n) (7)

We fix n = 255 and M = 16 With M , n, m fixed, the term

c · 1
Nf ·n·m is a constant, denoted const. For arbitrary Et and

Bs, Eb and r can be optimized as:

min
Eb,r

1

r
·WER(Eb, r), s.t. (

Eb

η
+ Eb c)/r =

Et

Bs
(8)

In the constraint, η is the amplifier’s efficiency, and Eb c de-

notes the energy consumed by other analog circuit components

for each code bit. Then Eb/η +Eb c is the total transmission

energy for each code bit. Since each source bit is encoded into

1/r code bits by the FEC encoder, the transmission energy

for each source bit is (Eb/η+Eb c)/r. The constraint reflects

the fact that the transmission energy per source bit equals the

transmission energy Et divided by the number of source bits

Bs. For notational convenience, we define the transmission

energy per source bit as Et sb = Et/Bs and its normalized

version as E
(n)
t sb � Et sb · σ2

N0
.

For the parameters η and Eb c, following the example of

[4], we assume a class-B amplifier is used, for which η =
0.75. Eb c can be evaluated as Pc · M

B·log2M , where Pc is the

power of the circuit components, B is the total bandwidth

and M
B·log2M is the time it takes to transmit each code bit. Pc

is set to 52.5mW , which is its value in [4], and we assume

B = 20MHz. Then Eb c = 1.05× 10−8J .

���



The optimization over Eb and r can be solved numerically

by exhaustive search over values of r. The minimized 1
r ·WER

and optimal r are plotted versus E
(n)
t sb in Fig. 4.
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Fig. 4. Minimized WER/r and optimal r as functions of E
(n)
t sb.

Fig. 4 shows that the minimized 1
r ·WER can be approxi-

mated as:
1

r
·WER = e−a·E(n)

t sb+b (9)

where a,b are curve fitting parameters. The parameter values

depend on n, M , and Eb c. In different applications, these

settings can be different, and the fitted parameters will change.

Although the curve is fitted in a narrow range of E
(n)
t sb, in the

vertical axis, it covers a significant range of 1
r ·WER, which

maps to a wide enough range of packet loss rate p. Substituting

the approximation of 1
r ·WER into the expression of Dchan,

the closed-form function Dchan(Et, Bs) is obtained:

Dchan = const ·Bs · e−a·E(n)
t sb+b (10)

where

E
(n)
t sb =

ETX − Es

Bs
· σ

2

N0
(11)

V. ALGORITHMS

Binary-search algorithm: With both Ds and Dchan modeled

as functions of Es and Bs, the optimization problem is:

min
Es,Bs

(Ds +Dchan), 0 < Es < ETX , Bs > 0 (12)

The expressions for Ds, Dchan are (3) and (10). Because

the optimal Ds and Dchan are both differentiable with respect

to Es and Bs, if (12) has a solution, the optimal Bs, Es is a

solution of equations in (13).

∂Dchan

∂Bs
= −∂Ds

∂Bs
,

∂Dchan

∂Es
= −∂Ds

∂Es
(13)

Substituting expressions for ∂Dchan

∂Es
and ∂Ds

∂Es
into the right

equation in (13), we get

const · a · e−a·E(n)
t sb+b · σ

2

N0

= a2 · e−a1·Bs+b1 · e−a2·Cs+b2 · ( 1

β · γ · Cγ−1
s

)
(14)

We take the logarithm on both sides of (14) and rearrange

the equation to obtain:

−a · E(n)
t sb + a1 ·Bs + a2 · Cs + (γ − 1) · lnCs

+[b− b1 − b2 + ln(
a

a2
· β · γ · σ

2

N0
)] = 0

(15)

If we define

f � −a · E(n)
t sb + a1 ·Bs +A2 · Cs + (γ − 1) · lnCs

+[b− b1 − b2 + ln(
a

a2
· β · γ · σ

2

N0
)]

(16)

then f = 0 is a condition for the optimal point. The expression

shows that f is a function of E
(n)
t sb, Bs, and Cs. Dividing the

left equation of (13) by the right, we get

(∂Dchan

∂Bs
)

(∂Dchan

∂Es
)
=

(∂Ds

∂Bs
)

(∂Ds

∂Es
)

(17)

Substituting the expressions for ∂Dchan

∂Bs
, ∂Ds

∂Bs
, ∂Dchan

∂Es
, and

∂Ds

∂Es
into (17), we then take the logarithm of both sides and

rearrange the equation. This yields

E
(n)
t sb =

a1
a2

· β · γ · Cγ−1
s · (1 + ea2·Cs−b2) · σ

2

N0
− 1

a
(18)

which shows that E
(n)
t sb is a function of Cs. Note that

Bs =
ETX − Es

Et sb
=

ETX − β · Cγ
s

E
(n)
t sb

· σ
2

N0
(19)

so Bs is also a function of Cs . Substituting (18) and (19) into

(16), f becomes a univariate function of Cs. The optimal Cs

is a solution of the equation

f(Cs) = 0 (20)

With the parameter values obtained in fitting data of the

sample videos, it is observed that E
(n)
t sb satisfying (18) is

an increasing function of Cs, which crosses 0 at some Cs

value (denoted Cs 0) between 0 and 1. In (Cs 0, 1], f(Cs)
is observed to be a decreasing function of Cs, and there

is a unique Cs at which (20) is satisfied. Based on these

observations, a binary search can be applied to solve (20).

The steps are listed in Table II.

TABLE II
OPTIMIZATION ALGORITHM.

Step 1 Initialization: Cs = 0.5, step size ΔCs = 0.25
Step 2 Evaluate f(Cs) using (18),(19),(16))

Step 3 If E
(n)
t sb < 0 or f(Cs) > 0, Cs = Cs +ΔCs;

If E
(n)
t sb > 0 andf(Cs) < 0, Cs = Cs −ΔCs;

Step 4 If target precision of Cs is not yet achieved, return to Step 2

Step 5 If E
(n)
t sb < 0, Cs = Cs +ΔCs (ensuring Cs > Cs 0)

Step 6 Calculate the optimized E
(n)
t sb using (18); Calculate opti-

mized Bs using (19); Map the optimizaed Bs,Cs to QP
and video configuration parameters; Obtain the optimal r
according to Fig. 4; Calculate optimal Eb using (8).
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Fix-Et sb algorithm: A simpler algorithm allocates suffi-

cient transmission energy to ensure reliable transmission, so

that end-to-end and source distortions are approximately equal.

The E
(n)
t sb which makes Dchan smaller than a target value is

calculated. With E
(n)
t sb fixed, Es and Bs are constrained by

(11) and the optimization is

min
Cs

Ds = e−a1·Bs+b1 · (1 + e−a2·CS+b2) +Dfloor

Bs =
ETX − β · Cγ

s

E
(n)
t sb

· σ
2

N0

(21)

The solution can be found by taking the derivative of Ds

with respect to Cs (see Bs as a function of Cs), and searching

for the Cs at which the derivative is 0.

VI. SIMULATION RESULTS

We apply the proposed algorithms to a specific problem

setup (see Table III) to measure end-to-end performance.

Values of a and b are obtained by curve fitting, N0 is the

power spectral density of thermal noise at room temperature,

and σ2 reflects the path loss, calculated according to the Friis

equation (distance=100m, carrier frequency= 2.4GHz). Curve-

fitting parameters a1, b1 , a2, b2 , Dfloor of the source model

are obtained by fitting the data from encoding the sample

video. The energy constraint ETX varies in a range from one

to seven times the maximum video encoding energy.

TABLE III
PROBLEM SETUP FOR SIMULATION.

Channel model parameters Source model parameters
ETX = 0.01 ∼ 0.07J β = 0.01J ,γ = 2.5
a = −0.0215, b = 292 a1 = 8.53× 10−7, b1 = 4.52
N0 = −174dBm, σ2 = −83.05dB a2 = 9.83, b2 = 1.07
c = 100, Nf = 30 Dfloor = 4.87

Two baseline algorithms are used. The least-complexity

algorithm uses the configuration with the least complexity, and

selects the QP to ensure that enough energy is allocated to

achieve reliable transmission so that channel distortion can be

ignored. The most-complexity algorithm is similar except that

it uses the configuration with the highest complexity. These

baselines represent a class of simple algorithms that pick an

arbitrary configuration, and choose QP according to the energy

requirement of transmission.

Fig. 5 shows PSNR plotted versus ETX , obtained from

experiments on test video sequence Shadow. The curve for

the highest-complexity algorithm does not extend to small

ETX because there is not enough energy to encode with the

most complex configuration. The two proposed algorithms

outperform the baseline algorithms. The gap between the

curves varies irregularly with ETX , reaching 1dB at some

ETX values. The irregularity can be explained by the fact that

the QP and the configuration are discrete, so it is impossible

to find the QP and the configuration that give exactly the

Bs and Cs produced by the algorithm. When the algorithm-

produced Bs and Cs are mapped to a specific choice of

QP and configuration, the algorithm’s actual performance has

some gap from the model. The curves for the two proposed

algorithms are almost identical, so the fix-Et sb algorithm is

as good as the binary-search algorithm.
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Fig. 5. Performance (PSNR) of algorithms as a function of the total energy
constraint.

VII. CONCLUSION

We studied the joint optimization of video encoding and

transmission, targeting wireless video sensors, which have

stringent energy constraints. Under an energy constraint, we

studied the minimization of the end-to-end distortion, by

optimizing FEC code rate, energy allocation and number of

source bits the video encoder generates. Comparing to baseline

algorithms that employ no joint optimization, the proposed

algorithms achieve a gain up to 1dB.
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