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Iterative Pricing-Based Rate Allocation for Video
Streams With Fluctuating Bandwidth Availability
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Abstract—We consider rate allocation for video users in the case
where the available bandwidth fluctuates. Simply minimizing the
objective distortion or optimizing the stability of video qualities
does not optimize subjective quality. We formulate a utility-based
solution, considering that a user’s preference of video quality
often varies over a range with upper and lower thresholds of
quality. Our iterative pricing-based resource allocation procedure
reallocates the bandwidth not only between different users within
a time slot but also between different time slots, such that no
user suffers quality degradation on average by participating in
the multiplexing process. Experimental results show that, com-
pared with equal resource allocation and existing rate allocation
solutions, the subjective result becomes increasingly better with
the increase of bandwidth fluctuation rate or bandwidth fluctua-
tion range. Moreover, as the number of users increases, the results
improve.

Index Terms—Cognitive radios, H.264/AVC, pareto optimality,
rate allocation, video compression.

I. INTRODUCTION

R ESOURCE allocation for multiple video streams, often
referred to as video multiplexing, concerns situations in

which a limited resource (bandwidth in Hz or channel capacity
in bits/sec) must be allocated to a set of video users. Prior
work has shown that proper bandwidth scheduling benefits
the average objective video quality of all users in the constant
bandwidth scenario, compared with equal bandwidth allocation
among users [1]–[6]. The goal is often to minimize the average
distortion across all users (MINAVE) [5] or the weighted
distortion [7], which in general means that users with high
complexity scenes will be allocated more bits than those with
low complexity scenes. Pricing-based mechanisms for resource
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allocation were extensively studied in recent years [8]–[12].
In some of these solutions, the quality of some users is often
improved by sacrificing the quality of other users. Unlike these
solutions, the equilibrium pricing method [6], [13] optimizes
the quality of each video user, so any potential user will not
suffer quality degradation (compared to equal resource alloca-
tion) by voluntarily participating in the multiplexing process.
Some researchers have tried to minimize the overall variance
of the videos (MINVAR), aiming at steady quality [14], [15].
However, this solution is achieved by increasing the overall
distortion [3], which goes against the usual goal of many other
video multiplexing studies. Tagliasacchi et al. exploited the
correlation between the MINAVE and MINVAR problems in
[3], achieving a compromise between them. Some researchers
considered other goals, such as minimizing the distortion of
the worst-case user [16], constant distortion ratio [7], or allo-
cating bit rate to each user according to their video complexity
[17]–[19]. With all of these different goals, the distortion has
typically been measured by mean squared error (MSE).
In this paper, we consider scenarios where the bandwidth

available to the group of users can vary substantially over time.
One situation where this can occur is cognitive radio (CR). In
a CR system, primary users can begin transmission at any time
and have guaranteed use of the system resources. In contrast,
secondary users can opportunistically make use of whatever re-
sources are not being used by the primaries. The bandwidth
available to the secondaries can fluctuate dramatically. Even
though the overall distortion or stability of videos is optimized,
it is possible that, for all secondary users, the quality of video is
very low for some period of time when the available CR band-
width is scarce. In this case, a better solution might be to give
acceptable quality to each secondary user for as much time as
possible, rather than sharing very low quality for some period
of time and very high quality during some other period of time.
So we consider this problem from a simple subjective point of
view. Subjectively a user’s preference of video quality varies
over a range defined by upper and lower thresholds of quality.
The upper threshold of video quality (lower threshold of

video distortion), occurs because additional quality beyond a
certain point is not necessary for the viewer to be satisfied with
watching the video. Indeed, it is clear that a quality increase
above some threshold is quite imperceptible, as having a single
pixel differ by one amplitude unit for 24-bit color cannot be
seen, and so correcting that pixel to allow lossless quality
provides no benefit. This paper does not attempt to determine
the distortion threshold at which further distortion decrease is
of no additional value, but just assumes its existence, and takes
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the video utility to be equal to one (maximum) if the distortion
is below some threshold. By not seeking to reduce the distortion
below the threshold, resources can be freed up for other users.
This resource reallocating problem over users and over time
slots can be solved with the pricing-based method in exchange
economics, similar to [6] and [13].
In a similar manner, the video utility is set to zero when the

video distortion is higher than some threshold. When the distor-
tion is very high, additional distortion does not incur additional
penalty, as the user considers the video useless already. At such
a point, these users can temporarily not transmit (frame freeze)
in a time slot to free up resources for others.
Both the upper threshold and lower threshold of video quality

would have to be determined empirically by users’ preferences
on video quality, and would likely depend on spatial resolution
and viewing conditions, among other factors. Given the overall
bandwidth availability, a lower value for the upper quality
threshold means more bandwidth resources will be freed up
for other users and time slots. The lower threshold of video
quality is related to the rate of frame freezes. Raising the lower
threshold of video quality will free up more resources for
others, however, it will also increase the frequency of frame
freezes. The selection of the lower threshold would need to
reflect the users’ preference of video quality as a tradeoff
between frequency of frame freezes and average quality when
not frozen.
We are concerned here with applications where a user might

accept frame freezes, if it allows higher quality elsewhere on
the average. We consider, for example, using Skype for a video
chat. Such sessions often have periods of freezes or of very
low quality, but as long as the audio component continues
throughout at high quality, the user is generally content, be-
cause the alternative is usually a conventional phone call with
no video component at all. So if there are some periods of high
quality and most periods of acceptable quality, the session is
clearly better than the alternative, even with freezes. Other
video applications which fit this paradigm include lectures
and various types of instructional materials, news broadcasts,
music videos, etc. Users might prefer having acceptable video
quality most of the time with the occasional freeze, rather than
having very low quality for some period of time and very high
quality during some other period of time. That is, when the
number of users is high relative to the total resource available,
it might be preferable for all users to reallocate the resource in
a highly unequal manner within each time slot, so that most
videos are defended with acceptable quality, rather than having
the allocation be roughly equal.
In this paper, we formulate an iterative pricing-based resource

allocation procedure to optimize the utility of each potential sec-
ondary user, in which the price-guided procedure is similar to
those discussed in the economics literature [20]. Unlike existing
rate allocation solutions [1]–[5] and our previous work [6], [13]
which consider a constant bandwidth scenario, we consider sec-
ondary users in a CR system, so available bandwidth fluctuates
according to the utilization of the primary users. Unlike tra-
ditional rate allocation solutions [1], [3], [5] and our previous
work [6], [13], which try to minimize the objective distortion or

the variance of the video qualities of all users, we use a piece-
wise function with two thresholds to control the resource real-
location not only between different users of each time slot but
also between different time slots over time. Unlike most tradi-
tional solutions [1]–[5], which often try to minimize the average
distortion, we aim to find a Pareto optimal (PO) [21] bandwidth
allocation for the secondary users such that each user is at least
as well off as he would be with his initial endowment - an equal
allocation of bandwidth to all secondary users. It may seem sur-
prising that no user suffers quality degradation by participating
in the multiplexing process, because it seems intuitive that when
one user is better off, someone else must be worse off. It is true
that in any one time period, one user getting higher allocation
means another user must get lower allocation. However, when
all time periods are considered together, each user gets higher
allocation at times when it helps them most, and gets lower al-
location when it hurts them least. So overall, all users improve
their quality on the average by participating in the multiplexing
process. This counter-intuitive result was established in [6] and
[13].
Our main contributions are the following: 1) Rather than min-

imizing objective MSE or the variance in MSE, we use a piece-
wise linear function of MSE with an upper threshold and lower
threshold of video quality, which captures some simple but im-
portant perceptual threshold effects in users’ preference, such
that acceptable quality of video is given to as many time slots
as possible for all users, rather than sharing very low quality
of video some time and very high quality of video some other
time. 2) Rather than considering a constant bandwidth supply,
we consider the resource allocation problem for CR secondary
users, for whom the available bandwidth fluctuates over a wide
range. 3) We further consider the case of too many potential
secondary users with limited bandwidth availability. In this sce-
nario, it may be possible that not all the users can have accept-
able quality of video. Then only some users can be active in
order to guarantee acceptable quality. The rest of this paper is
organized as follows. In Section II, we review the exchange eco-
nomics theory for video applications. In Section III, we provide
details on our solution of the resource allocation problem. Sim-
ulation results are shown in Section IV, and conclusions are in
Section V.

II. UTILITY-BASED ECONOMICS THEORY FOR

VIDEO APPLICATIONS

A. Utility-Based Economics Theory

In the theory of exchange economics, users trade their en-
dowments among themselves in a market for mutual advantage.
Our goal, as in [6], [13], is that users in the market will exploit
all potential gains from trade by participating in voluntary ex-
changes with others. Interested readers can read [13], [21] for
more details. We briefly describe the method here. We consider

users and goods.
User ’s consumption vector is . User
is initially endowed with an amount of each good . The total
endowment of good is denoted by . An alloca-
tion is an assignment of a non-negative consumption vector to
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each user: .
A feasible allocation is one such that for all goods

. A PO allocation is a feasible allocation such
that there is no other feasible allocation that would be preferred
by all users. Thus, at a PO allocation it is not possible to make
any user better off without making some other user worse off.
Given the default allocation of providing every user an equal
amount of bandwidth, e.g. of the total available, in each
period, we seek to find a procedure that will yield a PO alloca-
tion of bandwidth that is at least as good as the default allocation
for every user.
User ’s wealth is defined by the market value of his goods

endowed initially. Supposing users can buy or sell good in the
market for price , then the wealth of user is .
For any consumption allocation , the expenditure for each user
should not exceed his wealth, that is .
Given an allocation , the utility for user can be denoted as

, which is an ordinal measure of the user’s
preferences or “level of satisfaction” with the consumption
bundle . When each good’s contribution to utility is indepen-
dent of every other good’s contribution, we have

(1)

where denotes the utility of good for user . We use
this special form of the utility function in this paper to reflect
our assumption that a user’s preference of the quality of a video
in any period does not depend on the video’s quality in any other
period.
In a competitive exchange economy, each user maximizes

his utility subject to the budget constraint. A competitive equi-
librium [21] is defined by a feasible allocation and a price
system such that the utility for each user is maximized, that
is

(2)

subject to his budget constraint

(3)

for every user , and the total demand equals the supply for each
good

(4)

As stated above, the objective is to find an efficient allocation of
bandwidth that is at least as good as the conventional allocation
that provides each user of the available bandwidth in every
period. We attempt to implement such a solution by finding a
competitive equilibrium for which the initial endowment of the
users is the equal allocation of bandwidth in every period.

B. Approximation for Video Applications

The model of users and goods in Section II.A can
be applied to video bit rate allocation. We suppose there are

secondary video users in a CR system, and each video
can be divided into time slots (TS). As the H.264/AVC
video standard is used in our simulation, we consider
the slot to be one Group-of-Pictures (GOP). The band-
width available in time slot is the th good. An allocation

denotes
the bandwidth resource allocation across all users and time slots.
The resource (bandwidth) allocation optimization problem is
the same as (2)–(4). Solving this problem, we would find the
equilibrium prices of bandwidth for each slot .
However, for video bit rate allocation in real-time systems, one
does not know the utilities of bandwidth and prices of all future
slots in advance. In order to solve this problem, we considered
the sequential process solution developed in [6], [13]. For each
time slot , each user tries to optimize his decision for the
current slot and all future slots using expected values for future
prices and future bandwidths. If the future slots are identical in
expectation (for example, the future environment is perceived
as stationary), then the optimization problem for each slot is a
problem with two “slots” only, that is, to optimize the utility of
the current slot and the average expected utility of all future
slots . We use and to denote the allocated
resource for current slot and the average future slot of user ,
and we use and to denote the price of current slot and the
average future slot. Then the optimization problem is similar to
(2)–(4), in which (2) becomes

(5)

and the constraint (3) becomes

(6)

where denotes the wealth of user before resource alloca-
tion is made for slot . It is recursively calculated as

(7)

This solution can be considered as an approximation to the com-
petitive equilibrium allocation for video application. With this
solution, we aim to find an efficient allocation for all secondary
users, such that each user is at least as well off as with their ini-
tial allocation. It is different from conventional rate allocation
solutions [1]–[3], since they try to minimize the average distor-
tion of all videos, even if that would make some users worse off
compared to the case where they received of the available
bandwidth in each period.

III. PRICING-BASED BIT-RATE ALLOCATION FOR

SECONDARY USERS

In this section, we provide details on solving the rate alloca-
tion problem of secondary users with the optimization solution
from Section II.

A. Bandwidth Model for Secondary Users

We suppose there are primary and secondary users in a
CR system, and the bandwidth resource provided for each pri-
mary user is . For each primary user, the duration of each state
(busy/idle) follows an exponential distribution [22]. When the
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Fig. 1. Bandwidth model generation for our cognitive radio scenario.

state ends, the user switches to the opposite state. For simplicity,
we suppose the time model for all the primary users is the same,
with mean parameter for the busy time period and mean pa-
rameter for the idle time period. The available bandwidth for
secondary users is the remaining resource that is not used by
the primary users. This is shown in Fig. 1. We initialize the first

primary users as busy while the rest start idle. Then
the average bandwidth resource for the secondary users over all
time slots (denoted (kbits/TS)) can be estimated as fol-
lows:

(8)

In order to avoid the case that all bandwidth resource
is utilized by primary users, we reserve a minimum band-
width for secondary users. So the available
bandwidth fluctuates in the range , where

. As the busy/idle time periods can be
longer than 1 time slot, the bandwidth model for secondary
users has memory. That is, the amount of bandwidth avail-
able for secondary users in period is not independent of
the bandwidth available to secondary users in period .
The parameters and can be used to change the memory
of the model; larger values of and correspond to more
memory and to slower bandwidth fluctuations. Two realizations
are shown in Fig. 2(a)–(b), where the parameters are set to

and .
As baselines for comparison, we also consider the case

where the bandwidth available to secondary users is constant
at value , and the memoryless case where the bandwidth
available in each time slot is generated uniformly and randomly
in the range . In this case, the average band-
width for the secondary users is .
The fluctuation range of the bandwidth model is defined as

. Fig. 2(c) shows a generated
memoryless bandwidth model with fluctuation range .

B. Definition of Utility for Video Quality

Utility in economic consumer theory is an ordinal numerical
measure reflecting a consumer’s relative rankings of different
allocations or consumption bundles. For video coding applica-
tions, a user’s satisfaction is often directly measured by the neg-
ative of MSE. Then the rate allocation optimization problem
for an individual user can be simply specified as minimizing
the average MSE over time (MINAVE) [1], [4] subject to the
budget constraint. Correspondingly, our optimization problem

in (5)–(7) is equivalent to minimizing the average MSE of each
secondary user, if the utility is defined as negative of MSE. This
tends to work reasonablywell for the constant bandwidthmodel,
because the video quality is often steady enough over time, and
the goals of minimizingMSE andminimizingMSE variance are
not sharply in conflict. However, this does not hold for fluctu-
ating networks.
In this work, we consider that a user’s preference of video

quality varies over a range defined by upper and lower thresh-
olds of quality. The utility function is taken to be a piecewise
function of distortion (measured by MSE), as shown in Fig. 3.
That is

(9)

where and are predefined thresholds. For values of
, the distortion is so low that the user does not value any fur-

ther reduction in distortion. So the utility is 1 for all distortions
, which allows the additional resource to be freed up for

other users to lower their distortion. At the opposite extreme, if
there is a time slot for a user for which the distortion is too
high, that is , then the video is temporarily so bad that
there is no additional penalty for additional distortion, in which
case one might as well freeze the frame and thereby free up re-
sources for other users. So all values of correspond
to zero utility. When , that is the normal sce-
nario, the utility maps linearly to the distortion. Here we use a
linear mapping with MSE, although a different mapping or an-
other quality metric could be used.
This utility function means that if any user were to be as-

signed too much or so few resources in a time slot that their dis-
tortion is beyond the range , the additional or wasted
resources for the current time slot is freed up completely and
used for other users. For users not allocated zero, the quality is
guaranteed not worse than threshold , as well as not better
than . The time slots allocated zero experience a freeze, that
is, their content is copied directly from the last frame of the pre-
vious slot. Then the optimization problem in (5)–(7) maximizes
the utility of every secondary user subject to their budget con-
straint using the utility function defined in (9). However, with
these utility functions, it is no longer necessarily true that a com-
petitive equilibrium allocation is Pareto Optimal [21]. But we
can conclude that this procedure for allocating bandwidth by
defining prices for users to make mutually acceptable trades of
bandwidth within a time slot and across time, will also result
in an improvement in utility for all users. Any reallocation that
would make a user worse off will not be made.

C. Estimation of Model for Current Slot and Average
Future Slot

The utility function defined in Section III.B requires
the rate-distortion ( ) model of the current slot and the
average model of all future slots for the optimiza-
tion problem (5). For an encoded video stream, the MSE dis-
tortion typically decreases nonlinearly with an increase in bit
rate. Different slots have different models. We update
the model once per slot. For user at time
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Fig. 2. Bandwidth models for secondary users. (a) CR model . (b) CR model . (c) Random model .

Fig. 3. Utility function.

slot , let be the MSE distortion at bandwidth
. We use the common model [23], [24]

(10)

where the parameters , , and relate to the video
complexity of the slot. The traditional least squares
method is used for curve fitting to obtain the parame-
ters. We first collect RD pairs for slot of user :

. From (10), we
obtain

(11)

Using contiguous RD pairs and ,
we obtain equations as follows:

(12)
Then by solving the set of equations with a least squares numer-
ical method, we obtain the values of and for user at time
slot . Then can be estimated as follows:

(13)

With the calculated coefficients , and , the utility of the
current slot can be calculated by (9) and (10). We also
need to predict the average utility of all future slots to

solve problem (5). To do this, we need to predict the average
of future slots. Our simple prediction is to average

over the information of all previous time slots, which
was justified in [6]. The average future is estimated
by averaging the individual coefficients ( , , and in (10))
separately. For current slot of user , the coefficients
in (10) of averaged future slots are predicted as

(14)

The average utility of all future slots can be calculated
by (9), (10) and (14) with the predicted coefficients , , and
, where is the predicted average bandwidth for all future

slots.

D. Utility-Based Resource Allocation for Multiple Video
Streams

In order to solve the optimization problem in (5) with an in-
equality constraint (6) and an equality constraint (7), numerical
methods can be used. However, the computational complexity
of this natural problem is high.We try to find a closed-form solu-
tion of this problem. We first simplify the optimization problem
(5)–(7). As the constraint (6) is an inequality, we solve it with
dynamic programming [25]. We denote . Larger

means lower computational complexity with a lower pre-
cision result. We set kbits in this paper. Then we
obtain a set of optimization problems as follows:

(15)

where . We denote the solution of (15) as
. It has the following properties:

(16)
where is the solution of the following optimization
problem with equality constraints:

(17)
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Tabulating the results from up through gives the so-
lution of the problem (15) for user at time slot . The next step
is to solve the optimization problem (17), which has an equality
constraint. As the target function (9) is not convex, some clas-
sical optimization methods, such as Lagrange multipliers, can
not be used. It can be solved numerically with high complexity.
From the Appendix, we obtain the closed-form solution of (17)
as follows:

(18)
where and are defined in (29) and (30). The
set is defined as follows. If

, . Otherwise,
. Here , and are defined

in (19)–(23).

(19)

(20)

(21)

(22)

(23)

Then by combining (16) and (18), we obtain the final result of
the optimization problem (15) as follows:

(24)

where

(25)

E. Iterative Pricing for Competitive Equilibrium

The solution in Section III.D is related to the price of the
current slot and that of the average future slot . We set
because the results in (19)–(23) actually only depend on the

price ratio . That is, the solution is homogeneous of degree
zero in the prices and this can be normalized by setting

. The price is optimal only when the total bandwidth of
all secondary users in slot equals the bandwidth resource of
the current slot (denoted ), and also the total average
expected demands for future slots equals the average expected
supply of future bandwidth, that is the constraint (4). So we can
solve it in a centralized scenario with the constraint (4) to obtain
the optimal price , which we called the equilibrium price in
[13]. In this solution, the computational burden of all users is
shifted to the central server. In [6], we adjusted the price slot-by-
slot in a decentralized scenario to lower the burden of the central
server, an approach which we called 1BID. This solution suited

the constant bandwidth model well, because the price of the
current slot is related to that of the neighbor slots. However, for
fluctuating bandwidth, prices are expected to fluctuate randomly
and thus using the previous slot’s price would not necessarily be
expected to be an informative signal for the current price.
We consider an iterative pricing method, denoted as ITER.

Considering the memoryless bandwidth model, the price of the
current slot has little relationship with that of the neighbor
slots. So we try to find the optimal price for each slot separately.
We set the initial price of each slot to be . Then the
price is iteratively adjusted by

(26)

until is met within 5% error for the current
slot , where is the iteration index. That is the equilibrium
price. In (26), is the bandwidth demand of user at slot
calculated by (24), and is the iterative price
adjustment parameter. It affects the speed of convergence for
the price. An iterative pricingmethod and its convergence issues
are discussed in [8]. Finally we normalize the resource demand
of each user as

(27)

so that the total allocation to the users equals the total bandwidth
resource .

F. Slot Freeze Rate Control

From Section III.B, we know that the utility of a user for
some slots may equal 1 or 0 depending on the amount of band-
width allocated to the user. The fraction of slots where is
called the slot saturation rate, and the fraction for which
is called the slot freeze rate. If the slot freeze rate is too high,
it seems reasonable for some users to cease attempting to use
the system and thus to drop out, or become inactive. When a
user becomes inactive, whatever bandwidth is being allocated
to him becomes available to the remaining active users, thus
enabling their video quality to be improved. In this section we
discuss how our procedure of the previous section is modified
to take account of some users becoming inactive because their
slot freeze rate is too large.
We suppose there are primary and secondary users, and

the bandwidth resource for each primary user is , with a total
bandwidth resource of 1.1 . All secondary users are ini-
tially active. After some period of time (50 TS in our simula-
tion), we examine the slot freeze rates of all active secondary
users in that period. If any of them exceed a predefined threshold

, then the worst user is dropped from service. This is re-
peated until all the slot freeze rates of the active secondary users
are below . The number of remaining active secondary
users is denoted . A simple example of the procedure is
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Fig. 4. Slot freeze rate control. At the end of each period, the worst user is
dropped out until all active users meet .

shown in Fig. 4, in which , and . is related
to and to the total bandwidth resource.

IV. EXPERIMENTS

The simulation was implemented using the baseline profile
of H.264/AVC reference software JM16 1 and MATLAB. The
GOP size is 15 frames (I-P-P-P). The rate control module of
H.264/AVC is activated. The test sequences for secondary users
were taken from travel documentaries with substantial variation
in scene complexity from one scene to another. The channel is
assumed to be lossless. We chose 12 test sequences for simula-
tion and each one is 6000 frames (400 slots) long at a resolution
of . For every simulation, secondary users are ran-
domly chosen from them. was set to 4 and 8. To estimate the
video model for the current slot and the average future
slot in Section III.C, RD pairs were generated for rates
ranging from 100 kbps to 2000 kbps.
The satisfaction for each secondary user is measured by the

utility defined in (9). To provide results, we first obtain the utility
value of each user at each slot, and transform it to MSE by the
inverse function of (9) in the range . Then the average
MSE of each user for all time slots is taken and the PSNR is cal-
culated (denoted UPSNR). Note that UPSNR here stands for the
subjective measurement in our paper. An improvement in sub-
jective measured utility means an improvement in UPSNR; we
report results as UPSNR as the log units of PSNR are more fa-
miliar. The two thresholds and in (9) are chosen as 38 dB
and 30 dB in this paper. The high threshold of 38 dB is taken to
be the value above which further gains in quality provide no ad-
ditional utility to the user. This choice of 38 dB might be valid
for small screens and certain types of content, whereas a higher
value of 43 dB might be valid for other viewing conditions or
other content. The low threshold of 30 dB is taken to be the value
belowwhich further loss in quality incurs no further penalty, and
the user can equivalently be shown a freeze. For some applica-
tions, this low threshold might be as low as 25 dB for example.
In practical applications, the users’ preference of video quality
should be further investigated to determine the thresholds for
specific scenarios. The average simulation bandwidth of
the network ranged from 400 to 600 kbps per secondary user.

1http://iphome.hhi.de/suehring/tml

As discussed in Section III.A, and can change the time
correlation or fluctuating rate of the bandwidth availability. We
consider four bandwidth time correlation cases:
and shown in Fig. 2(a)–(b), in which the bandwidth
fluctuating rate of the former is lower than that of the latter, con-
stant bandwidth model, and random bandwidth model shown in
Fig. 2(c). Bandwidth fluctuation ranges , 0.4, and 0.6
are considered. Six combinations of these parameters are sim-
ulated. Case 1: Constant bandwidth; Case 2: CR
and ; Case 3: CR and ; Case 4:
Random bandwidth and ; Case 5: Random bandwidth
and ; Case 6: Random bandwidth and . In this
paper, the equal allocation method, denoted EQL, is the base-
line. For each time slot, it equally allocates the available re-
source among all secondary users. We denote the MSE-based
optimization solutions as MSE_ITER (for the iterative solu-
tion) and MSE_1BID (for the non-iterative solution) where the
utility is simply the objective distortion MSE [6]. The proposed
utility-based optimization solution is denoted UTILITY_ITER.

A. Comparison of Pricing Methods

We first examine MSE_1BID and MSE_ITER for different
bandwidth models. The price adjustment parameter in (26)
is set to 0.2 empirically. If is large, the price will converge
fast but inaccurately. If is too small, the speed of convergence
will be very slow. For our simulations, was not optimized for
any set of video streams. It is known from Section III.E that the
converged price of ITER is the equilibrium price. It is expected
that the result of ITER is equal to or better than others.
For constant bandwidth, the available resource for each slot

is the same. So the equilibrium price of the current slot is
often highly related to that of the previous slot. In this case, it
is expected that the MSE_1BID price, MSE_ITER price and
UTILITY_ITER price would be similar, which the simulation
results in Fig. 5(a)–(c) suggest is true. For fluctuating band-
width, the equilibrium price for each slot is less correlated.
Simulation results are shown in Fig. 6(a)–(c). The price fluctu-
ates sharply together with the bandwidth.
We tested the objective PSNR results of MSE_1BID,

MSE_ITER and EQL for different bandwidth models. That
is to average MSE of each user over all time slots and then
calculate the PSNR (denoted PSNR). The subjective UPSNR
results are similar with the objective results, and will be shown
later in next section. Fig. 7(a)–(d) show the results for the pre-
defined bandwidth models Case1-Case4, which have different
fluctuating rates. As expected, the improvement of MSE_ITER
over MSE_1BID becomes larger for the network model with
rapid fluctuations. The improvement of MSE_ITER is up to
0.9 dB comparing with EQL and up to 0.4 dB comparing with
MSE_1BID for the high fluctuating rate case. As the resource
availability becomes less correlated from slot-to-slot, the equi-
librium price is also less correlated from one slot to another.
Similarly, for the network models Case4-Case6 with different
fluctuating ranges, a larger fluctuating range means lower
correlation, so the result of MSE_ITER is much better than that
of MSE_1BID and EQL. The results are shown in Fig. 7(d)–(f),
whose fluctuating ranges are 0.6, 0.4 and 0.2 respectively.
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Fig. 5. Price for constant bandwidth model. (a) MSE_1BID pricing. (b) MSE_ITER pricing. (c) UTILITY_ITER pricing.

Fig. 6. Price for fluctuating bandwidth model in Fig. 2. (a) MSE_1BID pricing. (b) MSE_ITER pricing. (c) UTILITY_ITER pricing.

B. Result of Utility-Based Iterative Pricing

In Section III.D, we simplified the original utility-based
optimization problem (5)–(7) (denoted ORIGINAL) with
an inequality constraint (6) to (15) (denoted UNEQL_CON-
STRAINT) and solved it with dynamic programming. However,
the computational complexity for solving this problem is high.
A further approximate solution of (15) is the problem with an
equality constraint (17) by setting , whose closed-form
solution is shown in (18) (denoted EQL_CONSTRAINT).
We averaged multiple simulation results of the closed-form
solution EQL_CONSTRAINT, comparing with the simplified
solution UNEQL_CONSTRAINT and the original problem
ORIGINAL solved with numerical methods. One of the
UPSNR-versus-bandwidth result is shown in Fig. 8. EQL
denotes the baseline, which equally allocates the resource
among all users for each time slot. The approximate solu-
tion is slightly worse than the original solution by 0-0.3 dB
and slightly worse than the simplified solution by 0-0.1 dB.
However, the average simulating times (by MATLAB) for
EQL_CONSTRAINT, UNEQL_CONSTRAINT, and ORIG-
INAL are 0.03, 3.4, and 1352 (seconds) respectively. So in
the following simulations, we only consider the approximate
solution EQL_CONSTRAINT to accelerate the algorithms.
The utility-based solution in Section III.D is based on seeking

a competitive allocation that will maximize the utility of each
secondary user subject to his budget constraint. The following
four solutions are compared for different bandwidth models.
1) UTILITY_ITER: The utility-based optimization solution
in Section III.D is combined with iterative pricing (ITER) in

Section III.E. 2) MSE_ITER: The MSE-based optimization
solution in [6], which tries to optimize the global MSE of
each user, is combined with iterative pricing. 3) MSE_1BID:
The MSE-based optimization solution in [6] is combined with
1-bid pricing (1BID). 4) EQL: It is the baseline solution, which
equally allocates the resource among all users for each time
slot.
Fig. 9 shows the UPSNR results of these methods for

different bandwidth models with different fluctuating rates
and fluctuating ranges for four secondary users. The results
for MSE_1BID, MSE_ITER and EQL are similar to those
of Section IV.A. For UTILITY_ITER, it is expected that the
result is much better than the other three methods for band-
width models with higher fluctuating rate or fluctuating range.
Fig. 9(a)–(d) shows the results for bandwidth models with
different fluctuating rates. The result of UTILITY_ITER be-
comes increasingly better with the increase in fluctuating rate,
compared with the other three solutions. Fig. 9(d)–(f) shows
the results for bandwidth models with different fluctuating
ranges. The result of UTILITY_ITER becomes increasingly
better with the increase of the bandwidth fluctuation range,
compared with other solutions. Table I shows the average
UPSNR improvement of each method compared with EQL for
different bandwidth models. The improvement of the proposed
method is up to 1 dB when the bandwidth fluctuates sharply
and frequently.
We additionally increase the number of secondary users

from 4 to 8. The results shown in Fig. 10 and Table II are similar
to, but slightly better than, the case of by 0.05-0.2 dB,
because having more secondary users allows more efficient rate
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Fig. 7. Comparison of pricing methods for the bandwidth models Case 1 through Case 6. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

Fig. 8. Comparison of original solution, simplified solution, and closed-form
solution.

allocation among users as there are more gains from trading
bandwidth among users in any slot.
Besides the subjective test, we also test the usual objective re-

sult PSNR of our method. Here, we average MSE of each user
over all time slots and then calculate the PSNR. One simple
simulation result is shown in Fig. 11. The proposed method
is still better than EQL by 0.5-0.7 dB but slightly worse than
the method we presented in [6] (which minimized the objective
quality MSE of videos) by 0.1-0.2 dB. So the proposed method
which aims to maximize utility has only a very slight loss in
conventional MSE compared to the method [6] which aims to

maximize MSE; this slight loss is because utility maximization
ignores changes in MSE at levels above and below the utility
thresholds.

C. Simulation of Slot Freeze Rate Control

The effectiveness of the proposed bandwidth allocation ap-
proach mainly comes from the freed-up resource from the sat-
urated slots. We tested the slot saturation rate for the simula-
tion in Section IV.B with 4 secondary users, and some results
are shown in Fig. 12. The slot saturation rate is up to 20%-50%
for most cases. With the increase of the total available band-
width, the slot saturation rate increases, which means that more
resources are freed up. When bandwidth is scarce and the re-
sources are not sufficient to give acceptable video quality to all
users, some slots experience a freeze, which is the other mech-
anism for freeing up resources for others. While high slot satu-
ration rate is not a concern (it means users are at their maximal
utility), in practical applications, the slot freeze rate (slots where

) should not be too high. Without using a mechanism to
control the slot freeze rate, we simply examined the slot freeze
rate for the simulation in Section IV.B with 4 secondary users.
Some results are shown in Fig. 13; the slot freeze rate is less than
4% for most cases. By comparison, the rate of slots with quality
below the lower threshold is often up to 30% for the baseline
solution EQL. Note that frame freezes are not required by our
scheme; the frame freeze rate can be controlled to as small as
zero by decreasing the lower threshold, according to the users’
preference of video quality in different conditions.
We further conducted a simple observer test to verify the vi-

sual effect of the frame freezes. Six videos at low bit rate (about
30 dB) were provided to ten users to watch, including four prac-
tical network videos (these were 6000 frames long at 30 fps with



1858 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

Fig. 9. Subjective results of utility-based pricing method for four secondary users. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

TABLE I
AVERAGE UPSNR IMPROVEMENT (DB) OF EACH METHOD FOR FOUR

SECONDARY USERS

resolution ), and two standard YUV videos (“Paris”
and “News” which were 300 frames long at 30 fps with resolu-
tion ). The GOP size was 15. Five percent of the slots
were randomly selected to be frozen, which is the highest freeze

rate in our simulation result. The videos were presented to users
on a personal computer in a quiet room. The four network videos
were presented with audio, and the audio continued throughout
even when the video experienced a freeze. The other two YUV
videos do not have audio information. Users were asked to think
of the videos as on-line material, and rate the annoyance of each
freeze they saw as 3 levels: low, medium, or high. Undetected
freezes were considered invisible. Results averaged over videos
and users are in Table III. Most freezes were either invisible or
of low annoyance for this video content. Moreover, the annoy-
ance of the videos with audio is lower than those without audio.
We assume that users will accept a low rate of annoying freezes,
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Fig. 10. Subjective results of utility-based pricing method for eight secondary users. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

but above a certain point the video will be considered not worth
watching.
So far, no user was dropped from service. From Fig. 13 we

see that the slot freeze rate for secondary users increases with the
decrease of the average bandwidth . If there are too many
secondary users relative to the limited bandwidth resource in the
CR networks, we can not guarantee the slot freeze rate to be ac-
ceptable. In this case, the mechanism described in Section III.F
is implemented to drop some of the secondary users from ser-
vice near the beginning until the predefined slot freeze rate is
met.

V. CONCLUSION

In this paper, we considered the rate allocation problem of
multiple secondary users in cognitive radios, for which the
available bandwidth often fluctuates over a wide range. A
utility-based iterative pricing procedure, which is derived from
economics theory, is formulated to optimize the subjective
video quality of each user, such that each user is at least as well
off as his initial endowment. Experimental results show that the
subjective result becomes increasingly better with the increase
of the bandwidth fluctuating rate or the bandwidth fluctuating



1860 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

TABLE II
AVERAGE UPSNR IMPROVEMENT (DB) OF EACH METHOD FOR EIGHT SECONDARY USERS

Fig. 11. Objective results comparison.

range, compared with that of equal resource allocation and
existing rate allocation solutions. The results also improve
with more secondary users. When too many secondary users
share limited resources, dropping some users from service at
the beginning can guarantee the quality of all active ones to be
acceptable.

APPENDIX I

In this appendix, we solve the optimization problem (17) in
Section III.D, and give its closed-form solution.
First, we aim to simplify the optimization problem. By sub-

stituting the utility function in (9) with the
models in (10) and (14), we obtain the utility functions of the
current slot and the average future slot for user as follows:

(28)

(29)

The boundaries , , , and in (28) and (29) can be
calculated from (10), that is

(30)

(31)

The average bandwidth for the future slots in (29) can not be
known in advance. However, we could obtain the relationship
between and from the equality constraint in (17), that is

(32)

Then by substituting (32) into (29), we obtain

(33)
where and are calculated as follows:

(34)

(35)

Next, with the preparations above, we aim to find the closed-
form solution of (17). For simplicity, we denote the objective
function in (17) as follows:

(36)

Note that both and are now functions of , as
shown in (28) and (33).
It is easy to prove that is monotonic increasing within

the region , and is monotonic decreasing
within the region . Then the optimization of

can be considered in 2 cases: (a)
, (b) .

First we consider case (a). The -axis is divided into 5
regions: , ,

,
, and ,

denoted region , and 5 respectively. For region1, the
values of and are constant. So the optimal point
in this region lies at . Region5 is similar to region1. So
the optimal point lies at . For region2,
there are two possible scenarios. If ,
is monotonic increasing, and is constant. If

, is constant, and is monotonic
decreasing. So for region2, the maximal utility point lies at

or . That is equivalent
to or . Region4 is similar to region2. So the
optimal point is or . For region3,
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Fig. 12. Slot saturation rate versus average bandwidth for four secondary users. Each curve in the figures corresponds to one user. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4.

Fig. 13. Slot freeze rate versus average bandwidth for four secondary users. Each curve in the figures corresponds to one user. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4.

TABLE III
AVERAGE FRAME FREEZE RATE FOR EACH EFFECT LEVEL

is monotonic increasing and is monotonic
decreasing. In this case, it is known that is always

differentiable. By solving , we obtain the
sole maximal/minimal result as

(37)

If is within region3, it is valid. Otherwise, it is discarded.
Considering the boundary cases, the optimal point for region3
is , , or .
Summing up, the solution for problem (17) in case (a) is as

follows:

(38)

Here is defined as , where
, and are shown in (30), (34), (35), and (37).

Then we consider case (b) for the optimization problem. In
this case, region3 is empty. So is directly discarded. For
the other regions, they are the same as that of case (a). So the
solution for problem (17) in case (b) is (38), where is defined
as .
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