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Abstract—We consider an uplink multicarrier system with mul-
tiple video users who want to send compressed video data to the
base station. In the time domain, we model the time-varying chan-
nel using Jakes’ model, and in the frequency domain, each subcar-
rier is assumed to be independently fading. The video is scalably
coded in units of a group of pictures (GOP), and users have
different video rate distortion (RD) functions. At the beginning of
the GOP, the base station collects both the RD information and
the instantaneous channel state information (CSI) for subcarrier
allocation purposes. We design a cross-layer resource allocation
algorithm to assign subcarriers to users based on both the demand
of the video and the quality of the channel. Once the resource
allocation decision is made, the users then periodically adapt the
modulation format of the subcarriers allocated according to the
evolution of the CSI for the duration of the GOP. We show that our
cross-layer resource allocation robustly outperforms two baseline
algorithms, each of which uses only one layer of information for
resource allocation.

Index Terms—Time-varying channel, radio spectrum manage-
ment, multimedia communication, multicarrier system, wireless
power allocation.

I. INTRODUCTION AND RELATED WORK

OVER the past decade, the high demand for data rate for
multimedia transmission and the limitation of communi-

cation bandwidth have become the bottleneck to multimedia
communications. For cellular and wireless local area network
systems, various PHY/APP cross layer techniques have been
studied to both improve video quality and increase cell capacity.
Among them, point-to-point PHY/APP cross layer optimization
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seeks to exploit the unique characteristics of video, and applies
schemes like multiple description coding to provide different
protection levels and achieve higher end-to-end user quality of
experience (QoE). Most research has focused on slow-varying
channels [1]–[3].

To combat the uncertainty of a time-varying channel, video
communication with automatic repeat request (ARQ) was pro-
posed in [4] and [5]. Although ARQ is easy to implement, the
time delay and uncertainty for exchanging the ARQ signals
might not be suitable for delay sensitive video applications.
More importantly, for a system with different Doppler spreads,
the packet loss rate (PLR) varies dramatically with respect to
channel estimation accuracy, which is determined jointly by
the pilot spacing, the pilot power and the number of pilots
used for interpolation [6]. Most papers on ARQ-based video
communication oversimplify the PLR model. In [4], PLR is
treated as a constant for all Doppler spreads. In [5], the authors
study the performance of adaptive modulation with ARQ in
a data communication system, and perfect channel estimation
is assumed for choosing the modulation format and demod-
ulation at the receiver. Channel estimation accuracy could be
improved by reducing the interval between the pilots. However,
the throughput loss due to pilot insertion might significantly
reduce the number of video source bits delivered to the channel.
Under the perfect channel state information (CSI) assumption,
the critical tradeoff between the channel estimation accuracy
and source encoding rate is missed in [5]. Channel variation
can sometimes be accommodated by using buffers at both the
transmitter and receiver sides. Recently, video oriented proto-
cols such as HTTP adaptive streaming (HAS) and dynamic
adaptive streaming over HTTP (DASH) have been introduced
for delivering enhanced QoE video over the Internet [7], [8].
In this paper, we are interested in a scenario of tight delay
constraints for video delivery, and do not consider the presence
of buffers.

Forward Error Correction (FEC)-based video communica-
tion with no retransmission is often used for delay-sensitive
video data. To achieve higher average image quality in systems
with high mobility, [9] utilizes the coding diversity across
both time and frequency, and analyzes the performance of
progressive image transmission in the presence of inter-carrier
interference and channel estimation error in a multicarrier set-
ting. In [10], the authors study a joint link and source adaptation
system, where the modulation and coding scheme at the PHY
layer is chosen according to instantaneous CSI and different
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importance levels of the packet, while the source rate at the APP
layer is chosen based on the visibility of the packet. Without
any assumption of knowledge of the channel in the future, the
adaptation scheme in [10] has the potential to be applicable
for systems with arbitrary mobility. Both [9] and [10] focus on
point-to-point multimedia scenarios where the user is assumed
to have a fixed resource allocation regardless of the demand.

Another technique is to exploit the relative diversity (both at
the PHY layer and the APP layer) in a multiple access envi-
ronment. To utilize multiple user channel diversity, multicarrier
systems are widely used in cellular systems, as the resource
allocation for multicarrier systems can be done flexibly. Multi-
ple user subcarrier assignment with different user rate demand
is investigated in [11], where the authors try to maximize the
weighted sum of throughputs for different user priority levels.
In [12] and [13], user priority is further abstracted as a utility
function, and the goal of the resource allocation is to maximize
the sum of utilities. In [14], a multiple subcarrier assignment
problem is presented, where both user rate distortion (RD)
functions and CSI of multiple subcarriers are used for resource
allocation to minimize the sum of distortions. Inspired by the
equal-slope condition for video multiplexing [15], the authors
derived a necessary condition for optimal spectrum sharing
and designed an iterative algorithm for multiple subcarrier
assignment. In references such as [12] on multiuser multicarrier
resource allocation, the objective function (e.g., the utility
function in [12]) is measured over some interval of time, and
the channel is assumed to be stable for that duration.

In this paper, we study a multiuser scalable video uplink
system in a doubly selective environment. Unlike [14], we do
not assume any relation between the channel Doppler spread
and video group of pictures (GOP) duration. For the physical
layer, we use pilot symbol assisted modulation (PSAM) and
allow users to adaptively change modulation format between
resource allocation decisions. With the goal of minimizing
average distortion, we design a PHY/APP cross layer resource
allocation algorithm which takes into account both throughput
loss and channel estimation error. As discussed above, for
systems with high mobility, the end-to-end video performance
highly depends on the tradeoff between the channel estimation
accuracy and video source encoding rate. Unlike [14], we take
the throughput loss due to pilot insertion into consideration in
our resource allocation design in this paper. The assumption of
low mobility in [14] and arbitrary mobility in this paper make
the system design different. By adjusting the spacing between
the pilot symbols, we show via simulation the optimized val-
ues for channel adaptation. We further quantify the tradeoff
between the loss of throughput due to pilot insertion and loss
of performance due to channel outdating. We show that our
previously designed resource allocation algorithm in [14] can
be made robust to Doppler spread and outperform the baseline
resource allocation algorithms that only use a single layer of
information. To the best of our knowledge, this paper is the first
work concerning video communication resource allocation with
arbitrary user mobility.

The rest of the paper is organized as follows: In Section II,
we describe the system model for a multiple user multicarrier
video communication system. We also provide details on the

application layer scalable video codec and the physical layer
doubly selective fading channel model. We then discuss the
resource allocation framework and the use of PSAM scheme
for arbitrary user mobility in Section III. We present three
resource allocation algorithms, each with a different degree of
knowledge of the system information in Section IV, and we
show their performance results in Section V. We conclude the
paper in Section VI.

II. SYSTEM MODEL

We consider a cellular multicarrier video communication
system with a set of video users indexed by k, k = {1,2,3 . . .K}.
The system occupies a total frequency band of W (Hz) equally
divided into Mc(Mc ≥ K) subcarriers indexed by m, m =
{1,2,3 . . .Mc}. We assume users experience the same Doppler
spread. We focus on an uplink system, and the task of the
resource allocation is to assign subcarriers to users based on
both RD functions and CSI to minimize the sum of video
distortions. The same principle of the system design presented
in this paper can also be applied in a downlink system.

A. Doubly Selective Channel Model

The system operates in a slotted manner, and the length
of one time slot is Ts (sec), equal to both the video display
time and the transmission duration of one GOP. As depicted
in Fig. 1, we assume a block fading model in the frequency
domain with coherence bandwidth Bc = ΨW/Mc. Here, W/Mc

is the bandwidth of each subcarrier, and Ψ is the coherence
bandwidth in units of subcarriers. Let Hk,m[l] be the complex
channel gain of user k for subcarrier m at the l-th symbol. The
subcarrier assignment as well as the power allocation decision
will be made on a slot-to-slot basis. Each subcarrier can only be
used by one user, but it is possible for one user to get more than
one subcarrier. Further, Hk,m[l] = γkαk,m[l], where γk depends on
the path-loss coefficient, the distance between the mobile user
and the base station, and the shadowing caused by obstacles.
For user k, we assume that γk is fixed for the duration of a
GOP. The variable αk,m[l] captures the multipath fading and is
modeled as a zero-mean complex stationary Gaussian random
process [16]. The magnitude of αk,m[l] is Rayleigh distributed
with a variance of unity for a non-line-of-sight system. The
band-limited spectrum of αk,m(t) is given by

S( f ) = S(0)

[
1− f

fd

]−1/2

, | f |< fd (1)

where fd is the Doppler spread, and S(0) = 2/π. Define fnd =
fdT0 as the normalized Doppler spread, where T0 is the symbol
duration. The autocorrelation between two symbols l and l+Δl
can be written as [16]

E
[
αk,m[l]α∗

k,m[l +Δl]
]
= J0 [2π · fnd · (Δl)] (2)

where J0(·) is the zeroth order Bessel function of the first kind.
The first zero crossing of the correlation function occurs when
the product fnd · (Δl) is about 0.4.
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Fig. 1. Doubly selective channel model and resource allocation for multiple user video transmission system.

For a multicarrier system, the complex envelope of the
transmitted signal for user k can be written as

xk(t) = ∑
l

Mc

∑
m=1

√
Pk,mXk,m[l]exp

(
j2πmt

T0

)
g(t − lT0) (3)

where Pk,m and Xk,m[l] are the transmission power and coded
symbol with unit variance, respectively, of user k on subcarrier
m. The power Pk,m is assumed to be fixed for the duration of a
time slot, and Pk,m = 0 if subcarrier m is not allocated to user
k. Also, g(t) is a zero-excess bandwidth Nyquist pulse, with
G( f ) = 1, ∀ f ∈ [−1/2T0,1/2T0), and G( f ) = 0 otherwise.

Since we assume flat fading for each subcarrier, the lowpass
equivalent received signal of user k on subcarrier m is given by

yk,m(t)=
√

Pk,mHk,m[l]Xk,m[l]exp

(
j2πmt

T0

)
g(t − lT0)+nk,m(t)

(4)

where nk,m(t) is complex additive white Gaussian noise
(AWGN) with two-sided power spectral density N0. Research
in [17]–[19] shows that timing and frequency synchronization
problems can be properly solved by using joint estimation
schemes with a reasonable training sequence. Thus, for sim-
plicity, we ignore the effect of intercarrier interference and
intersymbol interference. To detect the signal on subcarrier m,
a correlation operation is performed:

Yk,m
Δ
=

∫ ∞

−∞
yk,m(t)exp

(
− j2πmt

T0

)
g(t)dt (5)

The noise power is given by PN =E[|Nk,m|2]/2=N0/T0, and the
power for the desired signal is Pk,m|Hk,m[l]|2. If the modulation

format is adaptive QAM, from [20] and [21], the symbol error
rate (SER) for an AWGN channel can be approximated as

SER ≈ 4Q

⎛⎝√
3

M−1

Pk,m
∣∣Hk,m[l]

∣∣2
PN

⎞⎠ (6)

Here, M is the alphabet size of a QAM waveform, and for a
given fixed SERt , the information rate (number of bits each
symbol can carry) Rk,m(Pk,m,Hk,m[l]) (in bits/symbol) can be
written as a function of transmission power and channel re-
sponse gain:

Rk,m (Pk,m,Hk,m[l])

= min
{⌊

log2

[
1+ηPk,m

∣∣Hk,m[l]
∣∣2]⌋ ,Rmax

}
(7)

where η = 3
PN
[Q−1(SERt/4)]

−2
and Rmax is the largest alphabet

size the system allows. The term log2[1 + ηPk,m|Hk,m[l]|2] is
obtained by solving (6) for M, and then taking the log of
the result. We take the flooring operation since the number of
bits per symbol has to be an integer. The bit rate (in bits/sec)
then can be written as Rk,m(Pk,m,Hk,m[l])/T0. In the following
sections, we will replace Hk,m[l] by the estimate H̃k,m[l] in
(7) and use Rk,m(Pk,m, H̃k,m[l]) to determine the modulation
alphabet size. Note that, because of the channel estimation error
and the floor operation in (7), the actual SER of the symbols
might be different from the parameter SERt . The effect of the
channel estimation accuracy and the choice of SERt will be
investigated in the simulation section.
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B. Scalable Video Codec

A scalable video codec is designed such that the decoder
only needs a portion of the encoded bitstream (a substream) to
display the video. The decoded fidelity of the video depends on
the length of the substream, as well as the rate distortion char-
acteristics of the video content. Scalable coding allows flexible
adaptation to time-varying wireless channels and throughput
variations in multiple-hop communication systems.

For each bitstream, the most important video information
(e.g., coding modes) is contained in a substream called the base
layer (BL). One or more enhancement layers (EL) are added
such that the mean square error (MSE) will decrease when more
enhancement bits are received by the decoder. Previously, a
fine granular-scalability (FGS) codec was proposed [22], [23]
for accurate source-to-channel adaptation. FGS allows every
successfully delivered video bit to improve the video quality,
but the granularity of the scalability will sacrifice the video
compression efficiency. The scalable extension of H.264/AVC
(known as H.264/SVC) [24] with medium granular scalability
(MGS) has emerged as a balanced solution for the tradeoff
between compression efficiency and scalable granularity. An
H.264/SVC MGS codec features temporal, spatial and quality
scalability, and allows the flexibility of dropping a combination
of substreams according to the communication channel. In
this paper, we are interested in the quality scalability func-
tion defined in [24], which packetizes the encoded bitstream
according to the zonal location of the DCT coefficients and
ranks the packets based on their importance in the GOP. The
encoder assigns the highest priority for transmission to the
packets which can most effectively reduce the compression
distortion. If an error occurs in the transmission, as one of the
properties of the H.264/SVC decoder [24], the entire packet
and all successive packets within the GOP will be dropped, but
previous packets (all of which have higher priority) will be used
for decoding the GOP.

To characterize the tradeoff between the compression fidelity
and the number of bits used to describe the source, we model the
rate distortion (RD) curve of the video using a parameterized
function. Since the video is compressed in units of GOPs, this
RD function is also measured on a GOP-by-GOP basis. Let
Dk(B) be the RD function of user k, where B is the number
of bits in the substream (the length of the truncated bit stream).
For each GOP, the MSE distortion can be approximated as [25]

Dk(B) = ak +
wk

B+ vk
(8)

where ak, vk, and wk are constants which depend on the video
content. When the picture is relatively spatially uniform, and
the motion of the video is slow, the time and spatial redundancy
can be easily compressed, and one would expect a relatively
flat RD function. For a video with high complexity and fast
motion, the RD function is normally steep and wk is relatively
large. The difference of the RD tradeoff between different users
constitutes application layer diversity. Since the path-loss and
shadowing are assumed to be constant for the duration of the
GOP, we drop the index of the GOP for simplicity in the
following sections.

III. CROSS LAYER VIDEO UPLINK SYSTEM

WITH ARBITRARY USER MOBILITY

In a multiple user system, to minimize the sum of the MSEs
across all users, the base station collects the RD information
(coefficients of ak, wk, and vk in (8)) as well as the CSI of the
subcarriers, and allocates the subcarriers jointly according to
application layer and physical layer information. In [14], we
studied video resource allocation for a system in which the
channel varies slowly over the duration of a GOP. Under the
condition of constant CSI for the entire GOP, we assumed that
the modulation format remains unchanged for one GOP, and
the throughput of each subcarrier could be perfectly estimated
at the beginning of each GOP. The resource allocation problem
then becomes a mixed integer programming problem, and
allocation decisions are made on a GOP-by-GOP basis.

A. System Operation Overview

For mobile users operating in an environment with a high
enough Doppler spread, the CSI estimated at the beginning of
the GOP will be outdated prior to the end of the GOP. For
subcarrier m, if the modulation format determined by the CSI
at the beginning of the GOP is held constant for the entire GOP
duration, it is likely that the video data will either be over-
protected or under-protected. On the other hand, the resource
allocation decision based on both RD information and CSI
is normally of high complexity [26], [27]. If we update the
resource allocation decision every coherence time, the base
station will need to collect the instantaneous CSI of all the
subcarriers for all the users, as well as the amount of the GOP
that has already been transmitted. If the allocator makes a
resource allocation decision at each coherence time, it is not
only computationally difficult, but also requires a large amount
of information exchange. We thus propose a scheme having two
phases which balances the computational complexity with the
adaptation accuracy.

Phase I Cross Layer Resource Allocation: At the beginning
of each GOP, user k submits the RD function Dk(B) of the
current GOP to the base station. A duration of K symbols is
dedicated for channel estimation for every subcarrier for all
users. Each user is assigned one symbol and users sequentially
send pilot symbols to the base station for channel estimation.
The instantaneous CSI of user k, He

k,m, (k ∈ {1,2 . . .K},m ∈
{1,2 . . .Mc}) for every subcarrier for each user is jointly used
with the RD information by the base station to make an alloca-
tion decision. The allocation decision is fed back to the users
and each user is allowed to access the subcarriers assigned
to him for the entire GOP duration. The resource allocation
algorithm and the information exchange for the RD function
is conducted once per GOP.

Phase II Pilot Assisted Adaptive Modulation: After re-
source allocation, when each individual user knows the subset
of assigned subcarriers, each user periodically sends a pilot
symbol to the base station for channel estimation purposes.
Based on the instantaneous CSI at each period, the base station
updates the modulation format of each subcarrier and feeds the
new modulation formats back to the corresponding users. The
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Fig. 2. Pilot assisted modulation. One pilot symbol is added for each subcar-
rier to estimate the channel for every time epoch. If the number of correlated
subcarriers is larger than 1, only one pilot symbol is needed for every correlated
band.

estimated CSI is also used for demodulation purposes. Since
the modulation format is updated periodically, the number of
information bits transmitted cannot be estimated accurately at
the beginning of the GOP. The important bits will be transmitted
first, and the actual number of bits transmitted is determined
by the overall channel conditions over the duration of a GOP
(Ts seconds). Note that in this phase, no information about the
RD is exchanged, and the resource allocation decision is not
updated. The details of the adaptive modulation scheme are
discussed below.

B. Pilot Symbol Assisted Modulation (PSAM)

As depicted in Fig. 2, at most one pilot symbol will be sent
from the user to the base station in each subcarrier every Ls

symbols for channel estimation. Define a time epoch as a group
of Ls symbols, which is also the distance between two pilot
symbols. The modulation format for every time epoch will be
kept the same, and is determined by the CSI of the pilot symbol.
We define λ as the ratio between the number of information
symbols and the total number of symbols. In most of this paper,
we will focus on a system with independently faded subcarriers,
i.e., Ψ = 1, so that, λ = (Ls−1)/Ls. In a system with coherence
bandwidth Ψ > 1, since all the subcarriers within the coherence
bandwidth will have the same fade realization, fewer pilot
symbols need to be sent. For example, in Fig. 2, two subcarriers
share the same fade (Ψ = 2), and one pilot symbol can be saved
in each time epoch for every group of two subcarriers spanned
by the same coherence bandwidth.

Let Pk,m be the power for the k-th user on the m-th subcarrier,
where Pk,m = Pk > 0 for the duration of GOP if the m-th
subcarrier is allocated to the k-th user, and Pk,m = 0 otherwise.
We assume open loop power control, and Pk is chosen such that
the average received power per subcarrier at the base station is
the same for all users. Let µk,m be the ratio between the power
of the pilot symbols and average data power for the k-th user
on the m-th subcarrier. The power of the pilot symbol, Pp

k,m, and

the data power, Pd
k,m, are then given by

Pd
k,m =

Pk,mLs

Ls −1+µk,m
(9)

Pp
k,m =

Pk,mLsµk,m

Ls −1+µk,m
(10)

We assume that the value of µk,m is the same for all subcar-
riers of all users, and hence we drop the indices k and m. The
average power is given by

Pk,m = µ
1
Ls

Pp
k,m +

Ls −1
Ls

Pd
k,m (11)

For a given SERt , the modulation format for subcarrier m
of user k is updated every Ls symbols based on H̃k,m[iLs + 1],
which is the estimate of the channel response of the i-th pilot,
Hk,m[iLs+1]. The information rate (number of bits each symbol
can carry in bits/symbol) for the i-th group of Ls symbols can
be written as Rk,m(Pd

k,m, H̃k,m[iLs+1]) using (7). To estimate the
channel response Hk,m[iLs + 1], a Wiener filter with Ke pilots
is used for interpolation. Since the decision of the modulation
format needs to be fed back to the users immediately after
the pilot symbol is sent, we can only use the pilots prior
to the current one for channel estimation. In other words, to
estimate Hk,m[iLs + 1], the pilots at indices l = jLs + 1, { j =
(i, i−1 . . .(i−Ke+1))} are used, where Ke is chosen to be even.
To estimate the channel gain of the data symbols Hk,m[iLs +u],
u = (2,3 . . .Ls) for demodulation purposes, pilots from both
sides can be used. That is, the pilots at time indices l = jLs +1,
{ j = ((i−Ke/2+ 1),(i−Ke/2+ 2) . . .(i+Ke/2))} are jointly
used to interpolate the channel gain.

From [6], [28], the channel estimation error e = H̃k,m[l]−
Hk,m[l] can be modeled as a Gaussian random variable with zero
mean and variance equal to

σ2
e = σ2

u −w(l)+R−1w(l)/
(

Pp
k,m|Hk,m|2

)
(12)

where σ2
u = Px

k,m|Hk,m|2 is the average received power of the
data/pilot symbols, and + represents conjugate transpose. If we
use Ke pilots for interpolation, R is a Ke ×Ke matrix with the
entry in the i-th row and j-th column given by

Ri j = PNδi j +Pp
k,m|Hk,m|2J0 (2π fnd(i− j)Ls) (13)

where δ is the Kronecker delta, PN is the noise power, and w(l)
is a Ke column vector for the l-th channel sample. The v-th row
of w(l) is given by

wv(l) = Pp
k,m|Hk,m|2ρv(l) (14)

where ρv(l) is the correlation coefficient of the l-th channel
sample and the channel estimate obtained from the v-th pilot.
For example, as discussed above, to estimate the channel sam-
ple Hk,m[l], if the symbol at time l is a data symbol and belongs
to the i-th pilot time epoch, i.e., iLs +2 ≤ l ≤ (i+1)Ls, the v-th
pilot used for interpolation is at (i−Ke/2+ v)Ls +1, so that

ρv(l) = J0 (2π fnd [l − ((i−Ke/2+ v)Ls +1)]) (15)

From (12), (13), and (14), we see that one of the crucial
parameters for deciding the channel estimation error is the
distance between pilots, Ls. For a given Doppler spread, a
smaller Ls results in a larger overhead, and a larger Ls results
in larger channel mismatch due to CSI outdating, but less
throughput loss. Besides Ls, the variance of e is also dependent
on the number of pilot symbols for interpolation Ke, the average
SNR, and the ratio µ between the pilot symbol power and data
symbol power.
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C. Resource Allocation Problem Formulation

At the beginning of a GOP, the base station estimates the
throughput of each subcarrier using (7), assuming that the
adaptive QAM format will last for Ts seconds. The number of
bits transmitted over subcarrier m of user k can then be written
as Rk,m(Pd

k,m, H̃
e
k,m) ·Ts/T0, where Ts/T0 is the number of QAM

symbols for a GOP. We denote by λ(0 < λ ≤ 1) the fraction of
data symbols, and �(1−λ) ·Ts/T0	 symbols will be pilots. To
protect the data, a channel code of fixed rate u is added. If the
channel stays constant, the number of information bits that the
physical layer can support for user k across all Mc subcarriers
is given by

Bk =

⌊
Mc

∑
m=1

u ·λ ·Rk,m

(
Pd

k,m, H̃
e
k,m

)
·Ts/T0

⌋
(16)

with Pd
k,m = Pd

k , if subcarrier m is assigned to user k, and Pd
k,m =

0 otherwise.
Although to obtain the performance of the resource alloca-

tion algorithm we will include the effects of channel errors and
time varying modulation choices, for the allocation algorithm
design, we ignore the effect of channel errors and assume that
the modulation format is constant for the GOP duration. We use
(16) as the channel throughput for our algorithm design. If we
plug (16) into (8), then the MSE distortion for user k can be
written as

Dk = ak +
bk

Mc

∑
m=1

λRk,m

(
Pd

k,m, H̃
e
k,m

)
+ ck

(17)

Here, we have divided both the numerator and denominator by
u ·Ts/T0 for simplicity. So

bk =
wk

(u ·Ts/T0)
ck =

vk

(u ·Ts/T0)
(18)

The base station needs to assign Mc subcarriers to K users at
the beginning of each GOP, and users can access the subcarriers
for the duration of the GOP. The allocation decision will be
updated at the beginning of the next GOP as both CSI and RD
are updated. Mathematically, our resource allocation goal is to
minimize the sum of distortions among K users at each time
slot. The optimization objective is

min
P

K

∑
k=1

bk
Mc

∑
m=1

λRk,m

(
Pd

k,m, H̃
e
k,m

)
+ ck

(19)

where

P =

⎡⎢⎢⎣
Pd

1,1 Pd
1,2 . . . Pd

1,M

Pd
2,1 Pd

2,2 . . . Pd
2,M

. . . . . . Pd
k,m . . .

Pd
K,1 Pd

K,2 . . . Pd
K,M

⎤⎥⎥⎦ (20)

and the entry in the k-th row and m-th column, Pd
k,m, is the power

allocation of the m-th subcarrier for user k. The base station
sends the allocation decision to the users. Note that we dropped
the ak term, as it is constant with respect to P. We assume that

any subcarrier is used by one user exclusively, so the feasibility
constraint for the optimization problem is as follows:

For m ∈ {1,2,3 . . .Mc}, Pd
k′,mPd

k,m = 0, ∀k �= k′ and Pd
k,m =

{0,Pd
k }.

Mathematically, (19) is an NP-hard integer programming
problem [29], and an exhaustive search approach would need
KMc calculations. In the next section, we will propose a sub-
optimal algorithm which gives priority to users with steep RD
curvatures to access the subcarriers. We compare the perfor-
mance of our algorithm with two baseline algorithms, each of
which has limited information about the state of the channel and
the state of the videos. Note that, compared to [14], the problem
formulation in (19) includes the ratio λ between the numbers of
data symbols and total symbols. Given a fixed power Pk,m, the
throughput of each subcarrier is also controlled by the power
ratio between the pilot symbols and data symbols, µk,m. For
a system with relatively high Doppler spread, the end-to-end
video performance is closely related to the tradeoff between
the channel estimation accuracy and data rate. A more frequent
pilot insertion and larger pilot power will improve the channel
estimation accuracy at the expense of sacrificing data rate. This
tradeoff was not a key issue in [14], but will be discussed in
depth in Section V after we introduce the resource allocation
algorithms in Section IV.

IV. RESOURCE ALLOCATION ALGORITHMS

Before we state the cross layer algorithm that solves the op-
timization problem (19), we introduce two baseline algorithms,
which each use only one layer of information when allocating
resources in Phase I. The three algorithms are similar to those in
[14], so we omit most of the details. After resource allocation,
the channel adaptation mechanism is the same for all three
resource allocation algorithms in Phase II.

Application Layer Resource Allocation Algorithm: We
assume the base station knows only the application layer
information (RD function) when allocating. Define Lk, (k =
{1,2 . . .K}) as the number of subcarriers allocated to user k,
which is determined by the relative complexity of the RD
functions Dk(B). To measure GOP relative complexity, we set
a common video MSE distortion target Dtarget . Let Bk be the
number of bits for user k to achieve Dtarget , where Bk can be

found from Dk(B). Given the constraint of
N
∑

k=1
Lk = Mc, the

subcarriers will be split such that Lk ≈ Mc
Bk

K
∑

k=1
Bk

. Since CSI is

not used, the base station randomly chooses Lk subcarriers for
user k. After allocation, the user applies Phase II to update the
modulation format using (7). For the application layer system,
since the mechanism of Phase II, which includes the choice
of the system parameters (Ls, µ, etc.), is the same as for the
cross layer system, the performance difference between the two
systems depends solely on the resource allocation.

Physical Layer Resource Allocation Algorithm: Here only
the instantaneous CSI H̃e

k,m is available at the base station. Past
work has attempted to balance allocation efficiency and fairness
[30]. In this paper, similar to [14], we are interested in the
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metric of channel gain ratio |H̃e
k,m|2/|H̃e

k |2, where |H̃e
k,m|2 is

the instantaneous channel gain of subcarrier m for user k and

|H̃e
k |2

Δ
= 1

Mc

Mc

∑
m=1

|H̃e
k,m|2 is the empirical average channel gain of

user k at the beginning of the GOP. To control the degree of
imbalance in the number of subcarriers that users receive, we
impose a set of thresholds ψn, n = 1,2 . . .K − 1, such that the
sum of the number of subcarriers for any group of n users will
not exceed ψn. We set ψ1 =

⌈
ε Mc

K

⌉
and

ψn = ψn−1 +

⌈
ε
(

Mc −ψn−1

K − (n−1)

)⌉
(21)

for 2 ≤ n ≤ K − 1. The parameter ε ≥ 1 controls allocation
imbalance; larger values of ε allow more unbalanced resource
allocation, biased towards users with better channels.

To assign subcarriers, we find the subcarrier m∗ which has
the best channel gain ratio among all users and subcarriers, and
assign subcarrier m∗ to user k∗ for whom channel gain ratio is
largest. That subcarrier is removed from consideration, and the
next highest channel gain ratio is found. During this sequential
process, we check if the total number of subcarriers assigned
to any group of n users equals ψn, and exclude all users in the
group from receiving more resources if it does. Details about
the parameter ε and algorithm steps are in [14].

Cross Layer Resource Allocation Algorithm: When both
RD information and CSI are used, a cross layer algorithm
attempts to satisfy the two goals of giving more subcarriers
to users with demanding RD curves and to those with high
channel gains. With the consideration of λ and µk,m in the
problem formulation in (19), we use the same resource alloca-
tion algorithm as [14]. The algorithm first assigns subcarriers
using a MUD algorithm and estimates the number of bits
that the channel can support using (16). The algorithm then
tests possible reassignments of subcarriers to the user with the
steepest slope of his/her RD curve, and uses the CSI to find
the subcarrier which maximally reduces the sum of distortions
through reassignment. After reassignment, we update the user
with the steepest slope and continue the iteration until we
exhaust all possibilities for subcarrier switching.

V. SYSTEM PARAMETER OPTIMIZATION

We use a video with a resolution of 352 × 240. The video
consists of 150 frames at 30 frames/second, and is organized
into GOPs of 15 frames (IPPP). The content of the video
includes both high motion segments and low motion segments.
Each user is assigned the same video, but with random starting
points. The simulation runs for one cycle of the entire video
sequence, and users are then assigned another random set
of starting points for the next cycle. By assigning random
starting points of the same cyclic video to different users, we
create instantaneous application layer diversity among users
and yet have the same average complexity over time for the
different users. Between cycles, different realizations of starting
points will generate different levels of application diversity. We
encode the video using H.264/SVC reference software JSVM
version 9.19.12. For the MGS layer, the 4 × 4 DCT coefficients

of each macroblock are split using MGS vector [1, 1, 2, 2, 2, 8]
[24]. To specify the ak, bk, and ck values of RD curves in (17),
we extract bitstreams at 20 different encoding rates from 60
to 1200 kbps offline and use these operational points to find
the RD function by non-linear regression. At the decoder side,
the bit stream after the first channel error is discarded. In a
very crowded system, it is possible that some users will not
be allocated any subcarriers and the transmission rate for the
GOP is zero. If that happens, the last frame of the previous
GOP is held over for the duration of the current GOP. The
video performance is reported using Peak Signal to Noise Ratio
(PSNR) defined as

PSNR = 10log10
2552

E[MSE]
(22)

We consider a single cell of radius equal to 500 meters.
The bandwidth for each subcarrier is 100 kHz. The channel
response consists of both path loss and multipath fading, and
the amplitude squared of the multiplicative channel coefficient
Hk,m[l] is given by∣∣Hk,m[l]

∣∣2 = ∣∣αk,m[l]
∣∣2 ·K0 ·

(
d0

dk

)β
(23)

where αk,m[l] follows the Jakes’ model and is generated using
the statistical model proposed by [31]. Also, dk is the distance
of user k to the base station, d0 = 10 m is the reference distance,
and the path-loss model is accurate when dk > d0 [32]. The
users are perfectly power controlled and the average received
power is 17.8 dB per subcarrier. We set the path-loss exponent
β= 3, and K0 =−30 dB is a constant. For all three optimization
schemes, we apply a rate u = 1/2 convolutional code with code
generator polynomial [23, 35] in octal. The codeword length is
equal to the length of the entire GOP bitstream, and the coded
bits are interleaved across different subcarriers. To give the sys-
tem an appropriate level of protection at low Doppler spreads,
the value of SERt was set to 0.15, after having tested values
both lower and higher than 0.15. The PSNR performance will
degrade as the Doppler spread increases and channel estimation
accuracy becomes worse. At the receiver, we use soft-decision
decoding with eight reliability ranges. For all three resource
allocation algorithms, the users are allowed to choose M =
{4,8,16,32,64,128,256} as their MQAM modulation alphabet
size every Ls symbols. For the physical layer optimization
algorithm, we set ε = 1.5, so that each individual user cannot be
assigned more than 150% of the average number of subcarriers
(ψ1 = Mc/K) defined in (21) for ψ1.

A. System With Different Ls

In Fig. 3, we show the performance of the three resource
allocation algorithms with respect to different Doppler spreads.
The pilot insertion spacing Ls equals 100, the number of pilots
used for channel estimation Ke is 24, and the ratio µ between
pilot and data power equals unity. The PSNR performance here
consists of both the degradation caused by source compression
and that caused by channel errors. The effects of packet loss,
errors in RD curve fitting, and imperfection of encoder rate
control, are included in the simulation.
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Fig. 3. Ls = 100, Mc = 16 subcarriers, K = 3 users, SERt = 0.15, µ = 1. The
PSNR performance for a system with fnd > 10−2 is less than 15 dB.

Fig. 4. Decoded BER vs fnd , Ls = 100, SERt = 0.15.

In Fig. 4, we show the decoded BER, conditioned on the
event that the user transmits, i.e., Rk,m(Pd

k,m, H̃k,m[iLs +1]) ≥ 2,
where the number “2” corresponds to the number of bits per
symbol of 4QAM. When 1/ fnd is significantly larger than Ls =
100, the channel is relatively constant within each duration of
Ls symbols. The decoded bit error rate for this scenario is in the
range of 10−8 to 10−6. Since we update the modulation format
every Ls symbols, the correlation between the data symbols and
pilot symbols is relatively high, and the channel estimation error
given in (12) is small. The actual raw SER for every group
of 100 symbols is similar to the SER of an AWGN channel
conditioned on the instantaneous channel fade, and is close
to the SER estimated using (6). In other words, for Ls = 100
and fnd < 10−4 in Fig. 3, the proposed mechanism of PSAM
(Phase II) can accurately adapt to the variation of the channel
and properly control the channel error rate.

In Fig. 3, when fnd = 10−3, we see a large performance drop
for all three algorithms. Since the channel estimates become
increasingly outdated, the modulation format chosen based
upon the CSI becomes increasingly meaningless. We see a
significant increase of the decoder BER when fnd reaches 10−3,

Fig. 5. Ls = 25, Mc = 16 subcarriers, K = 3 users, SERt = 0.15, µ = 1.

Fig. 6. Ls = 5, Mc = 16 subcarriers, K = 3 users, SERt = 0.15, µ = 1.

and the decoded PSNR is much worse than that at fnd = 10−4.
When the normalized Doppler spread is 10−2, the decoded BER
is too large for the system to function.

In Fig. 5, we decrease the value of Ls to 25. Recall that the
fraction of data is λ = (Ls − 1)/Ls. Decreasing the value of
Ls will increase the amount of overhead (pilot symbols) used
for channel estimation. However, decreasing the value of Ls

will help the system to achieve better estimation accuracy at
high Doppler. Compared to a system with Ls = 100 in Fig. 3,
we see that a pilot spacing Ls = 25 has better performance
when fnd = 10−3, despite the drop of the source rate. If we
further decrease the value of Ls to 5 as in Fig. 6, the loss of the
source data further increases to 20%, but the benefits of accurate
channel estimation and modulation adaptation allow the system
to operate at a reasonable PSNR value at fnd = 10−2.

B. Comparison of the Three Algorithms

Comparing the systems with different Ls, in Figs. 2, 4, and 5,
we see that the performance follows a very similar trend. For
both the physical layer and cross layer algorithms, we see
that PSNR decreases when fnd increases from 10−6 to 10−3.
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Since we use instantaneous CSI H̃e
k,m for resource allocation,

the multiuser diversity will allow both physical layer and cross
layer optimization algorithms to assign subcarriers that are,
with high probability, experiencing a strong channel compared
to the average channel gain. In other words, if a subcarrier m∗

is assigned to a user k∗, the instantaneous CSI H̃e
k∗,m∗ at the

beginning of the GOP has a high probability of being better than
the average CSI. If the coherence time of the channel is long, the
CSI will be relatively constant over the duration of the GOP. In
this particular system, if fnd is in the range of 10−8 to 10−6, the
channel is not varying much and the modulation format changes
little over a GOP. As fnd increases, at some point, we expect to
see different fades of the channel over a GOP. The average of
these different fades with high probability will be worse than
the CSI at the beginning of the GOP. In particular, the initial CSI
will be outdated very soon for systems with fnd in the vicinity
of 10−3 to 10−1.

In Fig. 3, for the application layer algorithm, the performance
at high Doppler spreads is similar to that of the other two
algorithms. However, the performance at low Doppler spreads
is markedly different. Because the application layer algorithm
does not use physical layer information, it does not benefit from
the multiuser diversity as the other two algorithms do. There-
fore, at low Doppler spreads, the application layer algorithm
has virtually no diversity, and hence exhibits poor performance.
That performance improves as the Doppler spread increases
up to the point where all three algorithms fail due to channel
outdating.

Comparing the application layer and physical layer optimiza-
tion algorithms, we see that the physical layer algorithm has
better performance when fnd is small, and the application layer
algorithm wins when fnd increases. That is, it is more important
to exploit the multiuser channel diversity and allocate the
resources based on the channel realization in a slowly varying
environment. As the channel will stay relatively constant for
a GOP, the resource allocation made based on the CSI at the
beginning of the GOP will be meaningful over the entire GOP.
On the other hand, when the coherence time is sufficiently
small, the CSI will become outdated and the throughput of each
subcarrier will be very similar regardless of the initial state of
the channel. Thus, when fnd is high, it is more important to
allocate resources based on RD information, and the application
layer algorithm has better performance. Note that the cross
layer optimization algorithm is robust with respect to different
normalized Doppler spreads and always outperforms the two
baselines, until the Doppler spread is too large for the system to
track the fades, at which point all three algorithms fail.

C. Systems With Different Resources

We now study the performance for different parameter val-
ues. In Fig. 7, we increase the number of users to 4. In Fig. 8(a)
and (b), we show the performance of a system of 24 subcarriers
with 3 and 4 users, respectively. Comparing Figs. 3, 7, 8(a) and
(b), we see that the system with 24 subcarriers and 3 users
not only has the best performance, but also has the largest
gap between the cross layer and physical layer optimization
algorithms. This is because when the system has 24 subcarriers

Fig. 7. Ls = 100, Mc = 16 subcarriers, K = 4 users, SERt = 0.15, µ = 1.

and 3 users, the cross layer algorithm has more degrees of
freedom to allocate the resources among the users.

In Table I, we show a typical example of the performance
evolution of a three-user system with 16 subcarriers and fnd =
10−6. The resource allocation is done based on the estimate
of the first sample of the GOP, and we show the change of
the estimated MSE for each individual user at each step of
the iteration. Among the three users, the first and second users
have demanding RD curves and the corresponding bk of the RD
information is much larger than that of the third user. For the
cross layer algorithm initialization, the average PSNR is equal
to 32.48 dB, and subcarriers are assigned evenly to all the users.
The algorithm converges in 3 steps (3 iterations) and the final
subcarrier allocation is 6 and 7 for the two demanding users and
3 for the third user. The average PSNR value of the cross layer
algorithm is 33.16 dB. In this case, the cross layer optimization
improves the initial performance of the system by only 0.7 dB.

In Table II, we study a system with 24 subcarriers and 3
users. To compare with the previous example fairly, the channel
realizations for 16 out of the 24 subcarriers are the same as the
realizations of the previous example. Realizations for the re-
maining 8 subcarriers are generated using the same mechanism
as for the first 16 subcarriers. For the 24-subcarrier system, the
initialization of the allocation is (7, 8, 9) subcarriers for the
three users, and the corresponding average PSNR is 34.82 dB. It
takes the cross layer algorithm 5 switches of subcarriers, and the
cross layer algorithm assigns (9, 10, 5) subcarriers to the three
users. The resulting average PSNR performance is 36.17 dB,
and so the cross layer algorithm improves the performance by
1.35 dB. Going from 16 to 24 subcarriers, we see that it takes
the cross layer algorithm more steps to converge and the PSNR
improvement is larger.

D. Systems With Different µ

Besides lowering the value of Ls, another way of achieving
accurate channel estimation is to allocate more power to pilot
symbols. In Fig. 9, we show the system performance versus
the pilot-to-data power ratio µ for the cross layer algorithm
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Fig. 8. Ls = 100, Mc = 24 subcarriers, SERt = 0.15, µ = 1; (a) K = 3 users, (b) K = 4 users.

TABLE I
EVOLUTION OF PERFORMANCE: Mc = 16 SUBCARRIERS, U1 =User 1, U2 =User 2, U3 =User 3. NSub = # Subcarriers Allocated

TABLE II
EVOLUTION OF PERFORMANCE: Mc = 24 SUBCARRIERS, U1 =User 1, U2 =User 2, U3 =User 3. NSub = # Subcarriers Allocated

Fig. 9. Mc = 16 subcarriers, K = 3 users, SERt = 0.15, fnd = 10−3.

when fnd = 10−3. As expected, for small values of µ, the pilot
power is too small, and the PSNR is correspondingly small. As
µ increases, the PSNR increases up to a point where it levels
off, and eventually (as µ continues to increase) it will decrease,
because the data symbols have too little power. Note that the
Ls = 25 curve performs better than the Ls = 100 curve for all
values of µ, because the normalized Doppler spread of 10−3

results in too much outdating when pilots are spaced every 100
symbols apart.

E. Systems With Different Numbers of Users

We now study the system performance when the number of
users increases. We fix the number of subcarriers to 16 and
change the number of users in the system from 3 to 9. In
Fig. 10(a), we show the average performance of all users when
fnd = 10−6 and Ls = 100. We see that in this case, when fnd is
small, the PSNR gain of using the cross layer scheme is very
large compared to the application layer scheme. With 9 users,
the users will normally get a small number of subcarriers. For
the application layer algorithm, the subcarriers are randomly
assigned, and because the number of subcarriers for each user
is small or zero, it is very likely that at least one user will be in
a very bad situation. The user will thus have to function with,
at best, a low rate, and this has a large impact on the average
distortion of the group.

Compared to the physical layer algorithm, the PSNR gain of
the cross layer scheme is always more than 1 dB. Alternatively,
rather than fixing the number of users, if we fix the average
PSNR at, say, 30 dB, the capacity gain of the cross layer
algorithm is a factor of three times that of the application layer
algorithm, and about a factor of 1.5 times that of the physical
layer algorithm.

In Fig. 10(b), we let fnd = 10−3 and Ls = 25. Because of the
benefit of time diversity, we see that the gap between the cross
layer and application layer schemes is less than 0.5 dB for a
system of 3 users. However, the performance of the application
layer algorithm decreases sharply when the number of users
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Fig. 10. Mc = 16 subcarriers, SERt = 0.15, µ = 1: (a) Ls = 100, fnd = 10−6, (b) Ls = 25, fnd = 10−3.

increases, because some of the less demanding users in the sys-
tem will not be allocated any subcarriers. The performance of
these users will be determined by holding the last frame of the
previous GOP, resulting in a low average PSNR value. The gap
between the cross layer and the physical layer algorithms ranges
from 0.6 to 1.3 dB, which is smaller than the corresponding gap
in Fig. 10(a). This is because when fnd increases, the CSI used
for resource allocation is outdated more quickly, and this affects
the ability of the cross layer algorithm to balance the resources
among the users. In other words, at high fnd , the effect of the
CSI of the first symbol of the GOP has less impact than that for
a slow fading system.

For a fixed average PSNR performance of about 29 dB,
the physical layer algorithm can support 6 users. The same
average performance can be achieved for an 8-user system if
the cross layer algorithm is adopted, while the application layer
algorithm can only support less than 5 users. In this sense, the
capacity gain of the cross layer algorithm for a relatively fast
fading system is smaller than that for a slow fading system.

F. Comparison With the Exhaustive Search Algorithm

We now compare the performance of the iterative algorithm
with an exhaustive search algorithm. In Fig. 11, we plot the
average MSE distortion against the number of iterations for
a system with fnd = 10−6. We see that the algorithm can
very effectively reduce the sum of the distortions among the
users in a couple of iterations, and the distortion diminishes as
the number of iterations increases. For the example shown in
Fig. 11, the algorithm converges when the number of iterations
reaches 6.

In Table III, we show a performance comparison between
the iterative algorithm and an exhaustive search for the case of
16 subcarriers and 3 users for the normalized Doppler spread
varying from fnd = 10−8 to fnd = 10−4. The exhaustive search
will calculate 316 different subcarrier assignment combinations,
while the iterative algorithm normally will converge in less
than 8 iterations. For each iteration, the iterative algorithm will
search at most 16 possible subcarrier switches, so the total
number of subcarrier assignment combinations the iterative
algorithm will consider is normally less than 8×16 = 128. As

Fig. 11. MSE vs number of iterations: Ls = 100, Mc = 16 subcarriers, K = 3
users, fnd = 10−6.

TABLE III
PSNR PERFORMANCE COMPARISON, ITERATIVE

ALGORITHM VS. EXHAUSTIVE SEARCH

illustrated in the table, the performance gap between the two
algorithms is always less than 0.08 dB, while the complexity of
the algorithms differs by orders of magnitude.

VI. CONCLUSION

In this paper, we study a multicarrier uplink video communi-
cation system over a channel with arbitrary normalized Doppler
spread. We use both the application layer RD information
and the physical layer CSI to allocate subcarriers to video
users. After the resource allocator assigns the subcarriers to the
users, each user continues to send pilot symbols and update
the modulation format of each subcarrier based on feedback
from the base station. The critical parameter Ls controls the
tradeoff between the channel outdating and source rate. Our key
results can be summarized as follows: for a system that has to
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function well over a large range of Doppler spread, robustness
in performance is arguably the key characteristic that it should
exhibit. The cross layer design we presented in this paper
satisfies this criterion. In particular, it was seen that if only a
single layer design is employed, for some values of the Doppler
spread the application layer algorithm was superior to the
physical layer algorithm, with the opposite result holding for
the other ranges of the Doppler spread. However, the cross layer
algorithm outperformed both single layer algorithms over the
range of Doppler spreads that allowed meaningful performance.
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