PRICING-BASED DECENTRALIZED RATE ALLOCATION FOR MULTIPLE

VIDEO

STREAMS

Mayank Tiwari!, Theodore Groves?, and Pamela Cosman!

'Dept. of ECE? Dept. of Economics, University of California San Diego, ladld, CA 92093-0407

ABSTRACT

We consider rate allocation for multiple video users stpercon-
stant bitrate channel. Previously, overall quality of riplét users
was improved by exploiting relative complexity. Users witigh
complexity video benefit at the expense of video quality otidn
for other users with simpler videos. The quality of all useas be
improved by collectively allocating the bitrate which régs shar-
ing video information with a central controller. In this mapwe
present an informationally decentralized rate allocatamultiple
users where a user only needs to inform its demand to an t@loca
based on its video complexity and bitrate price. Simulatiesults
show that all users improve their quality by our pricing-dxhsle-
centralized rate allocation method compared to their atioa when
acting individually and the results are comparable to theraéized
rate allocation.

Index Terms— Rate allocation, H.264/AVC, rate-distortion op-
timization, video compression, decentralized allocation

1. INTRODUCTION

The growth in simultaneous video transmission over compatitn
channels by multiple users has stimulated the efforts tebatlo-
cate shared resources such as bitrate among users. Instzpchtly
dividing available bitrate among videos, a number of joaterallo-
cation algorithms were proposed to improve the overall wigeal-
ity [1-4]. The overall quality improvement comes at the exgee
of lowering the quality of some of the videos. The improvemen
is achieved by reallocating bits in every time period (ott)sfoom
videos whose quality suffers least from reducing theircated rate
to those videos benefitting most from an increase in allocate.

In [5], we proposed a joint rate allocation scheme that imeso
the quality of all videos simultaneously by reallocatintsior each
video from those Time-Slots (TS) when a reduction in bittaiets
little to other TS when increased bitrate increases qu#iigymost.
This is possible if there are many videos, some of whose tyuzn
be improved by reducing their allocation in one TS for an éased
allocation in some other (later) TS, and other videos in treesTS
whose quality could be improved by the reverse exchange.

Implementation of these schemes requires communication
specific information about individual videos at every TSmiedy,
the rate that quality increases as it receives more bitss @tin-
plicated information must be communicated accurately. Séone
applications, this may be problematic. Various decerstealialgo-
rithms were proposed [6, 7] for joint bitrate allocation foultiple
video streams. The auction mechanism was used in [6] toad#ioc
rate in a cross-layer optimization. A distributed rate dliion was
proposed in [7] to minimize the total Mean Squared Error (VI8E
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all the videos but it suffers from high price fluctuation arat all
videos are promised to improve their video quality simigausly.

In this paper, we propose a scheme which requires simpler in-
formation to be exchanged, and is less clearly susceptibhais-
representation. This scheme is modeled on price guide@guoes
discussed in the economics literature [8] that are chaiaetk as
decentralized, as various video transmitters (hereaftard) only
communicate their bitrate demands in response to the dimate
announced by a bitrate allocator (hereafter the Allocatog TS.

By contrast, in a centralized procedure, the Users commtmiall
their private information and the Allocator decides on dacation.

In our decentralized allocation, the Allocator adjusts ttheer's de-
mand to equalize the aggregate allocation to the availaipiely and
announces the price for the next TS. Ideally, in each TS akiter-
ations of price and demand messages would be exchangedepetwe
the Allocator and the Users. We, however, consider a re@-firo-
cess with only one iteration of the price-demand commuiunat
The budget of each User is reduced by the cost of its allatation-
puted at the current price and the process repeats. For iiat in
exploration of this scheme, we endow each User with an eqasi o

all budget (all videos are of the same length) which is reduoe
each TS by the cost of the allocated bitrate to the video t&atlfT
the budget of a video is exhausted, the video does not reaeiye
more bits. We refer to the budget as the amount of money the Use
possesses atany TS.

With this price guided allocation scheme, instead of usiitg b
at a constant rate, Users will increase their demand in Téglur
which their videos are more complex (e.g., high motion) adlice
their demand in TS of low complexity. Permitting the amouiiie
trate used in each TS to vary increases the efficiency of eaeh'd)
total bitrate use by giving more of the resource when it istraaki-
able (in terms of lowering MSE) and less when it is less vdkiab
The use of a price to guide Users’ choices of demand refleets th
relative scarcity of available bitrate in each TS. When alkts re-
guest more bits than the average, scarcity is greater amtiteeis
higher, thus moderating the demands. Our simulation eshibw
that each User benefits from this price-based decentratiatedal-
location mechanism compared to equal bitrate allocatioalltthe
l#sers. The performance of this algorithm is comparable éoctn-

Yralized bitrate allocation introduced in [5] where all Useend their

Rate-Distortion (RD) curve to the Allocator.

If each video is sent by an independent, self-interested, Use
such User would, in general, have an incentive to misreptése
formation to obtain a larger share of the available bits thamould
receive if honest information had been reported. In our pekthuch
misrepresentation is checked, as inflating its demand with lve-
duce the money available for future purchases and incrbasaice
faced next TS. There may be situations where it could benefiea
to ask for less in the current TS to lower the next price, buhat
lower price all Users will have greater demand than othewtisus



reducing the chance of obtaining more resource at the lovie.pA The price for the next TS is adjusted by the Allocator based on

standard result in the economics literature [9] shows thatsalvan-  the excess demand by all the Users

tage a User may receive from misrepresenting its demanchieEso

vanishingly small as the number of Users competing for theesiae- . ij:l zh, — R _

sources increases. For this paper, we assume the numbearsfisis Prin = prot+ oap( R =1 (6§

sufficiently large to ignore any incentive to misrepresbstdemand.
The rest of the paper is organized as follows: Sec. 2 describe

the general pricing-based decentralized rate allocatioogss for

individual Users. Sec. 3 discusses various multiplexinghods for

multiple video streams using this rate allocation proc8&swulation

results and conclusions are given in Sec. 4.

where the price adjustment parametey, is a design choice to reg-
ulate the price variation.

If aggregate demands are similar from one TS to the nextife.g.
aggregate demand in the current TS is a good predictor okggte
demand in the next TS, as would be the case if the video stridms
lowed a Markov process), then the price rule that sets theT®'s
price by adjusting the current price proportionately tarent excess

2. PRICING-BASED DECENTRALIZED ALLOCATION demand can be expected to be an efficient rule. In fact, mateovi
SupposeV Users send videos through a constant bitrate channel aftreams are characterized by scenes of varying amount abmnot
R bits per TS. We assume one TS includes one Group Of Picturesith abrupt breaks at scene changes. Within a scene, a Markov
(GOP), however, it can be smaller or larger. The utility olets assumption is probably reasonable. Thus, if most of the, timest
at TSt, denoted byU,, . (zx.+), is its MSE, given by the RD curve. videos are within a scene, then the aggregate demand eachilTS w
A User’s goal is to minimize its overall MSE, given its resoes, be a reasonably good predictor of demand next TS and a price ad
across all TS. At time, let M, ; be the available money for User  justment rule based on excess demand will provide the apptep
andp; be the bitrate price. We havE TS of video for each User. signal about the relative scarcity of bitrate availabletries.

At t = 1, we start withp; = 1. Users are initially allocated money The bitrate price for the next TS and the available money are
based on the average rate: known to each User. Based on these two parameters and their RD
function, each User again calculates its bitrate demanthfonext
M., = TNRWL Vn = 1to N (1) TS. This process is performed for all TS sequentially.
The utility optimization problem for Uset is given by 3. MULTIPLEXING METHODS
T T In this section, we discuss the RD function of a video streach a
max —Un(xnt) subject to Zpt.xn,t < M,1 (2 consider various averaging methods for the future RD fonsti We
{ent} i =1 approximate the RD curve using
The constraintin Eq. 2 requires the money spent over all & to U _ bn, e 7
less than or equal to the total allocated money. Solving Eqder nt(@ne) = ane + T+ dns @)

this constraint gives the optimal decision for each UserlliiT 8.

However, for the real-time problem we assume future prisesell ~ Wherea., ., b,¢, andd,, . are curve fitting coefficients for Userat

as the RD function for future TS are unknown. To address tés, TSt and are determined numerically. Using Eq. 7 and Eq. 3, we get
consider a sequential process. In each TS, a User will meigmiits ~ the User’s per TS decision problem:

decision for the current and all future TS using expectedesfor -
future prices and RD functions. Assuming future TS are idahin max  —(an, + L) — (T = t)(an,: + b
expectation (the future environment is perceived as statig, then Tn,t Tt + dn,t Znt + dnt
each TS’s decision problem is just an optimization probleith two o

decisions only - the allocation (or demand) ; for the current TS st prane + (T =1)pr.Tne < Mot Vi = 110N (8)
andz. ¢, the common allocation (demand) for each of the remainingynerea,, , + - bt isthe predicted estimated average RD func-
(T - t) TS. Given the price at T8and an expected prigefor the .t Fdn

tion for Usern for each future T$ 4+ 1to 7.
future expected RD function, the new optimization problesodmes We solve Eq. 8 using a Lagrange multiplier approach, and the

bitrate demand for Uset in TSt is given by

)

max —Un,t(xn’t) — (T — t).l?n,t(:in’t)

Tn,t

s.t. Pt-Tn,t + (T — t)-ﬁt-fin,t S Mn,t (3) . bn . Mn . +ptdn .+ (T )Zj d_ 4 (9)
Usern at TSt, thus, makes a demand©f , bits, wherex;, , is Tnt =\ T — /—* ¢
the solution of Eqg. 3. This information is sent to the Allamaivho b pebac+ (T =1). b

normalizes the individual demands proportional to excesaahd We consider several alternatives to predict the futureameRD

(the difference between total demand and total supply): function. They depend on the information the User has atithe it

makes the forecast. In all cases, the User will use Eq. 9 tulzdé

. y :cn ¢ " R the bitrate demand for the current TS with respect to thecksted
Tt = Tn,t = Z Tn—R) =T, SN o Q) average RD function for the future. ALL _PRICE, we assume the

7 Zn 156 s n=1 ‘rn,t . .
User knows the average RD function for a video over all TS (1 to

and sends back the normalized allocatién () to the Users who T, and we use this average as the forecast at every time step. |
encode their videos using the allocated bitrate. The Usemdeulate REM_PRICE, we assume the User knows the average RD function
their total available money for the next TS by for the remaining TS. Since the User knows the average ofdkg p
the average of remaining TS can be calculated given the geera
Mpi+1 = Mniy — pe@ne ¥Yn = 1to N 5) over all TS. Both ALLPRICE and REMPRICE require identical



advance knowledge. IRRE_PRICE, we use the average of previ-
ous TS as the estimate of future TS. This method would be éxgec
to work well for long videos and may not work for short videfs i
the previous TS are very different from the future TS.

For archival video, we consider a method callddL _NORM
in which Users have exact knowledge of the RD function fotteel
TS in a video (but not the future prices). Assuming a congtace
inall TS, we find the bitrate demanded by each User in all theiTS
multaneously using Eqg. 9. In FUNORM, the total bitrate demand
from all the Users is normalized by the total available bér& his is
an approximate model singg is unknown fort > 1 so we assume
constant price.

In this paper, we compare these four multiplexing methodsus
the pricing-based decentralized rate allocation to thetzon rate al-

Fig. 2 shows video quality versus average operating rate for
the pricing-based decentralized rate allocation for foultiplexed
videos. We calculate MSE per frame and average acrossakfaf
a video, then convert to PSNR to represent the quality. Tingesu
in each plot show the various multiplexing methods desdriive
Section 3. All methods outperform EQLS. PREPRICE, using
only past RD functions to forecast the future ones, imprawnes
video quality from 0.5-0.7 dB for the g11 video to 0.8-1.0 @B the
g8 video compared to EQIS. ALL_PRICE improves the quality
by 0.7-1.1 dB for g11 to 0.9-1.1 dB for g8 compared to EQ&.
REM_PRICE performs better than EQLS by 0.7-1.2 db for g11
to 1.0-1.3 dB for g9. When the exact RD function for all the TS
in a video is used in FUINORM, its performance is marginally
better than REMPRICE for some of the videos. In general, the

location,EQL _TS, where each TS in a video receives an equal num-ricing-based decentralized rate allocation method foltipie

ber of bits. Note, for a TS of GOP length, the rate control athms
used with most current video standards strive to achievaleqte
allocation for all GOPs, similar to EQLIS.

4. RESULTS
We used H.264/AVC reference software JM 11.0 [10] baselioe p
file for our simulations. The test videos were taken from a faute
travel documentary containing varying types of scenes aoiiom
Each test video is 250 seconds long at 30 frames per secona an

resolution of 176120 pixels. The GOP size is 15 frames (I-P-P-P)S

and is encoded using H.264 rate control [11]. The decenédliate
allocation method for multiple video streams can be usedafgr
GOP size or structure, frame rate, video length or resalutio
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Fig. 1. Actual and average MSE variations with TS for g11 video at

50 kbits per TS

Fig. 1 shows actual MSE variation with TS for the g11 video
at 50 kbits per TS along with three averaging methods digcliss
previously. The average of all TS (ALL Avg) is constant fot al
TS. The average of remaining TS (REM Avg) starts with the ALL
Avg curve but deviates as time progresses. The average off as
(PRE Avg) starts from the actual MSE at the first TS but evdlytua
converges to the ALL Avg in the last TS. The important obseova
from this plot is the low variation of all the averages conguhto
the actual MSE variation at each TS. We see that the variation
PRE Avg is similar to ALL Avg and REM Avg. Therefore, without
advance knowledge of RD functions of future TS, PRE Avg psove
to be useful as a forecast of the future in Eq. 9.

video streams improves the video quality for all the videosutta-
neously. Even the knowledge of the RD function of the pastdis ¢
be used to estimate the RD function for the future TS to im@rov
the video quality of the entire stream. The performance chsu
methods depends on the accuracy of the estimated RD furfation
future frames in a video.

In general, price fluctuation decreases with an increasben t
number of multiplexed streams. This is shown in Fig. 3 for REBL
he price fluctuates between 0.12 and 2.24 for 2 multiplexéeos
nd the fluctuation decreases to 0.57-1.53 for 10 multiplexgéeo
treams. The price fluctuation increases,jfis large. For our simu-
lations,a;, was not optimized; it might be possible to improve mul-
tiplexing performance by tuning this parameter for patticwideo
types. If many independent video streams are being mutepleve
might expect a law of large numbers result to hold, sugggstiat
the aggregate demand would not fluctuate much from one Tto th
next. If the available bitrate supply is constant over tithen the
price would be (relatively) constant as well. But if supplgne to
vary from one TS to the next (as, for example, in a cognitivciaa
application), then the excess demand would fluctuate, dvdae-i
mand did not, and the price adjustment rule would be appatif,
for example, the supply followed a Markov process.

In conclusion, we demonstrate various methods of decérachl
rate allocation among multiple video streams. A video Usgras
rately calculates its current bitrate demand based on muprce,
available money, and video complexity. This demand is setiie
Allocator who normalizes the total demand and sends the foic
the next TS based on the total demand. The computationaéburd
that appears in centralized allocation algorithms [5] iftstl to indi-
vidual Users and yet we achieve similar video quality improent.
The quality of all video Users is improved simultaneouslingsour
pricing-based decentralized rate allocation.
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