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Abstract—We conduct a human observer experiment on the
visibility of fixed-sized packet losses in compressed 3D videos. The
stereo videos are encoded using view+depth based on H.264/AVC.
A prediction model of the visibility score is built with features
extracted from the video. Results show good accuracy of the
model.
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I. INTRODUCTION

With the increasing popularity of 3D videos, the amount
of data to be stored and transmitted greatly increases. This
poses problems for fluctuating, band-limited wireless com-
munications. One solution is view+depth coding, using one
color view and its depth map instead of two color views for
stereoscopic videos. At the decoder, the other view can be
generated by depth image-based rendering (DIBR) [1]. The
depth map includes the distance of objects in the scene from
the camera but no information of texture, thus the amount of
data can be reduced.

When videos are transmitted through a lossy channel,
packets can be lost. Different packet losses can have different
visual impacts. Hewage et al. found that the overall video
quality is affected by both color view and depth packet losses,
but prioritizing color view packets can vastly improve the
overall video quality [2] [3]. Pinto et al. mentioned that
losses in videos with low disparity is less annoying than in
ones with high disparity [4]. However, they only evaluate the
overall image quality and depth perception of the entire video
sequence via PSNR or MOS (Mean Opinion Score). It remains
unclear if an arbitrary color view packet has greater impact
than any depth packet. For example, whether a P frame in the
color view video is more important than an I frame in the depth
map video was not addressed. It is also unclear if a packet
located in a low disparity region should always cause less
damage than a packet in a high disparity region. One may ask if
other factors, such as the spatial location of the packet, can also
affect the perceived quality. Simple objective metrics may not
be satisfying to represent the complex 3D attributes. Therefore,
we conduct a human observer experiment to measure the
human perception of different types of packet loss. The video
is encoded in view+depth format and packetized into fixed-
sized packets. Based on the observer experiment, we build
an encoder-based model to predict the visibility of packet
losses. We employ logistic regression to build the prediction
model. The predicted visibility can be used for forward error
correction (FEC) and unequal error protection (UEP). Strong

Fig. 1. View+Depth Format

protection can be applied to the packets with high visibility by
allocating more forward error correction to them.

The paper is organized as follows: in Section II, we
briefly overview the view+depth coding format. The observer
experiment settings and results are explained in Section III.
We describe the feature extraction, modeling approach and
performance in Section IV. Section V concludes the paper.

II. VIEW+DEPTH CODING FORMAT

For stereoscopic 3D video, the view+depth format consists
of the left color view and its depth map. The depth map is a
2D representation of the 3D surface. With the depth map, the
3D structure of the objects in the scene can be reconstructed.
The depth map is a grayscale image, thus can be compressed
in YUV 4:0:0 format (Fig. 1). It can be generated from
the original left and right color view. In recent years, depth
estimation has been extensively explored, and many of the
algorithms are evaluated by the Middlebury Stereo Benchmark
[5]. In our observer experiment, we employ the widely used
Min-Cut algorithm [6] which is also used in MPEG Depth
Estimation Reference Software [7]. The left color view and
the depth map can be separately or jointly encoded.

At the decoder, the right view is synthesized from the
decompressed left color view and depth map. If the two views
are well rectified and parallel, the right view can be synthesized
efficiently without a z-buffer [8]. The columns of the left
image are warped from left to right image borders based on
the 3D structure built from the depth information. The major
problem is disocclusion. Some areas occluded in the left view
can be visible in the right view. This results in holes in the
synthesized right view. One solution is to fill the holes by
spatial interpolation using neighboring pixels. Another one is
preprocessing the depth map with a Gaussian filter so that
much smaller disocclusion areas would appear in the right
view [1]. Based on [9], the Gaussian filtering method yields the
best visual quality. It only incurs a small geometric distortion
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but no visible flickers along the object edges. Therefore, in
our observer experiment we also apply a 27 × 27 Gaussian
filter with σ = 9 to preprocess the depth map before 3D
warping. If disocclusion still remains after the filtering, the
holes would be diminished to a very small area, and then we
use the spatial interpolation method proposed in [10], which
has similar performance to inpainting [11] but works more
efficiently.

III. HUMAN OBSERVER EXPERIMENT

A. Setup of the Experiment

We conducted a human observer experiment in which the
viewers were shown 3D videos with impairments caused by
packet losses. The viewers were asked to press the space bar
once they saw a glitch. To allow the viewers to have enough
responding time, we insert at most one loss in every 4 seconds.
The loss occurred in the first 3.2 seconds in each 4-sec interval,
and the last 0.8 seconds would allow any error propagation to
stop. The viewer was considered as having seen the loss if
he/she responded within 1 second after the loss.

We encoded the left color view (denoted as color or color
video below) and the depth map (denoted as depth or depth
video below) separately, as we want to compare the impacts
of losses in color and in depth. The encoder is H.264 JM
18.1 [12]. The color video is in YUV 4:2:0 format and the
depth video is in 4:0:0 format. Quantization Parameter (QP)
values of 26, 31, 36 and 41 for both color and depth are
suggested in [13]. It was found that increasing the bitrate of
depth can improve the quality of the synthesized right color
view significantly [8]. Thus, we fix QP to 26 for both color and
depth video. The test video is 21’20” long, including episodes
from 3D films Avengers and Harry Potter and the Deathly
Hallows Part I. The color video is HD (1920 × 1080), and
has 30 frames per second. The depth video is downsampled
by 2 in the horizontal and vertical direction, so the size of
each depth frame is a quarter of a color frame, which is also
suggested in [13]. The deblocking was turned off when depth
was encoded. We use the hierarchical GOP structure and insert
intra frames every 24 frames (0.8 sec per I frame, Fig. 2).
There are 6 types of frames in the GOP: one type of I frame,
two types of P frames and 3 types of B frames, classified
by their time duration. The time duration, or the length of
error propagation, is defined as the maximal number of frames
affected by the error in one frame. For example, any loss in
a P1 frame would affect itself, the next P2 frame and 21 B
frames. The time duration of each type of frame is given in
Table I. The video bitstream is divided into fixed-sized packets
of 1316 bytes (equal to seven MPEG packets of 188 bytes in
length), as recommended in [14]. Each packet includes at most
one frame and would not include any information of the next
frame. A packet would not split a macroblock either. So some
packets could be less than 1316 bytes.

The decoder is JM 16.2. To conceal losses in color and
depth I frames, we use spatial interpolation by taking the
sum of weighted neighboring available pixels. To conceal
losses in color P or B frames, we use motion-compensated
error concealment (MCEC). The motion vectors of neighboring
available (correctly decoded or concealed) macroblocks are
extracted. The motion vector that minimizes the boundary

TABLE I. MAXIMAL NUMBER OF FRAMES AFFECTED

Frame Type Time Duration
I 31

P1 23
P2 15
B1 7
B2 3
b 1

Fig. 2. Hierarchical GOP Structure

matching error [15] is taken to conceal the corrupted mac-
roblock. If the neighboring macroblock is sub-partitioned, only
the motion vectors of the blocks adjacent to the macroblock
to-be-concealed are considered as candidates. For example,
corrupted macroblocks are shown in dark gray in Fig. 3. To
conceal MB #1, motion vectors of the blocks in light gray
above and below MB #1 are considered as candidates when
those macroblocks are sub-partitioned. Only the motion vectors
of correctly decoded macroblocks are considered if they are
available. The motion vectors of concealed macroblocks are
considered only when none of the neighboring macroblocks
is correctly decoded (the macroblock to be concealed is sur-
rounded by other corrupted macroblocks). In Fig. 3, only the
motion vectors of the blocks below MB #2 are candidates for
MCEC. Though the macroblocks above MB #2 are concealed
first, their motion vectors are considered unreliable so we do
not use them. If all the neighboring macroblocks are intra-
coded or the whole frame is lost, then no motion vector is
available. In that case, we set the motion vector to zero, i.e.,
copying the co-located macroblock from the reference frame.

For losses in depth P or B frames, we conceal each mac-
roblock by setting its motion vector as half of the average of
the motion vectors extracted from the co-located macroblocks
in the corresponding color frame, due to the high correlation
between color and depth video. In our experiment, the co-
located macroblocks in the color frame are always available
(though their motion vectors may not exist), because there is
at most one packet loss in every 4-sec interval, so if the loss is
in a depth frame, then the corresponding color frame is intact.
Since the depth maps are downsampled by 2 in each direction,
the motion in the color frame can be twice the motion in the
depth, and one macroblock in a depth frame corresponds to
4 macroblocks in the color frame. In Fig. 4, macroblocks in
light gray shade in the color frame are extracted to conceal
MB #3 in the depth frame. The efficiency of this method is
shown in [16]. If all of the co-located color macroblocks are
intra-coded, we simply set the motion vector of the corrupted



Fig. 3. Error concealment for color frame

(a) Color frame (b) Depth frame

Fig. 4. Error concealment for depth frame

depth macroblock to zero.

We generated 5 versions of the lossy video. Each version
includes 300 packet losses. These losses are divided equally
and randomly among each type (color and depth, each has 6
types). Each version of the lossy video was evaluated by 12
viewers. All of the viewers have normal or corrected-to-normal
vision, and have good stereo vision (tested by the stereo fly
test). Before the experiment, a 3-min pilot training video was
shown so that the viewers could get a sense of the artifacts
they were going to see. The lossy videos also include some
intervals without any loss so that we can measure the false
positive rate caused by factors other than the packet losses,
such as view synthesis artifacts.

B. Experimental Results

We define the visibility score of each packet as the number
of viewers who saw its loss divided by the total number of
viewers who assessed that version of lossy video. Fig. 5 shows
the mean visibility score of each type of loss. The visibility of
losses in color frames is generally higher than losses in depth.
One reason is that a color packet loss would affect the left
color view itself and the right color view rendered from it.
However, if a depth packet is lost, only the right color view
would be affected. Another reason is that color packet losses
usually cause blocky artifacts, which are probably more likely
to be seen than the geometric distortion caused by depth losses
(Fig. 6 and 7).

Among the color packet losses, losses in P frames are the
most visible. One might have expected that losses in I frames
should be the most damaging since they have the longest error
propagation, and this in fact has been true in the case where
packets hold a fixed number of macroblocks. However, as we
fix the size in bytes of each packet, the spatial area affected by
a packet loss in an I frame is usually less than the area affected

TABLE II. AVERAGE NUMBER OF PACKETS INCLUDED IN A FRAME

Video I frame P frame B frame
Color 50.8 39.3 20.4
Depth 2.3 2.0 1.5

in a P frame which is less than the area affected in a B frame.
Table II shows the average number of packets included in each
type of frame. One packet in a color I frame covers on average
1.97% of the spatial area of a frame, while a packet in a color
P frame covers 2.55% area. So under the interaction of time
duration and spatial area affected, losses in P frames have the
highest visibility score. This is consistent with the previous
work [17].

For the depth packet losses, it turns out that losses in I
frames are the most prominent. While a depth I frame packet
does cover slightly less spatial area than a depth P frame
packet, the visibility scores for depth packets do not follow
the same trend as color packets because the error concealment
for depth is quite different. Losses in depth P and B frames
can be concealed better than losses in I frames. Motion in the
color frame and the depth frame is highly correlated. Besides,
depth frames include very little texture, so the residual energy
after motion compensation is usually small. Therefore, copying
the motion vectors of the corresponding color frames is very
helpful to recover the corrupted macroblocks. There are no
motion vectors in I frames, and the spatial interpolation often
yields an unsatisfying result when the corrupted area is large.

In the experiment, there are twenty 4-sec intervals without
any loss in each version of the video. We collected the viewers’
responses in those intervals to measure the false positive rate.
False positive responses may be due to compression artifacts,
view synthesis artifacts, or just inattention. The false positive
rate is 4.17%, which is well below the mean visibility score
of losses in all the color frame types and in depth I and P
frames. However, the mean visibility scores of packet losses
in depth B1, B2 and b frames are 0.0560, 0.0787 and 0.0333
respectively, which are close to the false positive rate. This
suggests that some or most of the responses counted for these
losses may not actually be due to the losses. It would be wrong
to conclude however that all depth B frame losses can be
assumed to be unimportant visually, because different packets
of the same type sometimes have very different visibility
scores. For example, some losses in depth b frames have
visibility score as high as 0.75, though most losses in that
frame type were not perceived by any viewers. The mean
visibility score of losses in color P1 frames is 0.6787 and
30.4% of that type of losses were seen by all the viewers, but
some other packets of that type have zero visibility score. So
the mean value may not well represent the visibility score of
each loss. Therefore, we aim to investigate the features of each
packet and use them to predict the visibility score.

IV. VISIBILITY MODEL

Since the main use of the predictions of the visibility
score would be for unequal error protection, we want to
make the prediction at the encoder side. That means we have
access to the original video, the compressed bitstream and
the reconstructed video. To predict the visibility score, we
extract features from the videos and bitstream, and then utilize
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Fig. 5. Mean visibility score of each type of loss. The dash line shows the
false positive rate, which is 0.0417.

(a) Left Color View

(b) Right Color View

Fig. 6. Packet loss in a color frame. The blocky artifacts appear on the
woman’s face in both views.

those features to build a visibility model. We first describe the
features in this section, then explain the modeling approach
and the results.

A. Feature Extraction

The extracted features are grouped into two categories:
content independent features and content dependent features.
The feature abbreviations and brief descriptions are given in
Table III and IV.

Content independent features, such as the frame type
determined by the GOP structure and the spatial location of

(a) Left Color View

(b) Right Color View

Fig. 7. Packet loss in a depth frame. The artifacts appear only in the right
view around the man’s leg.

TABLE III. CONTENT INDEPENDENT FEATURES

Feature Abbreviation Description
IsColor IsColor Packet is in color frame

Time Duration TMDR Maximal number of frames affected

Deviation from Border DevFromBorder
floor(N/2) − |Height-floor(N/2)|, N
is number of rows of macroblocks

Frame Type

IsCIframe Packet is in color I frame
IsCPframe Packet is in color P frame
IsCBframe Packet is in color B frame
IsDIframe Packet is in depth I frame
IsDPframe Packet is in depth P frame
IsDBframe Packet is in depth B frame

the packet, do not depend on the content of the video. The
following features are considered:

1) IsColor: a boolean factor which is set to 1 if the packet is
in a color frame, and is set to 0 if it is in a depth frame.

2) Time Duration (TMDR): the maximal number of frames
affected by the loss, which is completely determined by
the type of frame that includes the packet. (Table I)

3) Deviation from Border (DevFromBorder) = floor(N/2) −
|Height-floor(N/2)|, where Height is the vertical location
of the packet center, N is the number of rows of mac-
roblocks in one frame. N = 68 in this experiment since
we use HD video.

4) IsCIframe, IsCPframe, IsCBframe, IsDIframe, IsDPframe
and IsDBframe are boolean factors denoting the frame
type. IsCPframe means the packet is in a color P frame.
We do not specify P1 and P2 so that the prediction model
can be used for other GOP structures and I frame periods.

Content dependent features are those related to the content
of the video, such as motion complexity. We extract some of
them from both color and depth videos. If the lost packet is
in a color frame, the features of the macroblocks contained in
the packet and features of the co-located depth macroblocks



TABLE IV. CONTENT DEPENDENT FEATURES

Feature Abbreviation Description

Number of
Macroblocks

NumMB
Number of macroblocks(MBs) in packet
if IsColor = 1, 4 times number of MBs

in packet if IsColor = 0
Packet Size PktSize Number of bytes in packet

Number of
Macroblocks
Coded in a
Certain Mode

CNumIntra
Number of color MBs in affected area

which are intra coded
CNumInter As above, inter coded

CNum(Skip/Direct) As above, skip or direct coded

DNumIntra
Number of depth MBs in affected area

which are intra coded
DNumInter As above, inter coded

DNum(Skip/Direct) As above, skip or direct coded

Ratio of
Macroblocks
Coded in a
Certain Mode

CIntraRatio CNumIntra / NumMB
CInterRatio CNumInter / NumMB

C(Skip/Direct)Ratio CNum(Skip/Direct) / NumMB
DIntraRatio DNumIntra / (NumMB / 4)
DInterRatio DNumInter / (NumMB / 4)

D(Skip/Direct)Ratio DNum(Skip/Direct) / (NumMB / 4)

Maximal
Sub-partitions

CMaxInterparts
Maximal sub-partitions in affected color

MBs

DMaxInterparts
Maximal sub-partitions in affected depth

MBs

Motion
Vector

CMaxMotX,
CMeanMotX,

CVarMotX

Maximum of absolute value, mean and
variance of horizontal motion

vectors(MVs) of affected color MBs
CMaxMotY,
CMeanMotY,

CVarMotY

Maximum of absolute value, mean and
variance of vertical MVs of affected

color MBs
CMaxMotM,
CMeanMotM,

CVarMotM

Maximum, mean and variance of MV
magnitude of affected color MBs

CMaxMotA,
CMeanMotA,

CVarMotA

Maximum of absolute value, mean and
variance of motion direction of affected

color MBs
DMaxMotX,
DMeanMotX,

DVarMotX

Maximum of absolute value, mean and
variance of horizontal MVs of affected

depth MBs
DMaxMotY,
DMeanMotY,

DVarMotY

Maximum of absolute value, mean and
variance of vertical MVs of affected

depth MBs
DMaxMotM,
DMeanMotM,

DVarMotM

Maximum, mean and variance of MV
magnitude of affected depth MBs

DMaxMotA,
DMeanMotA,

DVarMotA

Maximum of absolute value, mean and
variance of motion direction of affected

depth MBs

Residual
Energy

CMaxRSENGY
Maximum of residual energy of affected

color MBs after motion compensation

DVarRSENGY
Variance of residual energy of affected
depth MBs after motion compensation

MSE
MaxMSE,
MeanMSE,

VarMSE

Maximum, mean and variance of MSE
per MB

SSIM
MinSSIM,

MeanSSIM,
VarSSIM

Minimum, mean and variance of SSIM
per MB

Foreground
Macroblocks

FGNum Number of foreground MBs in packet
FGRatio FGNum / NumMB

are extracted. Likewise for a loss in a depth frame, we extract
information from itself and the co-located color macroblocks.

1) Number of macroblocks affected by the packet loss
(NumMB). It denotes the area in the frame affected by the
loss. For packets in color frames, NumMB is the number
of macroblocks in the packet. For packets in depth,
NumMB equals 4 times the number of macroblocks in
the lost packet, since one macroblock in the depth map
corresponds to 4 macroblocks in the right color view
synthesized from it. This feature relates to the frame type,
the spatial correlation and the motion complexity. For
example, in a P or B frame, if the motion is complicated,
the residual energy after motion compensation would be
high, then more bits would be allocated to code the mac-

roblocks and a packet would include fewer macroblocks
than would one which contains macroblocks from a low
motion frame.

2) Packet Size (PktSize). Since each packet contains at most
one frame, some packets could be less than 1316 bytes.
Most of the values of PktSize are around 1316 as we fix
the length of the packet. In the following two scenarios,
the packet can be much less than 1316 bytes: (1) the
whole frame is included in one packet and (2) the packet
is the last one in that frame. So this feature may relate
to spatial location and motion complexity. In the videos
we use in this experiment, only a small number of color
B frames, and some depth P and depth B frames are
packetized into one packet, as the videos are HDTV.

3) Number of macroblocks coded in intra, inter
and skip/direct mode (CNumIntra, CNumInter,
CNum(Skip/Direct), DNumIntra, DNumInter and
DNum(Skip/Direct)). Once we get the location of a
lost color packet, we extract the mode of macroblocks
in the lost color packet and the mode of co-located
macroblocks in the depth frame. Similarly, for a depth
packet loss, we extract the mode of macroblocks in the
packet and the mode of the co-located color macroblocks.
CNumIntra denotes the number of macroblocks located
in the affected area in the color frame which are coded in
intra mode; and DNum(Skip/Direct) denotes the number
of macroblocks in the affected area in the depth frame
which are coded in skip or direct mode.

4) Ratio of macroblocks coded in intra, inter and skip/direct
mode (CIntraRatio, CInterRatio, C(Skip/Direct)Ratio,
DIntraRatio, DInterRatio and D(Skip/Direct)Ratio) is the
number of macroblocks coded in that mode divided by
the number of macroblocks in the affected area. These
features relate to the motion of the affected area. For
example, if the packet is in a P frame and the IntraRatio is
very high, that probably means the motion is complicated
and the error could be hard to conceal.

5) CMaxInterparts and DMaxInterparts are the maximal
number of sub-partitions in the color and depth mac-
roblocks lying in the affected area respectively. If the
MaxInterparts is large, it probably also implies compli-
cated motion.

6) MotX and MotY are the motion vector components in the
horizontal and vertical directions. MotM is the magnitude
of the motion vector (MotM =

√
MotX2 + MotY 2).

MotA is the direction of the motion (MotA =
arctan(MotY/MotX)). We compute the maximum of
the absolute value, mean, and variance of MotX, MotY,
MotM and MotA of both color and depth macroblocks in
the affected area. If all the macroblocks in the area are
coded in intra mode, then all those values are set to 0. We
use DMeanMotM to denote the mean value of the motion
vector magnitude of the affected depth macroblocks.

7) RSENGY is the residual energy per pixel after mo-
tion compensation of the macroblock. We compute the
maximum of the residual energy of color macroblocks
(CMaxRSENGY) and the variance of the residual energy
of depth macroblocks (DVarRSENGY) in the affected
area. The residual energy of depth macroblocks is usually
small as they include little texture. But it can have a large
value when the object is moving in the z direction. Its



variance over the affected macroblocks can also relate to
the motion complexity.

8) For each packet loss, MSE and SSIM (Structural Simi-
larity Index) [18] per macroblock are computed between
the compressed (error-free) video and the decompressed
video with that one packet loss. We do not compute
those values between the original raw video and the
decompressed video with the packet loss because we are
only interested in the quality degradation caused by the
packet loss, not by compression artifacts. We compute
only the initial error caused by the packet loss within
the frame where the loss occurs, instead of computing
cumulative error over all the frames affected. This helps to
reduce computational complexity. We then take the max-
imum, mean and variance of MSE per MB (MaxMSE,
MeanMSE, VarMSE), and minimum, mean and variance
of SSIM per MB (MinSSIM, MeanSSIM, VarSSIM). A
large value of MSE and a small value of SSIM indicate
large degradation in quality.

9) Viewers are usually attracted by foreground objects which
may have different motion from the background. The
cameras may also focus on those objects so the back-
ground may be blurry. So errors in the background can
usually be concealed better than errors in the foreground.
If most of the affected area is background, it may be
less likely for the viewers to notice the packet loss. With
depth maps, it is easy to extract foreground pixels from
the frame. Pixels with depth deeper than some threshold
are considered as background. To find a good threshold,
we first plot the histogram of the depth values in that
frame. Then we pick the minimum between the two
non-neighboring highest bins as the threshold. In each
macroblock, if over half of the pixels are foreground,
we consider it as a foreground macroblock. FGNum is
the number of foreground macroblocks in the packet.
FGRatio is the portion of foreground macroblocks in the
affected area, which is equal to FGNum divided by the
total number of macroblocks in the packet.

B. Modeling Approach

We employ the generalized linear model (GLM) with logit
as the link function for binomial distribution to build the
prediction model. The inputs of the model are the features
of a packet, and the output is the prediction of the packet’s
visibility score. The model is

log(
p

1 − p
) = γ +

K∑

j=1

xjβj

where p is the visibility score, xj is a feature, βj is its
coefficient, and γ is a constant term.

The whole dataset includes 1500 samples. We use 5-fold
cross validation to select the most important features and
prevent overfitting. The whole data is divided into 5 partitions,
4 of which are used to train the model and the one left out
is used to test the performance. The procedure is repeated 5
times. Different partitions are used as test data each time. The
optimal feature is selected in each step to minimize the mean
squared error (MSE) between the predicted visibility score and
the ground truth. A fixed set of features is used to train only
one model.

C. Performance

We use mean squared error (MSE) and correlation coeffi-
cient to measure the performance of the model. We compute
the two metrics between the prediction and the ground truth
via 5-fold cross validation. Fig. 8 shows the performance vs.
the number of features added into the model. The correlation
coefficient reaches 0.75 when 30 features are added into the
model, 0.72 with 20 features, 0.70 with 10 features and 0.67
with only 5 features.

Table V shows the ten most important features in the
prediction model, where × means multiplication of the two
single features. IsColor plays a key role since color packet
losses are generally more visible than depth packet losses.
Three out of the top ten features relate to IsColor, and their
coefficients all have positive signs. The most important one is
IsColor × CIntraRatio. It indicates that if the packet is in a
color frame, and more macroblocks are coded in intra mode,
the packet is more likely to be seen. That is because those
corrupted macroblocks are not likely to be concealed well.

The spatial location of the packet is also critical to the
visibility. Viewers are usually attracted by the objects at the
center of the screen, both because the camera location is often
chosen to place interesting objects at the center, and also
because the large screen sizes of HDTV mean the viewer is
often less aware of the periphery. A large value of IsColor ×
DevFromBorder means the loss affects both views and appears
near the center.

The objective quality metrics are also helpful. TMDR ×
MaxMSE is the second most important feature. It implies that
a big distortion which lasts for a long time is very likely to be
seen. The feature with MinSSIM carries a negative coefficient,
as smaller value of SSIM indicates worse quality.

The frame type is another important factor in the model.
The features related to IsCBframe and IsDBframe have nega-
tive coefficients as would be expected, since losses in B frames
are less visible than average losses. IsCPframe × CNumIntra
has a positive impact on the visibility. A large value of intra-
coded macroblocks implies the motion is complicated or there
is a scene cut. Then zero motion copy would probably not
yield a good result.

The single term PktSize carries a positive sign. Most of
the values of PktSize are around 1316. The packet size can be
well below 1316 bytes if the whole frame is included in the
packet or if the packet is the last one in that frame. In the first
scenario, it may imply the residual energy is small and motion
is not very complicated. In the second scenario, it means the
loss is far away from the center, thus less visible.

V. CONCLUSION

We present a human observer experiment on fixed-sized
packet loss visibility of view+depth compressed 3D video.
Losses in color frames are generally more likely to be seen
than losses in depth frames, probably due to the different types
of artifacts they cause and the number of views affected by the
loss. Losses in color P frames are the most damaging, even
worse than losses in color I frames. Among losses in depth
frames, I frames are the most difficult to conceal thus are the
most visible. We build an encoder-based model to predict the



TABLE V. THE TEN MOST IMPORTANT FEATURES OF THE

PREDICTION MODEL

Feature # Feature Coefficient
γ 1 -3.2515
1 IsColor × CIntraRatio 0.0328
2 TMDR × MaxMSE 2.3362e-6
3 IsColor × DevFromBorder 0.0634
4 IsCBframe × CMaxMotA -0.5752
5 IsColor × CMaxMotM 0.0047
6 IsCPframe × CNumIntra 0.0031
7 D(Skip/Direct)Ratio × MinSSIM -1.7107
8 PktSize 0.0012
9 DInterRatio × DVarMotA -7.1154

10 IsDBframe × DMaxMotX -0.0113
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Fig. 8. Performance of the Prediction Model

visibility of packet losses with features related to frame type,
spatial location of the loss and motion complexity. The model
shows good performance in terms of MSE and correlation
coefficient.
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