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Abstract—Cognitive radios have been proposed as a means to
implement efficient reuse of the licensed spectrum. Commonly,
wireless networks are characterized by a fixed spectrum assign-
ment policy. The limited available spectrum and the inefficiency
in the spectrum usage necessitate a new communication paradigm
to exploit the existing wireless spectrum opportunistically. We
consider a simple single-cell scenario with two data up-links,
one licensed to use the spectral resource (primary) and the
other unlicensed (secondary or cognitive). It is assumed that
the cognitive user accesses the channel only when the channel
is sensed idle. An ON-OFF channel model is used for the
primary link, where traffic statistical characteristics are taken
into account. We study a practical resource allocation algorithm
that assigns the uplink to the secondary users according to a
channel-and-queues aware scheduler when primary link OFF
periods are sensed. We fit the resource allocation algorithm to
the widely investigated orthogonal frequency division multiple
access (OFDMA) scheme and we exploit multiuser diversity by
applying a smart power allocation within independent OFDMA
subchannels. A video encoder rate control is introduced in order
to limit the video frame loss due to overflow that trades the video
frame loss probability with the overall encoding quality. Lastly,
the performance of the cognitive network model is investigated
under the proposed resource allocation algorithm.

Index Terms—Cognitive networks, Dynamic resource alloca-
tion, scheduling, OFDMA.

I. INTRODUCTION

Based on evidence that a fixed (licensed) spectrum allo-
cation can result in a highly inefficient resource utilization
[1], cognitive radio prescribes the coexistence of licensed
(primary) and unlicensed (secondary or cognitive) radio nodes
on the same bandwidth. While the first group is allowed to
access the spectrum at any time, the second seeks oppor-
tunities for transmission by exploiting the idle periods of
primary nodes [2]. The main requirement is that the activity
of secondary nodes should be transparent to the primary, so
as not to interfere with the licensed use of the spectrum.
Cognitive radio, a term first coined by Mitola [3], is a highly
flexible alternative to the classic mode of operation. By sensing
and adapting to its environment, a cognitive radio is able to
avoid interference and fill voids in the wireless spectrum, thus
increasing spectral efficiency. Although the gains to be made
by the combination of cognitive radios and primary spectrum
licensing seem intuitive, the fundamental theoretical limits of
the gains to be made by this coupling have only recently been
explored [4]. In [5] and [6], the capacity limits of cognitive
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networks are studied at the physical layer. Resource allocation
algorithms based on Markov chain channel models, where the
primary link might be either busy or idle, have been proposed
[7], while in contributions such as [8] game theory is used to
dynamically obtain spectrum sharing rules.

In essence, cognitive radio relies on the access to knowledge
of the primary users’ activity by the secondary users. However,
obtaining sufficiently accurate information on the radio envi-
ronment (e.g., on the primary activity) at the cognitive nodes
is one of the key problems in the implementation of cognitive
networks [9].

Resource allocation in multiuser single-antenna wideband
OFDMA systems is a largely researched problem (e.g, [10]).
The key advantage of such systems with respect to single-
carrier systems is the possibility of considering frequency as
an additional resource to be allocated. Although the maximum
normalized average throughput is not increased with respect
to that in a single-carrier system, a more efficient use of the
resources is possible, especially if the bandwidth is consider-
ably larger than the coherence bandwidth of the channel and
the channel is varying slowly with respect to the scheduling
updates. This is mainly because randomness in the system is
increased by the wideband resources, and this feature can be
exploited by a smart scheduler [11] that takes into account the
variability of the channel. Further, a ”cross-layer” approach
to the resource allocation problem has been addressed [12]
with the so-called channel-and-queue-aware scheduling. That
is, both users’ channel quality and queue status are accounted
for when allocating resources in order to meet some real-time
requirements.

In this paper, we introduce a resource allocation algorithm
for cognitive networks. In particular, we specialize it to the
case of an OFDMA uplink, where secondary users have to
meet some real-time requirements. We revise the well-known
ON-OFF channel model, taking into account both the traffic
model and the physical channel characteristics. In particular,
we use a Pareto distribution [13] for modeling the burstiness
of stochastically heavy-tailed primary traffic in order to test
the ability of the resource allocation algorithm to fulfill the
secondary users’ real-time constraints. A time-correlated fad-
ing channel model is used at the physical level for secondary
users. A channel-and-queues aware modified proportional fair
(PF) scheduling algorithm is employed in each of the OFDMA
subchannels in order to assign the uplink resources to the best
users according to a certain utility function. Users with heavily
loaded queues (i.e., number of bits queued above a certain
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threshold) are prioritized and, at the same time, users with
nearly empty queues are penalized by applying a correction
factor to the standard PF algorithm presented in [11]. Power
allocation is performed for each subchannel for throughput
optimization under a total transmitted power constraint. Real-
time constraints apply to the system due to the video streaming
traffic of the secondary users.

The paper is organized by covering in Section II a model
of the cognitive network, particularly regarding the ON-OFF
channel model, while the channel-and-queues aware schedul-
ing and power allocation algorithm is presented in Section III.
Numerical results are discussed in Section IV.

II. SYSTEM MODEL

We consider the uplink of an OFDMA system, where the
overall frequency band B is subdivided into M orthogonal
subchannels of bandwidth ΔB = B/M . Data frames are
organized in time slots of duration TS seconds that we consider
as the system’s discrete time unit. Furthermore, we assume the
the M uplink subchannels are fading independently.

No interference is allowed from secondary users to primary
users, and hence that secondary users exploit each uplink
subchannel only when the corresponding primary subchannel
is idle. Thus, the primary link usage can be conveniently
modeled as a set of ON-OFF processes, one for each orthog-
onal subchannel, where we label as OFF periods the time
slots where the primary users are not transmitting on that
subchannel. Furthermore, we assume that instantaneous and
error-free information about the ON-OFF process is available
at the secondary users’ scheduler.

A. Primary Traffic Model

An ON-OFF model is commonly used to capture the bursti-
ness and dependency structure of traffic streams. It is well
known that Internet traffic appears similar in different time
scales, which is called self-similarity [13]. Statistical analysis
shows that the ON-OFF periods of self-similar traffic exhibit
long-tailed characteristics, which are described by a Pareto
distribution as follows:

P (X > s) =
(smin

s

)α

, s > smin > 0;α > 0, (1)

where smin is the smallest possible value of the discrete
random variable X , which represents the number of time slots,
each of duration TS seconds, in which the primary channel is
ON. The OFF period length is modeled by an exponentially
distributed variable with mean soff [12]. The primary channel
is considered to be either ON or OFF during a time slot, and
the average probabilities of finding the channel busy or idle are
PON and POFF = 1−PON , respectively. Channel availability
for secondary users can be conveniently modeled as a set of M
independent ON-OFF processes running simultaneously (one
for each subchannel).

B. Secondary Users’ System Model

Secondary users transmit on the same OFDMA subchannels
as primary users. Each of the K secondary users is entitled to
transmit on the uplink only during OFF periods in order not
to cause interference to licensed users. A resource allocation
algorithm schedules the secondary users and the transmit
power for each of the M subchannels (Fig.1).
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Fig. 1. Model of the secondary cognitive system.

Real-time video traffic is buffered in finite-length queues
and Qk(s) is the time-varying level of the k−th user’s queue,
which is filled by the video encoder at an average rate of
λk. We indicate by LQ the maximum length of a queue. Let
hk(s) = [hk,1(s)...hk,M (s)] be the set of time-varying fading
channel gains between the k − th user and the base station
(BS) on the M subchannels at time slot s. Thus, the signal-
to-noise ratio at the BS in the m− th subchannel at time slot
s is

SNRm(s) =
Pk̂,m(s)h2

k̂,m
(s)

PN
(2)

where Pk̂,m(s) is the power allocated to the user k̂ scheduled
in the m−th subchannel and PN is the Gaussian noise power.
A total transmitted power constraint has to be met in any time
slot (e.g., for regulatory purposes), so that

∑
m,k̂ Pk̂,m(s) =

PT .

C. Queues and Channel State Information

Information about secondary users’ queues and uplink chan-
nel states (i.e., the set of OFDMA subchannels) is required at
the BS in order to perform scheduling and power allocation
(Fig.1). We assume that within each subchannel’s OFF period,
the BS has exact knowledge of Q(s) = [Q1(s), ..., QK(s)] and
H(s) = [hT

1 (s), ..., hT
K(s)]. Furthermore, secondary users and

the BS are assumed to be able to sense instantaneously any
ON-OFF subchannel transitions. However, no knowledge is
assumed on the duration of OFF-ON periods, and the resource
allocation is made on a slot-by-slot basis.
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D. Video Encoding

The encoder converts the video frames into a bit stream
that is written into the encoder output buffer. The data rate of
the bit stream can vary due to the type of frame that is to be
encoded, and also due to the video content (e.g., a scene cut)
[14]. The encoder is free to allocate the rate within the frames
so as to optimize some (quality) criterion, while making sure
that, on average, it is able to adhere to the target constant bit
rate (CBR), λk. We choose to model the encoded bit stream
arrival process λk(s) with a truncated Gaussian distribution
with E[λk(s)] = λk, V ar(λk(s)) = σ2

k and λk(s) > 0.

III. DYNAMIC RESOURCE ALLOCATION

The resource allocation algorithm is performed only in
subchannels that at a given time slot are sensed idle by
secondary users, that is, during primary subchannels’ OFF
periods. The goal of the algorithm is to schedule the user in
each available subchannel in a manner that optimizes a certain
utility function, and to allocate the total available power across
the subchannels in order to maximize the overall throughput.

A. Scheduling Utility Function

The proportional fair (PF) scheduling algorithm was pro-
posed [11] as a tradeoff between diversity gain, fairness
and packet delay. Let rk,m(s) be the transmission data rates
achievable by user k on the m − th subchannel at time
slot s on the basis of the channel state hk,m(s) and the
system’s adaptive modulation and coding (AMC) scheme, and
let T1(s), . . . , TK(s) be the average throughputs in a sliding
window of sc slots. The proportional fair algorithm chooses
the user to transmit on subchannel m that has the largest ratio

μk,m(s) =
rk,m(s)
Tk(s)

. (3)

If k̂m is the user selected by the scheduler at time slot s in
subchannel m, the update of Tk(s) for the next time slot is
given by

Tk(s + 1) =

{
(1 − 1

sc
)Tk(s) + 1

sc
rk,m(s) k = k̂m

(1 − 1
sc

)Tk(s) k �= k̂m

(4)

The ratio rk,m(s)
Tk(s) is proportional to the rate supported by

the user’s uplink, and thus to the channel gain, and inversely
proportional to the average throughput. The parameter sc is
related to the latency (or delay). Thus, the PF algorithm
schedules a user when its instantaneous channel quality is high
relative to its average channel condition over the time-scale sc.

We propose a modified version of the PF scheduling al-
gorithm (MPF) that also takes into account the queues’ state
Q(s). Specifically, the utility function in (3) becomes

ηk,m(s) = μk,m(s)πk(s), (5)

where we introduce a correction factor πk(s) defined as

πk(s) =

⎧⎪⎨⎪⎩
e

Qk(s)−αk
εk Qk(s) < αk

e
Qk(s)−βk

εk Qk(s) > βk

1 otherwise

(6)

In (6), αk and βk are scheduler-defined thresholds that
determine which level of emptiness or fullness a user’s queue
has to reach to begin to penalize or prioritize the user.
The parameter εk can be regarded as a shaping factor that
determines how fast the penalization or the prioritization is
carried out depending on the queue’s level.
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Fig. 2. Scheduling utility function as a function of the level in the user’s
queue

Accordingly, when the queue level is between the thresholds
αk and βk, a standard PF algorithm is performed (Fig.2). The
scheduling algorithm is able to react to a potential overflow
of a given user’s buffer by prioritizing that user (through the
utility function πk(s)), but it also takes into account the uplink
channel condition (through μk,m(s)). Alternatively, a user
whose queue is near empty would be penalized until the queue
fills up to the threshold αk. The prioritization process relies on
fair behavior of the users’ encoders. In fact, a cheating user
could arbitrarily use a larger encoding data rate in order to
maintain a full queue and higher priority than fair users.

B. Resource Allocation Algorithm

Let the m-th primary subchannel to be in the OFF state
at time slot s, i.e., no primary users transmit on the m-
th subchannel at time slot s, and let the scheduler have
exact knowledge of Q(s) and hk,m(s) for k = 1, ...,K,
i.e., the queue state vector and the set of users’ uplink
m-th subchannel gains, respectively. Suppose that the set
h1,m(s), ..., hK,m(s) can be mapped into a corresponding data
rate set r1,m(s), . . . , rK,m(s) for an equal power distribution
over N(t) subchannels (i.e., Pk,m(s) = PT /N(s)), where
N(s) ∈ [0,M ] is the number of primary subchannels in the
OFF state at time slot s. Thus, the k-th user’s signal-to-noise
ratio in the m-th subchannel SNRm(s) = PT hk,m(s)2

N(s)PN
can be

mapped to the corresponding data rate rk,m(s) according to a
predefined bit loading table (e.g., as in Table I [15]).

TABLE I
DOWNLINK PARAMETERS (IEEE 802.16)

Modulation Coding rate SNR range Spectral efficiency
[dB] [bit/carrier]

QPSK 1/2 9.4-11.2 1
QPSK 3/4 11.2-16.4 3/2
16-QAM 1/2 16.4-18.2 2
16-QAM 3/4 18.2-22.7 3
64-QAM 2/3 22.7-24.4 4
64-QAM 3/4 > 24.4 9/2
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For each user in each subchannel that is in the OFF state, we
can compute the utility function ηk,m(s) according to (5) and
(6), and we can schedule the user that maximizes the utility
function:

k̂m(s) = argmaxk{ηk,m(s)}. (7)

Thus, we have a secondary user scheduled in each of the N(s)
subchannels where primary users are not transmitting.

We are now able to find the optimal power allocation over
the N(s) scheduled users. In particular, we choose to allocate
the transmitted power that maximizes the overall throughput:

Popt(s) = argmaxP{
∑
m

rk̂m,m(s)}, (8)

where Popt(s) is the optimal power allocation vector of N(s)
elements, and P is the matrix corresponding to all allowed
power allocations. Although it is certainly a suboptimal ap-

NO

YES

NO

YES

NO

YES

NO

YES

Fig. 3. Resource allocation algorithm workflow

proach, searching a limited number of possible power allo-
cations limits the delay in the resource allocation algorithm.
Before scheduling is performed for the next time slot, the
average throughput update is carried out according to (4).

C. MAC-Application Layer Interaction

The resource allocation algorithm is performed only if at
least one subchannel is in the OFF state (N(s) > 0), thus,
no outflow from the secondary users’ queues is possible if
all the subchannels are used by primaries. Each secondary
user’s video encoder has knowledge of the corresponding
queue, so that we can force the encoder to lower the average
video stream bit rate λk in order to reduce the probability of
overflow when secondary users are not allowed to transmit
(i.e., N(s) = 0). Also, more complicated data rate control

algorithms have been implemented in video encoders [14]
that could be suitable to provide an overflow prevention
mechanism.

IV. NUMERICAL RESULTS

Simulations have been carried out for an OFDMA system
with B = 5MHz, M = 4 subchannels, and each time slot is
TS = 5msec long. For each subchannel a primary channel
ON-OFF process was simulated with parameters smin and
soff chosen to obtain the desired OFF probability, POFF .
A time-correlated flat-fading process with mean signal-to-
noise ratio (SNR) of 18dB is independently run for each
of K = 6 secondary users for each subchannel, and the bit
loading corresponding to the users’ SNR is taken from Table
I [15]. The maximum queue length is equal for all the users
and it is set to LQ = 2 Mb.

In Fig. 4, the performance of the resource allocation algo-
rithm is evaluated. We compare the video frame loss proba-
bility of the standard PF (dashed curve) and the MPF (solid
curve) scheduling algorithms, both with and without power
optimization (i.e., each user scheduled transmits at PT /M ),
for POFF = 0.3 and POFF = 0.5. We assume the secondary
channel to be error-free once the bit loading is made, thus,
video frame loss is estimated by accounting for the related
overflow occurrences. Note that there is a performance gain
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Fig. 4. Standard PF (dashed) and MPF (solid) performances for POFF =
0.3 and POFF = 0.5 without power optimization (′∗′ and ′�′ curves,
respectively), and with power optimization (′+′ and ′o′ curves, respectively).

in all cases considered comparing PF and MPF scheduling.
As expected, a larger throughput is achievable for increasing
POFF , as the channel is available more often, and for a similar
data rate, we expect a lower probability of overflow. Although
a very simple power optimization scheme has been used, in
which only ±3dB power steps are allowed, the throughput
of the system is nearly doubled for a given video frame loss
probability.

In Fig. 5, we take into account the possibility of controlling
the video stream rate when secondary users are not allowed to
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transmit (i.e., N(s) = 0). In particular, we apply a correction
factor ρ to λk with ρ1 = 1, ρ2 = 0.8, ρ3 = 0.5 and ρ4 = 0.2.
The performance gain achieved by MPF over PF still holds,
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Fig. 5. Standard PF (dashed) and MPF (solid) performances for POFF =
0.5 with power optimization and video encoder rate control with ρ1 = 1 (′o′
curves),ρ2 = 0.8 (′∗′),ρ3 = 0.5 (′+′) and ρ4 = 0.2 (′�′).

and the video encoder data rate control provides a means to
fairly reduce the overflows. Overall, the probability of video
frame loss is significantly decreased, at the expense of a lower
quality encoding when all the subchannels are in the ON
periods, caused by the reduction of the average video encoder
data rate ρλk.

V. CONCLUSIONS

In this paper, we have introduced a resource allocation al-
gorithm for secondary users in an OFDMA cognitive network
with real-time constraints. A rather simple ON-OFF process
is used to model the primary user activity on the uplink. In
particular, a Pareto distribution is used for taking into account
the burstiness of the ON periods. The secondary users’ real-
time constraint is modeled through the adoption of finite-
length queues that are filled by the video encoder continuously,
and emptied by the transmitter in a bursty fashion during
the OFF periods. The scheduling algorithm is a modified
version of the well-known PF scheduler, where a queue-aware
utility function has been assumed to work along with the
usual channel-driven PF rule. Simulation results show that our
scheduling algorithm achieves better performance with real-
time traffic because of its ability to prioritize near-to-overflow
users. Furthermore, we introduce a throughput maximization
scheme when allocating power to the transmitting users. Even
rather simple optimization schemes achieve a huge throughput
gain without affecting the overall algorithm complexity. Fi-
nally, a MAC-application layer interaction has been proposed
according to which the video encoder is forced to reduce the
video streaming data rate when no secondary users are allowed
to transmit on the uplink subchannels. A tradeoff between
quality degradation due to video frame loss and that due to the

video encoding data rate control emerges. More sophisticated
rate control algorithms could be proposed that also take into
account the encoding process (I, B and P frames) in order to
reduce the quality degradation.
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