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Robust Deep Sensing Through Transfer Learning in Cognitive Radio
Qihang Peng , Andrew Gilman , Nuno Vasconcelos , Pamela C. Cosman , and Laurence B. Milstein

Abstract—We propose a robust spectrum sensing framework
based on deep learning. The received signals at the secondary
user’s receiver are filtered, sampled and then directly fed into a
convolutional neural network. Although this deep sensing is effec-
tive when operating in the same scenario as the collected training
data, the sensing performance is degraded when it is applied in a
different scenario with different wireless signals and propagation.
We incorporate transfer learning into the framework to improve
the robustness. Results validate the effectiveness as well as the
robustness of the proposed deep spectrum sensing framework.

Index Terms—Spectrum sensing, deep learning, robustness,
transfer learning, cognitive radio.

I. INTRODUCTION

SPECTRUM sensing enables cognitive radios (CRs) to dis-
cover unused spectrum of primary users (PUs), such that

secondary users (SUs) can access unused bands to increase
spectral utilization of the network [1]–[3]. Spectrum sensing
is of critical importance for the realization of CR.

In recent years, deep learning (DL) techniques have
achieved great success on many complex tasks, and the best
performance is often obtained with end-to-end models [4], [5],
where a DL system learns appropriate features in a data-driven
fashion, instead of using hand-crafted features. Such models
may also have potential in spectrum sensing.

A DL model was proposed in [6] for cooperative spectrum
sensing, where the CR network combines the sensing results
from each SU. Measured received signal strength (RSS) or
binary sensing decisions were input to a deep neural network
(DNN). A recent work on modulation recognition [7] using
raw samples of the in-phase and quadrature-phase of the
received temporal signals as input to a DNN shows signifi-
cant gains compared to using conventional features. However,
DL-based approaches require significant amounts of labeled
training data which follows the same distribution as the test
data. In [8] and [9], the authors propose adversarial generative
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networks to augment training examples, as well as domain
adaptation to switch between signal types.

In this letter, we propose a DL-based spectrum sensing
system, called deep sensing hereafter. Unlike existing DL-
based spectrum sensing using expert features, the proposed
method uses raw signals as inputs to a DNN. As we show
that a DNN trained under one set of conditions may not per-
form well when wireless conditions change, we propose to
incorporate transfer learning (TL) [10] to adapt the learned
models to new communications settings. Results show that
TL significantly improves the robustness.

The main contributions of this letter are: (1) It extends
O’Shea’s work on modulation recognition with DL to spec-
trum sensing in CR, and evaluates its performance against the
optimal and energy detection. (2) This is the first exploration
of transfer learning to address robustness in DL-based spec-
trum sensing. We consider both cases of domain adaptation
(no labeled training examples) and fine-tuning (a small num-
ber of labeled training examples). (3) For the cases studied,
we observed that very few labeled data were needed for a
robust transfer to the new conditions. The rest of this letter
is organized as follows. Section II presents the deep sensing
algorithm and its performance. Robustness is analyzed, and
two transfer learning frameworks are examined in Section III.

II. DEEP SPECTRUM SENSING

Received radio signals pass through a rectangular bandlim-
ited filter to limit noise, and then are sampled, producing a
discrete-time sequence. A subsequence of N complex-valued
samples, collected during a single sensing interval, is decom-
posed as a 2 × N real-valued vector, with the first and second
row being the in-phase and quadrature components, respec-
tively, and forms a single input vector x to a DNN. The DNN
outputs a binary class label y with value y = 1 when the SU
makes a decision that the PU is present and y = 0 that the PU
is absent.

We use a convolutional neural network (CNN) with two
convolutional layers, followed by two dense layers (Table I).
For the two convolutional layers, the stride is 1 and the zero
padding equals 4. Rectified linear (ReLU) activation units are
used as the non-linearity in each layer. Dropout with a rate of
0.50 is used to regularize fully connected and convolutional
layers, to reduce over-fitting. The Adam optimizer is utilized,
and the last layer uses the logistic function. Given a training
set of n sensing interval examples xi and their class labels yi ,
denoted D = {xi , yi}ni=1, the network parameters are learned
by minimizing the empirical risk

w∗ = argmin
w

1

n

∑

i

L[f (xi ;w), yi ] (1)
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TABLE I
DEEP SENSING NEURAL NETWORK

where f (xi ;w) = p(yi = 1|x = xi ;w) and the empirical risk
uses the binary cross-entropy loss function

L[f (xi ;w), yi ] = −(yi log(f (xi ;w)) + (1− yi ) log(1− f (xi ;w))).

(2)

This is the set of network parameters that maximizes the
likelihood

∏n
i=1 f (xi ;w)

yi (1− f (xi ;w))
1−yi .

CNN was chosen as the neural network architecture in this
letter for several reasons. First, it is a natural structure to
consider because operation of a CNN kernel can be thought
of as related to filtering operations that occur in communi-
cations receivers. Also, the modulation recognition work by
O’Shea et al. [7] used a CNN. Further, in comparing a CNN
with a fully connected (FC) network, it was found that the
FC network has worse sensing performance than a CNN, and
when we considered a CNN and a recurrent neural network
(RNN) with identical sensing performance, the CNN had lower
computational complexity than the RNN.

To compare the performance of spectrum sensing using DL,
we adopt a setting where an analytical expression for the
optimal sensing algorithm is available. We consider detect-
ing a narrowband Gaussian-distributed signal in additive white
Gaussian noise (AWGN), in which case the optimal sensing
algorithm according to the log-likelihood ratio is[11]

LLR(x) =
1

2
xT (C−1

z − C−1
x )x (3)

where x is a vector of received samples within one sensing
duration, Cx is the covariance matrix of x, and Cz is the
covariance matrix of the additive noise after the filter.

We compare sensing performance using a narrowband
Gaussian PU signal with zero mean, corrupted by AWGN.
There are N = 32 samples in a sensing interval, and the signal-
to-noise ratio (SNR) 10 log10(σ

2
S/σ

2
n ) is −4dB, where σ2S is

the PU signal variance and σ2n is the noise variance after the
filter. The PU signal bandwidth is 1/4 of the filter bandwidth.
The network is trained with a training set D of n = 2 × 104

and tested on an independent (but with the same transmitter,
channel and receiver characteristics) test set of the same size.
Fig. 1 shows the ROC curves for optimal and deep sensing
as well as the performance of an energy detector [2]. The
optimal sensing result was obtained with (3). The deep sens-
ing result was obtained by computing probabilities of detection
and false alarm on the test set, using different thresholds on
the network output. The deep sensing, which does not require
feature extraction of the received samples, outperforms energy
detection (ED) and is close to the optimal.

Fig. 1. Deep spectrum sensing compared with optimal sensing.

The optimal scheme for a particular sensing scenario is only
optimal if it has perfect information on the required parame-
ters. For example, the optimal scheme in Fig. 1 requires the
covariance matrices of the received samples and of the addi-
tive noise after the receive filter. With estimation error in the
required information, the performance degrades. Also, for dif-
ferent sensing scenarios, the optimal sensing scheme differs,
so a dedicated sensing receiver is required for every scenario,
which is costly. Furthermore, the optimal sensing for mod-
ulated signals typically requires averaging over a very large
number of realizations of transmitted symbols, and thus, it is
computationally infeasible.

III. ROBUST DEEP SENSING WITH TRANSFER LEARNING

Robustness was shown to be a problem when applying DL
for automatic modulation recognition [12]. We examine deep
sensing robustness by considering different PU signals: nar-
rowband Gaussian signals with zero mean in AWGN with an
SNR of −4dB, and QPSK signals that use a square root raised
cosine filter with a roll-off factor of 0.5 for pulse shaping.
The QPSK signals experience path loss with average SNR
between −2dB and −4dB and frequency-selective Rayleigh
fading with 3 discrete paths. The data is obtained from simu-
lations in MATLAB. Datasets collected under these different
characteristics will belong to different, but related, distribu-
tions, i.e., domains. The source domain is used to train the
network, and the target domain is used for testing. Both train-
ing and test sets have size n = 2× 104. Results are in Fig. 2,
where the probability of detection (pd ) versus the probability
of false alarm (pfa) is plotted. In Fig. 2(left), we use QPSK as
source domain and Gaussian as target domain. The resulting
sensing performance, marked “QPSK→Gaussian”, is signifi-
cantly worse than the case where we use 2× 104 examples of
Gaussian signals to train and test the network (curve labeled
“Gaussian→Gaussian”).

Similar observations can be made from Fig. 2(right), where
the curve “Gaussian→QPSK” is obtained using Gaussian
signals in the source domain and QPSK signals in the tar-
get domain, and the curve “QPSK→QPSK” is plotted for
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Fig. 2. Deep sensing using transfer learning with no labeled data: (left) from QPSK to zero-mean narrowband Gaussian signals; (right) from zero-mean
narrowband Gaussian to QPSK signals.

reference. Figs. 1 and 2 show that when source and tar-
get domains are the same, deep sensing performance can be
close to optimal, whereas when they are mismatched, deep
sensing performance can degrade significantly. As transmitted
signals can vary in several ways (e.g., alphabet sizes, cod-
ing schemes) and signal propagation depends on many factors
(e.g., frequency, terrain profile), getting enough ground-truth
labeled training data across all possible scenarios is difficult.
Thus TL procedures are important.

A. Transfer Learning With no Labeled Data

The transfer approaches in this category are referred to
as unsupervised domain adaptation. Let Xsrc = {xsrci } and
Xtar = {xtari } denote the data in the source and target
domains, respectively. As shown above, directly applying the
neural network (NN) trained with Xsrc may not work well
for Xtar . To leverage the knowledge learned by the NN from
Xsrc , we use the TL method of [13]. This aims to discover
a latent space described by a kernel-induced feature trans-
formation function φ such that the marginal distributions of
φ(Xsrc) and φ(Xtar ) are close. A nonparametric distance
estimate, referred to as the Maximum Mean Discrepancy
(MMD)[13], is defined by embedding distributions in a repro-
ducing kernel Hilbert space (RKHS) and is calculated by

‖ 1

n1

n1∑
i=1

φ(xsrci ) −
1

n2

n2∑
i=1

φ(xtari )‖2H, where ‖ · ‖H is the

RKHS norm. Making the distributions of the source and
target data close is equivalent to minimizing the MMD dis-
tance [13]. Let K = [φ(xi )

Tφ(xj )], and Li ,j = 1/n2
1 if

xi , xj ∈ Xsrc , else Li ,j = 1/n2
2 if xi , xj ∈ Xtar , otherwise,

Li ,j = −1/n1n2. The MMD distance can then be written as
tr(KL), and the learning problem formulated as [13]

min
W

tr(WTKLKW) + μ · tr(WTW)

s .t . WTKHKW = I (4)

where tr(·) stands for the trace operation, H = I− (1/(n1 +
n2))11

T is the centering matrix, 1 is a (n1 + n2)× 1 column
vector with all 1’s, a regularization term tr(WTW) controls

the complexity of W, μ > 0 is a tradeoff factor between the
MMD distance between distributions and complexity, and I
is the identity matrix. The data in the latent space is W TK ,
and the solution of W corresponds to the m (m ≤ N) leading
eigenvectors of (KLK+ μI)−1KHK.

We use pfa and pd as the sensing performance metrics.
Fig. 2(left) shows that when QPSK data is used as source
data and Gaussian data as target data, the TL algorithm
improves the sensing, compared to when we directly use the
NN trained on QPSK data for sensing Gaussian PU signals.
However, the improved deep sensing is still worse than ED.
Further, interchanging source and target data, Fig. 2(right)
shows that unsupervised domain adaptation does not improve
performance, although in this case both deep sensing out-
perform ED. These results indicate that this transfer with no
labeled target domain data is not robust.

B. Transfer Learning With a Small Amount of Labeled Data

When we have a small amount of labeled data, we can
use fine-tuning, the dominant TL procedure in computer
vision [10]. The deep sensing system, trained on a large source
dataset, is a starting point for further training using data from
the target dataset. For training the baseline network, it is
assumed that simulation data is used. For the TL, we use
simulation data also, but in practice the SU would need to
acquire some real labeled data in its actual environment. One
way to accomplish this is through cooperation between PUs
and SUs. With a small loss of throughput, the PUs could use
occasional sensing intervals for providing ON and OFF peri-
ods so that each SU can acquire labeled data. Alternatively, by
listening and comparing across consecutive sensing and data
transmission intervals, an SU could develop estimates of the
labels. Note that the surrounding environment can change dur-
ing the collection of training examples for fine tuning, and the
estimates of the labels can be inaccurate.

For each sensing interval, the PU and the SU are assumed
to be randomly located uniformly within a 1000m × 1000m
square area, and the path loss between them is calculated
using the Frii transmission formula [14]. We start with a NN
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TABLE II
DEEP SENSING PERFORMANCE (AREA UNDER CURVE) FOR VARIOUS

SIGNALS AND CHANNEL MODELS. IN THIS TABLE, PL AND R
DENOTE PATH LOSS AND RAYLEIGH FADING

Fig. 3. Deep sensing performance with fine tuning: (top) from QPSK to zero-
mean narrowband Gaussian signals; (bottom) from zero-mean narrowband
Gaussian to QPSK signals.

pre-trained using 2×104 examples of QPSK data, and fine tune
it using a variable number of examples of Gaussian signals.
The tuned network is applied for sensing zero-mean Gaussian
signals. We also plot the performance of ED and of DL-based
sensing by training from scratch, which initializes the NN
randomly and trains it using a variable number of Gaussian
examples. As the stochastic gradient descent optimization uses
random weight initialization, the network is trained 10 times
and the results are averaged. Fig. 3(top) shows pd vs. the num-
ber of examples of Gaussian signals, with pfa = 0.1. With
no labeled Gaussian data, pd > 0.80 for the network trained
by QPSK data, and pd is around 0.20 for the randomly ini-
tialized network, showing that QPSK-trained initialization is
beneficial, and the DL-based sensing outperforms ED. Note
also that fine tuning outperforms training from scratch. Given

enough training data, the performance of random initialization
approaches that of the pre-trained network.

Next we interchange the training and test data, pre-training
with Gaussian signals and fine tuning with QPSK signals. We
test on QPSK signals, and average over 10 runs. Fig. 3(bottom)
shows a similar pattern as before: when only a small amount of
QPSK training data is available, better performance is achieved
by fine tuning than by random initialization. Further, fine tun-
ing outperforms ED for the whole curve, and the DL-based
sensing by training from scratch outperforms ED as well when
the number of training examples exceeds roughly 100.

In addition to the narrowband Gaussian and QPSK signals,
we tested several other signals and channel models. For curves
of the type shown in Fig. 3, the area under the curves over the
x-axis range [0, 1000] for both fine-tuning and training from
scratch are in Table II. All results were consistent with Fig. 3,
in that fine-tuning outperformed training from scratch.

IV. CONCLUSION

We demonstrate the application of DL to spectrum sens-
ing. The approach does not require feature extraction from the
received signals at the SU. As deep spectrum sensing is not
robust when applied in a different communications scenario
from the training data, we incorporate TL to ensure robust-
ness. With no labeled target data, the transfer is unreliable and
depends on whether QPSK or Gaussian signals are the source
or target. When there is a small amount of labeled target data,
fine tuning is robust for transferring into a variety of domains.

REFERENCES

[1] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on spec-
trum sensing for cognitive radio: Challenges and solutions,” EURASIP
J. Adv. Signal Process., vol. 2010, Dec. 2010, Art. no. 381465.
doi: 10.1155/2010/381465.

[2] D. Cabric, S. M. Mishra, and R. G. Brodersen, “Implementation issues
in spectrum sensing for cognitive radios,” in Proc. 38th Asilomar
Conf. Signals Syst. Comput., Nov. 2004, pp. 772–776.

[3] Y. Li and Q. Peng, “Achieving secure spectrum sensing in pres-
ence of malicious attacks utilizing unsupervised machine learning,” in
Proc. IEEE MILCOM, Baltimore, MD, USA, Nov. 2016, pp. 174–179.

[4] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv
preprint, arXiv: 1604.07316, 2016.

[5] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” arXiv preprint, arXiv:
1609.08144, 2016.

[6] W. Lee, M. Kim, and D. Cho, “Deep cooperative sensing: Cooperative
spectrum sensing based on convolutional neural networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 3, pp. 3005–3009, Mar. 2019.

[7] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning
based radio signal classification,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 168–179, Feb. 2018.

[8] K. Davaslioglu and Y. E. Sagduyu, “Generative adversarial learning for
spectrum sensing,” in Proc. IEEE Int. Conf. Commun., Kansas City,
MO, USA, May 2018, pp. 1–6.

[9] T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for
launching and mitigating wireless jamming attacks,” IEEE
Trans. Cogn. Commun. Netw., vol. 5, no. 1, pp. 2–14, Mar. 2019.

[10] J. Donahue et al., “DeCAF: A deep convolutional activation feature for
generic visual recognition,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. 647–655.

[11] T. A. Schonhoff and A. A. Giordano, Detection and Estimation Theory
and Its Applications. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

[12] B. Luo, Q. Peng, P. C. Cosman, and L. B. Milstein, “Robustness
of deep modulation recognition under AWGN and Rician fading,” in
Proc. Asilomar Conf. Signals Syst. Comput., Oct. 2018, pp. 447–450.

[13] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Trans. Neural Netw., vol. 22,
no. 2, pp. 199–210, Feb. 2011.

[14] T. S. Rappaport, Wireless Communications: Principles & Practice.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 20,2020 at 17:57:34 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1155/2010/381465


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


