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Underwater Image Restoration Based on Image
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Abstract— Underwater images often suffer from color distor-
tion and low contrast, because light is scattered and absorbed
when traveling through water. Such images with different color
tones can be shot in various lighting conditions, making restora-
tion and enhancement difficult. We propose a depth estimation
method for underwater scenes based on image blurriness and
light absorption, which can be used in the image formation
model (IFM) to restore and enhance underwater images. Previous
IFM-based image restoration methods estimate scene depth based
on the dark channel prior or the maximum intensity prior.
These are frequently invalidated by the lighting conditions in
underwater images, leading to poor restoration results. The pro-
posed method estimates underwater scene depth more accurately.
Experimental results on restoring real and synthesized underwa-
ter images demonstrate that the proposed method outperforms
other IFM-based underwater image restoration methods.

Index Terms— Underwater image, image restoration, image
enhancement, depth estimation, blurriness, light absorption.

I. INTRODUCTION

TECHNOLOGY advances in manned and remotely oper-
ated submersibles allow people to collect images and

videos from a wide range of the undersea world. Waterproof
cameras have become popular, allowing people to easily
record underwater creatures while snorkeling and diving.
These images or videos often suffer from color distortion
and low contrast due to the propagated light attenuation with
distance from the camera, primarily resulting from absorption
and scattering effects. Therefore, it is desirable to develop an
effective method to restore color and enhance contrast for these
images.

Even though there are many image enhancing techniques
developed, such as white balance, color correction, histogram
equalization, and fusion-based methods [1], they are not based
on a physical model underwater, and thus are not applicable
for underwater images with different physical properties. It is
challenging to restore underwater images because of the varia-
tion of physical properties. Light attenuation underwater leads
to different degrees of color change, depending on wavelength,
dissolved organic compounds, water salinity, and concentra-
tion of phytoplankton [2]. In water, red light with a longer
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Fig. 1. (a) Simplified image formation model. (b)–(f) Examples of under-
water images having different underwater color tones. The original images
(b) and (c) are from [35], (d) from www.webmastergrade.com, (e) from
scuba-diving.knoji.com/amazing-underwater-parks and (f) from [36].

wavelength is absorbed more than green and blue light. Also,
scattered background light coming from different colors of
water is blended with the scene radiance along the light of
sight [3], resulting in underwater scenes often having low
contrast and color distortions.

Fig. 1(a) depicts a simplified image formation
model (IFM) [4]–[6] to describe an underwater scene.
Here I (x), the observed intensity at pixel x , consists of
the scene radiance J (x) blended with the background
light (BL) B according to the transmission map (TM) t (x).
The TM describes the portion of the scene radiance that is
not scattered or absorbed and reaches the camera. Therefore,
a closer scene point has a larger value in the TM. Fig. 1(b)-(f)
shows five underwater images with different BL.

In order to restore color and enhance contrast for
such images, several attempts have been made using the
IFM [8]–[17], where scene depth is derived from the TM [7].
In [8], [10], [11], and [15], the TM is derived by the dark
channel prior (DCP) [7], which was first proposed to remove
haze in natural terrestrial images by calculating the amount
of spatially homogeneous haze using the darkest channel in
the scene. It was observed that because points in the scene
closer to the camera have a shorter path over which scattering
occurs, close dark scene points would remain dark as they
would experience less brightening from scattered light. Thus,
the DCP can be used to estimate the TM and scene depth.
However, red light that possesses longer wavelength and lower
frequency attenuates faster underwater. Thus the DCP based
on RGB channels (DCPrgb) in an underwater scene would
often end up considering only the red channel to measure
transmission, leading to erroneous depth estimation and poor
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restoration results. In [12], [13], and [17], an underwater
DCP based on only the green and blue channels (DCPgb) was
proposed to avoid this problem. Similarly, Galdran et al. [14]
proposed the Red Channel method, whose DCP is based on
green, blue, and inverted red channels (DCPr’gb). Instead of
using the DCP, Carlevaris-Bianco et al. [9] adopted the max-
imum intensity prior (MIP) that uses the difference between
the maximum intensity of the red channel and that of the green
and blue channels to estimate the TM. However, these methods
frequently perform poorly because the light absorption and
different lighting conditions existing in underwater images
make many exceptions to those priors. Moreover, no work has
been done on restoration of underwater images with dim BL,
which frequently violate the assumptions underlying the DCPs
and the MIP. For example, the DCPs or the MIP of dark
background pixels would have small values and therefore be
mistakenly judged as being close to the camera.

To improve DCP- or MIP-based methods, our previous
work [16] uses image blurriness to estimate transmission and
scene depth, because larger scene depth causes more object
blurriness for underwater images. The method can properly
restore those underwater images that make exceptions to the
DCP- or MIP-based methods because it does not estimate
underwater scene depth via color channels. In this paper,
we improve our previous work. The specific improvements
relative to [16] are as follows: (a) Rather than estimating depth
using image blurriness alone, we use both image blurriness and
light absorption. While blurriness is an important indicator of
depth, it is not the only cue underwater, and the differential
absorption of red light can be exploited when the red content
is significant. (b) We improve on the estimation of BL, in
that we determine BL from candidate BLs estimated from
blurry regions. (c) We present the most comprehensive com-
parison to date of underwater image restoration techniques,
using no-reference quality assessment tools (BRISQUE [18],
UIQM [19], and UCIQE [20]), as well as two full-reference
approaches (PSNR and SSIM [21]) based on synthesized
underwater images with scaled and shifted known depth maps.

The rest of the paper is organized as follows. In Section II,
we review underwater image restoration methods based on
the IFM. The proposed method is described in Section III.
Qualitative and quantitative experimental results are reported
in Section IV. Section V combines the proposed method with
histogram equalization and compares against an underwater
image enhancement method. Finally, Section VI summarizes
the conclusions.

II. RELATED WORK

A. Underwater Image Restoration Based on DCP/MIP

The simplified IFM [4]–[6] is given as:

I c(x) = J c(x)tc(x) + Bc(1 − tc(x)
)
, c ∈ {r, g, b} (1)

where I c(x) is the observed intensity in color channel c of
the input image at pixel x , J c is the scene radiance, Bc is
the BL, and tc is the TM, where c is one of the red, green,
and blue channels. Note that I c and J c are normalized to the
range between 0 and 1 in this paper. The TM tc is commonly

written as an exponential decay term [7], [14], [15] based on
the Beer-Lambert law [22] of light attenuation:

tc(x) = e−βcd(x), (2)

where d(x) is the distance from the camera to the radiant
object and βc is the spectral volume attenuation coefficient for
channel c, where c is one of the red, green, and blue channels.

To estimate Bc and tc, the DCP finds the minimum value
among three color channels in a local patch of an image [7].
The DCP for a hazy image can be computed as:

I rgb
dark(x) = min

y∈�(x)

{
min

c∈{r,g,b} I c(y)

}
, (3)

where �(x) is a square local patch centered at x . For an
outdoor scene with haze, the value of the dark channel of
a farther scene point in the input image is in general larger
than for a closer scene point because of scattered light.

To determine BL Bc, the top 0.1% brightest pixels in I rgb
dark

were picked in [7]. Let p0.1% be the set of positions of those
bright pixels in I rgb

dark . Then, among these pixels, the one
corresponding with the highest intensity in the input image I c

is chosen to provide the estimate of BL. The estimated BL B̃c

can be described as:

B̃c = I c
(

arg max
x∈p0.1%

∑

c∈{r,g,b}
I c(x)

)
. (4)

There are several variants of BL estimation methods listed in
Table I.

For a haze-free image, tc = 1 in Eq. (1), so I c = J c. For
an outdoor terrestrial haze-free image, Jrgb

dark usually equals
zero, because for most pixels x , at least one of three color
channels will have a low-intensity pixel in the local patch �(x)
around x . This is not true for bright sky pixels, where nearby
pixels also tend to be bright. Thus, it asserts in [7, eq. (9)] that

J rgb
dark(x) = min

y∈�(x)

{
min

c∈{r,g,b} J c(y)

}
= 0, (5)

for about 75% of non-sky pixels in haze-free images.
To estimate tc, dividing both sides of Eq. (1) by Bc and

then applying the minimum operators to it, we obtain

min
y∈�(x)

{
min

c

I c(y)

Bc

}
= min

y∈�(x)

{
min

c

J c(y)

Bc tc(y)

}
+ 1 − t̃(x),

(6)

where the estimated TM t̃(x) = miny∈�(x) {minc tc(y)}. Since

miny∈�(x)

{
minc

J c(y)
Bc tc(y)

}
= 0 based on Eq. (5), t̃ is

estimated by:

t̃(x) = 1 − min
y∈�(x)

{
min

c∈{r,g,b}
I c(y)

Bc

}
, (7)

where t̃(x) is clipped to zero if negative.
The TM estimation described in Eq. (7) is a gen-

eral approach to measuring scene transmission, useful to
recover the scene radiance J c using Eq. (1). It is based
on three assumptions for hazy terrestrial images: over-
cast lighting, spatially invariant attenuation coefficients, and
wavelength-independent attenuation βr = βg = βb = β,
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TABLE I

FORMULAS FOR ESTIMATION OF DEPTH, BL, AND TM IN UNDERWATER IMAGE RESTORATION METHODS [8]–[16]

i.e., t̃ r = t̃ g = t̃ b = t̃ [5]. Table I also lists several
TM estimation methods based on Eq. (7) which have been
modified for underwater scenes.

Since the estimated TM has block-like artifacts, it can be
refined by either soft matting [24] or guided filtering [25].
With the estimated t̃ and a given β, the estimated depth map
can be calculated according to Eq. (2).

Finally, by putting I c, t̃ c and B̃c into Eq. (1), the estimated
scene radiance is calculated as J̃ c = (I c − B̃c)/t̃ c + B̃c.
In order to increase the exposure of the scene radiance for
display, a lower bound t0 for t̃ c, empirically set to 0.1,
is incorporated as:

J̃ c(x) = I c(x) − B̃c

max
(
t̃ c(x), t0

) + B̃c, (8)

Basically, this restoration step is adopted in [9]–[16] with
an extra smoothing step for [9], an additional color correction
method for [10], a color compensation method for [11], and
a color correction weighting factor incorporated in Eq. (8)
for [14].

The MIP, another prior to estimate the TM, was proposed
in [9]. It first calculates the difference between the maximum
intensity of the red channel and that of the green and blue
channels as:

Dmip(x) = max
y∈�(x)

I r (y) − max
y∈�(x)

{I g(y), I b(y)}. (9)

Large values of Dmip(x) represent closer scene points
whose red light attenuates less than that of farther scene
points. Then the TM is estimated by t̃(x) = Dmip(x) +(
1 − maxx Dmip(x)

)
. Table I summarizes all the priors, and

BL and TM estimation methods in [8]–[16].

Fig. 2. Examples of depth estimation via the DCPrgb, DCPgb, DCPr’gb
and MIP for underwater images. The first row of images shows a successful
case with BL (0.42, 0.68, 0.86). The second row shows a failure case with
BL (0.04, 0.07, 0.07). The original images for the first and second rows come
from [35] and [36].

These DCP- and MIP-based methods only work in limited
cases. Underwater images have different possible lighting
conditions, which may violate the assumptions underlying
these priors, leading to poor estimation and restoration results.
In the original image in the first row of Fig. 2, the lighting
conditions are appropriate for these methods. The foreground
fish and rock have dark pixels which cause the dark channel
to have a small value, so they are correctly estimated as being
close. By contrast, the background lacks very dark pixels, so
the dark channel has a larger value, and these regions are
correctly estimated to be relatively far away. For the MIP, the
value of Dmip of a closer scene point is larger than that of a
farther scene point, which can also be properly interpreted as
the scene depth.

The image in the second row of Fig. 2 is an example of
an underwater image shot with artificial lights where both the
DCP and MIP work poorly. The bright foreground pixels are
mistakenly judged to be far based on the DCPs. The dark
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Fig. 3. An example of inaccurate TM and BL estimation causing an unsatis-
fying restoration result. (a) Original image, (b) depth map, and estimated BL

B̃c picked at the position of the red dot, (c) recovered scene radiance obtained
using [15], and (d) estimated TMs for the red, green, and blue channels.

background region is incorrectly regarded as being close. The
MIP also produces an erroneous depth map because the values
of Dmip for the whole image are very similar. Note that since
correct depth estimation requires both the BL and TM of an
underwater image to be correctly estimated in Fig. 2, we com-
pare the depth maps obtained using different priors with fixed
and properly selected BLs. Later in Section IV, we will show
other examples where the DCP and the MIP poorly estimate
depth and BL, leading to unsatisfying restoration results.

B. TM Estimation for the Red, Green, and Blue Channels

As described previously, underwater image restoration
methods that require the three assumptions often fail to recover
scene radiance underwater because imaging conditions are
quite different than in open air. The natural illumination
undergoes a strong color-dependent attenuation, which vio-
lates the assumption of wavelength-independent attenuation
βr = βg = βb.

Chiang et al. [11] first addressed this problem by propos-
ing a wavelength compensation and image dehazing method.
In this, the TMs are estimated according to residual energy
ratios of different color channels, related to the attenuation
coefficients βc. However, these ratios were chosen manually,
limiting the practical applicability of this method.

In [15], the relations among the attenuation coefficients of
different color channels based on inherent optical properties
of water were derived from the BL as:

βk

βr = Br (mλk + i)

Bk(mλr + i)
, k ∈ {g, b}, (10)

where λc, c ∈ {r, g, b}, represent the wavelengths of the red,
green, and blue channels, m = −0.00113, and i = 1.62517.
The TMs for the green and blue lights are then calculated by:

tk(x) = tr (x)
βk

βr , k ∈ {g, b}, (11)

where tr is estimated by Eq. (7).
As described above, correct TM estimation is contingent

on the prior and BL it uses. Both of these frequently cannot
be attained in [11] and [15] because the prior they use is the
DCPrgb. Fig. 3 shows an example of an incorrect TM and BL
obtained using DCPrgb in [15] producing a poor restoration
result. Here, the original image has some bright foreground
pixels and some dark background pixels. Thus, instead of
picking BL from the bright background pixels, the method
selects BL from foreground pixels erroneously regarded as
being far. Moreover, wrong BL causes the TMs, t̃ r , t̃ g , and t̃ b,
to be similar to each other for this greenish input image, thus
failing to correct the distorted color.

Fig. 4. Example of restoring an underwater image with artificial lighting
using [14] and the proposed method. (a) The original image. The restoration
results and their corresponding depth maps and BL (marked with a red dot)
obtained using (b) [14] based on the DCPr’gb, (c) [14] based on the DCPr’gb
with saturation, and (d) more accurate TMs and properly selected BL. The
original image is from [36].

C. DCP/MIP Exceptions Caused by Artificial Illumination

Since water absorbs more light as the light rays travel
through longer distance in the water, artificial lighting is
sometimes used to provide sufficient light for taking pictures
and videos. Artificial lighting in an underwater image often
leads to a bright foreground. This violates the assumptions
underlying the DCP, where bright pixels are regarded as being
far. Artificially illuminated bright foreground pixels should be
less modified by a restoration method than background pixels
because the light, originating from an artificial lighting source
and reflected by foreground objects, travels less far in the water
and is less absorbed and scattered. Depth estimation based
on the MIP could fail when the foreground has bright pixels
and the background has dark pixels because the values of
Dmip for the foreground and the background would be similar,
which is unable to produce an accurate depth map. An example
of the failure of DCP and MIP to estimate scene depth is
shown in the second row of Fig. 2. We will demonstrate more
examples in Sec. IV.

Chiang et al. [11] proposed to detect and then remove
artificial lighting by comparing the mean luminances of the
foreground and the background. However, this approach clas-
sifies foreground and background pixels based on the depth
map using DCP, which is often ineffective because of incorrect
depth estimation.

Galdran et al. [14] dealt with artificial lighting by incorpo-
rating the saturation prior into DCPr’gb as:

I r ′gb−sat
dark (x) = min

y∈�(x)

{
min

c∈{r ′,g,b}
I c(y), Sat (y)

}
, (12)

where Sat = maxc(I c)−minc(I c)
maxc(I c) , c ∈ {r, g, b} measures the sat-

uration of scene point y. Because it is assumed that artificially
illuminated scene points would have low saturation, these
bright points in the foreground would not be incorrectly judged
as being far. However, it does not solve the problem caused by
dark pixels in the background, which still violate the assump-
tions underlying the DCP. As shown in Fig. 4(b), restoration
based on DCPr’gb estimates the scene depth incorrectly, as the
rock in the foreground has bright pixels because of artificial
lighting, so is wrongly judged to be far. In Fig. 4(c), depth
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Fig. 5. Flowchart of our proposed method. The original image is from [35].

estimation based on the DCPr’gb with saturation successfully
avoids this problem, but the dark pixels in the background
are still erroneously estimated to be close, also resulting in an
incorrect BL selection and poor restoration result. With more
accurate TMs and properly selected BL, Fig. 4(d) shows a
better restoration result image.

III. PROPOSED METHOD

In this section, we propose a new restoration method based
on both image blurriness and light absorption, where more
accurate BL and depth estimation are provided. First, we select
the BL from blurry regions in an underwater image. Then,
based on the BL, the depth map and the TMs are obtained to
restore scene radiance. The flowchart of the proposed method
is shown in Fig. 5.

A. Image Blurriness Estimation

Underwater image blurriness estimation was presented in
our previous work [16]. It includes three steps. Let Gk,σ be
the input image filtered by a k × k spatial Gaussian filter with
variance σ 2. The initial blurriness map Pinit is computed as:

Pinit (x) = 1

n

n∑

i=1

|Ig(x) − Gri ,ri (x)|, (13)

where Ig is the grayscale version of the input image I c, ri =
2i n + 1, and n is set to 4. Next, we apply the max filter to
calculate the rough blurriness map Pr as:

Pr (x) = max
y∈�(x)

Pinit (y), (14)

where �(x) is a z × z local patch centered at x . Here, we set
z = 7. (We found that any patch size from z = 7 up to z = 31
works well for image sizes ranging from 800x600 to 1280x720
in the proposed method. So z = 7 is used throughout this
paper.) We refine Pr by filling the holes caused by flat regions
in the objects using morphological reconstruction [23], and
then soft matting [24] or guided filtering [25] is applied for
smoothing to generate a refined blurriness map Pblr :

Pblr (x) = Fg

{
Cr

[
Pr (x)

]
}
, (15)

where Cr is a hole-filling morphological reconstruction oper-
ator, and Fg is the soft matting or guided filtering function.
Fig. 6 shows an example of each step.

Fig. 6. Example of image blurriness estimation. (a) Original image, (b) Initial
blurriness map from Eq. (13), (c) Rough map from Eq. (14), (d) Refined map
from Eq. (15).

Fig. 7. Examples of changing brightness or hue of restored scene radiance via
varying BL with given TMs obtained using the proposed method. (a) Original
images. (b), (c), and (d) are the restored images using different BL. The
original images are from [35].

B. Background Light Estimation

BL determines the color tone of an underwater image as
well as its restored scene radiance. For an underwater image,
the lower and upper bounds of its possible restored scene
radiance J̃ c ∈ [0, 1] can be derived by setting B̃c = 1 and
B̃c = 0 in Eq. (8), as:

max(
I c − 1 + t̃ ′

t̃ ′
, 0) ≤ J̃ c ≤ min(

I c

t̃ ′
, 1), (16)

where t̃ ′ = max(t̃ c, t0) ∈ [t0, 1]. Based on Eq. (16), restoring
an underwater image with dim BL would result in bright scene
radiance while using bright BL leads to an opposite result.
Consider an extreme BL, B̃c = 0, as an example, where
J̃ c = min( I c

t̃ ′ , 1). In this case, the restored scene radiance

J̃ c(x) of a far scene point with the value of t̃ ′(x) being small
would have a larger value than its corresponding observed
intensity I c(x) and thus be brighter. A bright BL would lead
to the opposite result. A visual example can be seen in the first
row of Fig. 7. As the BL, though unchanging, is estimated
as being brighter, the restored scene radiance gets darker.
Moreover, a small value in one of the color channels of the
estimated BL will lead to a substantial increase in that color in
the restored image. The second row of Fig. 7 gives an example
in which changing values in the red channel of B̃c produces
different hues of the restored images.

In general, the value for estimated BL of an underwater
image is chosen from far scene points with high inten-
sity. Emberton et al. [17] adopted a hierarchical rank-based
approach based on DCPgb, color variance, and gradient to find
the brightest pixel in the most likely region of BL. This method
is, however, inaccurate in many cases, as it still uses the
assumptions of DCPgb. In contrast, we estimate the BL based
on image blurriness and variance. We propose a BL candidate
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Algorithm 1 BL–Estimate

selection method, which picks three BL candidates from the
top 0.1% blurry pixels in the input image, the lowest variance
region and the largest blurriness region. These two regions
(which may or may not be the same) are decided using
quadtree decomposition which iteratively divides the input
image into four equal-sized blocks according to the variance
or blurriness. The blurriness of a region in the input image is
obtained by averaging Pblr (x) in the corresponding region in
the blurriness map.

With three BL candidates determined, we pick BL for each
color channel separately from them according to the input
image. The detailed algorithm is described in Algo. 1, where
S is a sigmoid function given by:

S(a, v) =
[
1 + e−s

(
a−v

)]−1
, (17)

where s is an empirical constant. Here, we set s = 32. The
fixed thresholds used in this paper are εs = 2−10 and εn =
0.2. Note that the function QUAD–SELECT–LV is a similar
function to QUAD–SELECT–LB with largest blurriness being
replaced by lowest variance and without considering Pblr .

In BL–ESTIMATE, we determine BL for each color channel
between the darkest and brightest BL candidates according
to the percentage of bright pixels (I k > 0.5). When the
percentage is high ( |I k>0.5|

Size(I k)
>> εn), meaning that the input

image was taken under sufficient lighting, then BL estimated
as being brighter is more suitable. When the image was taken

without sufficient lighting ( |I k>0.5|
Size(I k )

<< εn), BL is estimated
as being darker. In between these extremes, the BL estimate
is calculated by a weighted combination of the darkest and
brightest BL candidates. Fig. 8 demonstrates the proposed
BL estimation and compares the restoration results obtained
using each BL candidate and the selected estimated BL, where
we can see that using our background light candidate selection
method generates a more visually pleasing result.

C. Depth Estimation Based on Light Absorption
and Image Blurriness

We propose to estimate scene depth by combining three
depth estimation methods. We first define the three depth
estimation methods, and then explain how they are sigmoidally
combined based on the lighting and image conditions where
each performs best.

The red channel map R is defined as:

R(x) = max
y∈�(x)

I r (y). (18)

We obtain a first estimate of depth, denoted d̃R , directly from
the red channel map by assuming that scene points which
preserve more red light are closer to the camera:

d̃R = 1 − Fs
(
R
)
, (19)

where Fs is a stretching function:

Fs(V) = V − min(V)

max(V) − min(V)
, (20)

where V is a vector. Some successful examples are shown in
Fig. 9(a)–(d).

Our second estimate of depth is

d̃D = 1 − Fs
(
Dmip

)
, (21)

which uses Eq. (9) and (20). This depth map assumes that,
for a scene point, a greater value of red light minus the
maximum of green and blue lights means the point is closer
to the camera. This concept was first proposed in [9], where
Dmip was used to estimate the TM, rather than the depth
directly.

Our third approach is to use the image blurriness Pr in
Eq. (14) to estimate depth:

d̃B = 1 − Fs
(
Cr (Pr )

)
. (22)

Combining Eq. (19), Eq. (21), and Eq. (22), we propose to
estimate underwater scene depth based on light absorption and
image blurriness according to the estimated BL B̃c and the
average input red value:

d̃n(x) = θb
[
θad̃D(x) + (1 − θa)d̃R(x)

] + (1 − θb)d̃B(x),

(23)

where θa = S
(

avgc(B̃c), 0.5
)

and θb = S
(

avg(I r ), 0.1
)

are determined by the sigmoid function defined in Eq. (17).
Finally, the depth map is refined and smoothed by either soft
matting [24] or guided filtering [25]. The estimated depth map
d̃n ∈ [0, 1] can be regarded as a map of normalized relative
distance for the scene points of the input image.
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Fig. 8. Example of the proposed BL estimation. (a) The original image with the lowest variance and largest blurriness estimation blocks outlined in red and
in blue. The white blocks are the final quadrants. The images (b)–(e) are the restored images obtained using B c

cand1
, Bc

cand2
, Bc

cand3
, and B̃c. (f) The TMs for

the red, green and blue channels estimated by the proposed method with B̃c.

Fig. 9. Examples of depth estimation based on light absorption and image
blurriness. The original images are in the first row. The depth maps obtained
based on the red channel R, Dmip , and Pblr are in the second, third, and
fourth rows. The means of the estimated BL avgc∈{r,g,b}(B̃c) in the column
(a)–(f) are 0.06, 0.18, 0.5, 0.53, 0.62, and 0.81. The original image (b) is
from [36], and (d)–(f) are from [35].

The explanation for this combined approach is as follows.
When the image has some reasonable level of red content
overall (avg(I r ) >> 0.1) and the background light is relatively
dim (avgc(B̃c) << 0.5) then d̃R alone represents depth well.
In this case, θa ≈ 1 and θb ≈ 1, and d̃n(x) ≈ d̃R(x). As the
BL gets brighter, the possibility that d̃R(x) fails to represent
scene depth gets higher. Because the BL accounts for more
of the observed intensity for a scene point farther from the
camera, far scene points may still have large values in the red
channel and be wrongly judged as being close according to
Eq. (19), as seen in Fig. 9 (e)–(f).

When an underwater image has a brighter BL, we find that
d̃D is more reliable to represent scene depth. The red light of
a farther scene point is absorbed more compared to the green
and blue light, shown in Fig. 9 (c)–(f). So when the image has
some reasonable level of red content overall (avg(I r ) >> 0.1)
and the background light is relatively bright (avgc(B̃c) >>
0.5) then d̃D alone represents depth well. In this case, θa ≈ 0
and θb ≈ 1, and d̃n(x) ≈ d̃D(x).

Lastly if there is very little red light in the scene,
so avg(I r ) << 0.1, then both Eq. (19) and Eq. (21) which
directly use red channel values are likely to fail to estimate
scene depth properly. In this case, θb ≈ 0, and d̃n(x) ≈ d̃B(x)
mean that the depth estimation reverts to using the blurriness
map alone, as in [16]. In between these various extremes,
the depth map comes from a weighted combination of the
three approaches.

Fig. 10. An example of TM estimation with and without d̃0. (a) Original
image, and its restored images obtained using the proposed method, where
the TM estimation (b) does not consider d̃0 and (c) considers d̃0 = 0.68.

D. TM Estimation and Scene Radiance Recovery

As described in Section II-A, the TM estimation of the
DCP-based methods is based on Eq. (7). By contrast, we cal-
culate the TM according to Eq. (2), which uses the depth
from the camera to scene points. To measure the distance from
the camera to each scene point, the distance d0 between the
closest scene point and the camera must be estimated as well.
Via the maximum difference between the estimated B̃c and
the observed intensities I c in the input image, the estimated
d̃0 ∈ [0, 1] can be calculated by:

d̃0 = 1 − max
x,c∈{r,g,b}

| B̃c − I c(x) |
max(B̃k, 1 − B̃k)

, (24)

where k = arg maxc∈{r,g,b}
(

maxx | B̃c − I c(x) | )
. If the

BL accounts for a large portion of the observed intensities
for the closest scene point, the maximum difference would
be small, and d̃0 would be large, i.e., the distance from the
camera to the closest object in the scene is long.

Combining Eq. (23) and (24), the final scene depth d̃ f is
given by:

d̃ f (x) = D∞ × (
d̃n(x) + d̃0

)
, (25)

where D∞ is a scaling constant for transforming the relative
distance to the actual distance.

With d̃ f , we can calculate the TM for the red channel as:

t̃ r (x) = e−βr d̃ f (x), (26)

where βr ∈ [ 1
8 , 1

5 ] for Ocean Type–I water [2], [11], [30].
Roughly 98% of the world’s open ocean and coastal waters fall
into this category [28]. Then, we can compute the TMs, t̃ g and
t̃ b, for the green and blue channels by Eq. (10) and Eq. (11).
Note that the typical ranges of the wavelength of red, green and
blue light are λr = 620 ∼ 750 nm, λg = 490 ∼ 550 nm, and
λb = 400 ∼ 490 nm. In this paper, we choose three standard
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Fig. 11. Restoration example where all methods are successful. (a) The original image. The enhanced results, and the corresponding depth map and
BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

Fig. 12. Example of restoring an underwater image with dim BL. (a) The original image. The restored results, and the corresponding depth map and
BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

Fig. 13. Example of restoring a greenish underwater image. (a) The original image. The restored results, and the corresponding depth map and BL (marked
with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method.

wavelengths for red, green and blue light λr = 620 nm, λg =
540 nm, and λb = 450 nm, as used in [15]. We found that the
restoration results are not sensitive to values of βr ∈ [ 1

8 , 1
6 ],

and we set βr = 1
7 throughout this paper. We also set D∞ =

8 m for our proposed method, so the range of t̃ r is [0.1, 1].
Fig. 8(f) gives an example of TMs for the red, green and blue
channels of a greenish underwater image based on Eq. (11)
and Eq. (26). We can see that with properly estimated BL
and our parameters, the proposed method can well restore the
image as Fig. 8(e).

At the end, we recover the scene radiance using Eq. (8).
Fig. 10 gives an example to show the effectiveness of using
TM estimation considering d̃0 in the proposed method. The
proposed method with d̃0 produces a more satisfactory restored
result with better contrast and saturated color.

The proposed depth estimation based on light absorption
can also handle artificial lighting gracefully by considering
BL. If the BL of an underwater image with artificial lighting
is dim, the restoration using the depth map derived by the
red channel map R in Eq. (18) would regard those bright
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Fig. 14. Example of restoring an underwater image with artificial lighting. (a) The original image. The restored results, and the corresponding depth map
and BL (marked with a red dot for (b)–(e)) obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the proposed method. The original image
comes from [36].

Fig. 15. Close comparison between (a) [16] and (b) the proposed method
for the original image shown in Fig. 14.

pixels as being close and not over-compensate their color.
When BL is bright, the red light from the background pixels
would attenuate more than that of the foreground pixels, which
could be correctly interpreted as scene depth using Eq. (21).
Sec. IV-A will demonstrate restoration examples with artificial
lighting.

IV. EXPERIMENTAL RESULTS

Previous underwater image restoration methods used the
IFM in Eq. (1) only based on the DCPs or the MIP. In this
section, we compare our previous method based on image
blurriness [16] and the proposed method based on both image
blurriness and light absorption against the DCP- and the MIP-
based methods. The performance of the proposed method is
evaluated in three ways:

1) Subjective visual comparison including examination of
the depth map and the BL,

2) Objective quantitative full-reference assessment of
restored synthesized underwater images, and

3) Objective quantitative no-reference quality assessment
of restored real-world underwater images.

A. Qualitative Assessment
In the visual comparison, we use six underwater images

with different underwater color tones and lighting conditions
for testing, where the depth maps shown all undergo a simple
individual contrast stretching step for display.

In Fig. 11, we can see that the original image looks hazy
and has bright BL. All methods work well for this case.

The blurriness-based method [16] and the proposed method
generate similar depth maps and BL to those obtained by
the DCP and MIP methods [9], [12], [14], [15]. All of the
result images look restored and enhanced although some color
differences exist.

In contrast, the original image in Fig. 12 is dimly lit, which
invalidates the DCPs and MIP. Results from the MIP-based [9]
and DCP-based methods [12], [14], [15] look insignificantly
restored because of the incorrect depth map and wrong BL
selection from the bright foreground pixels. The blurriness-
based method [16] and the proposed method estimate the scene
depth and BL more correctly.

Fig. 13 gives an example of restoring a greenish underwater
image, which has some bright pixels in the foreground and
dark pixels in the background, making the DCPs invalid. The
depth map based on DCPrgb [15] is opposite to the scene
depth, resulting in a wrong BL selection and a poor restoration.
For the method based on DCPgb [12], even though the BL
is properly selected, it presents an unsatisfactory restoration
result because most of the pixels are mistakenly regarded as
being close. The methods based on MIP [9] and DCPr’gb [14]
both erroneously consider some foreground pixels as being far
and background pixels as being close, also failing to restore
the image. The blurriness-based method [16], which estimates
depth more accurately in this case, gives an overexposed
restoration result because of selecting dimmer BL. Addition-
ally, like [9] and [12], it estimates only one single TM without
considering different attenuation levels for RGB channels.
Thus, their output images cannot be properly restored. The
proposed method correctly estimates the depth and BL, and
thus generates more accurate TMs for the red, green, and blue
channels. Using these TMs (shown in Fig. 8(f)), the proposed
method compensates more red and blue light for the original
image than green light.

Fig. 14 shows an example of restoring an underwater image
shot with artifical lighting. The method based on DCPrgb [15]
wrongly regards almost all of the pixels in the image as
being close except for the white objects, leading to a restored
image nearly identical to the original. The DCPgb method [12]
picks a bright foreground pixel as BL, which makes the
background even darker. The DCPr’gb [14] method also pro-
duces a restored image with a dimmer background because
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Fig. 16. Restoration example involving artificial lighting. (a) An underwater image of Pisces V and its out-of-water image. The restored results, and the
corresponding TM (only t̃r is shown for [15] and the proposed method) and BL obtained using: (b) [9], (c) [12], (d) [14], (e) [15], (f) [16], and (g) the
proposed method. The original image is from [36].

Fig. 17. Examples of synthesizing underwater images with four different
underwater color tones using Eq. (27). (a) The ground truth image and its
depth map. (b)–(e) Synthesized underwater images with d0 = 4 and rs = 4.

Fig. 18. All test synthesized underwater images with Tone I color. The
images from left to right are synthesized (a) using d0 = 4, 5, . . . , 8 in
“TestMode–InitD” and (b) using rs = 1, 2, . . . , 5 in “TestMode–ScaleD.”

of the incorrect depth and BL estimation. Although the
MIP-based [9] method selects dark BL to reveal the back-
ground scene in the processed image, it also produces an over-
exposed foreground. As shown in Fig. 15, the blurriness-based
method [16] compensates the brightness for the background
with dark BL but also overexposes some smooth regions in
the foreground for which depth estimated based on blurriness
is inaccurate. The proposed method estimates BL and depth
more precisely and generates a well-enhanced restored image.
We can see from the depth map that the bright pixels in the
original image are regarded as being close, which prevents
their overexposure.

Lastly, Fig. 16 demonstrates restoration of a special
case with artificial lighting. Fig. 16(a) shows an image of
Pisces V [38], a deep-submergence vehicle, with its external

Fig. 19. PSNR results (top) and SSIM results (bottom) obtained using
different restoration methods for “TestMode–InitD.”

Fig. 20. PSNR results (top) and SSIM results (bottom) obtained using
different methods for “TestMode–ScaleD.”

light on in the underwater scene, as well as its out-of-
water image for comparison. The red light in the underwater
image is attenuated more than green and blue light. Unlike
Fig. 11–Fig. 14 that present the depth maps, we show the
corresponding TM estimated by each of the compared methods
for the processed image to better explain the restoration results.
Note that the TM aims to describe the portion of the scene
radiance not scattered or absorbed but reaching the camera.
A larger TM value means the corresponding scene point
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Fig. 21. Examples of restoring synthesized underwater images with
Tone I–IV colors in “TestMode–ScaleD” (rs = 3) obtained using the proposed
method. The synthesized images are in the first row, and the corresponding
restored images and BL estimates are shown in the second and third rows.

Fig. 22. Examples of synthesized underwater images generated using
three different images with their depth maps and selected BLs.

Fig. 23. Examples of “BRISQUE score/UIQM value” pairs for synthesized
(top) and real (bottom) underwater images. (The images are from [31], [35],
and [36], and Google Images.)

Fig. 24. Test images for BRISQUE. (The images are from [1], [8], [9], [12],
[14], [35], and [36], and Google Images.)

has more scene radiance that reaches the camera, while a
smaller value means the BL accounts for more of the observed
intensity of that scene point. Hence, the TM for the underwater
image in Fig. 16(a) should have larger values for scene points
closer to the artificial light and smaller values for the points
farther from the light.

In Fig 16(c)–(f), the methods based on the DCPgb [12],
DCPr’gb [14], DCPrgb [15], and image blurriness [16] fail to
generate such TMs, and produce poor restoration results. The
MIP-based method [9] estimates TM well, yet its estimated
BL that has a larger value in the red channel is inaccurate,
leading to a dimmer restoration result. The proposed method
attains a more accurate TM and BL selection and presents a
more precise color restoration result.

TABLE II

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS
OVER ALL THE TESTED d0 ∈ [4, 8 m] AND rs ∈ [1, 5] OBTAINED USING

THE PROPOSED METHOD AND ITS MIXED METHODS USING THE

TM ESTIMATION FOR THE RED CHANNEL t̃r BASED ON DCPS,
MIP, OR IMAGE BLURRINESS

B. Quantitative Assessment

1) Restoration of Synthesized Underwater Images:
Although the simplified IFM in Eq. (1) is widely used to
describe the formation of a hazy image and can also be
invoked to explain the formation of an underwater image,
light that travels through water causes image blur because
of light scattering and refraction [3], which is ignored
by this model. To synthesize a more realistic underwater
image, image blur must be incorporated in the model. This
image blur can be modeled by a point spread function,
where the blur kernel width is proportional to the scene
depth [3], [26], [27]. Combining the IFM and the point spread
function, we describe an underwater IFM as:

I c(x) = [
J c(x)tc(x) + Bc(1 − tc(x)

)] ∗ �
(
βc, d(x)

)
, (27)

where � is a point spread function of the form [26]:

�(β, z) = (e−γ z − e−βz)e−a ‖xz‖2

z , (28)

where a > 0 and |γ | ≤ β are empirical constants, and xz is
the coordinate for the point spread function.

In the quantitative analysis, we first synthesize underwater
images for evaluation. Five ground truth images, for which the
depth maps are known, were used to synthesize underwater
images using Eq. (27). We focus initially on an indoor image
“reindeer,” which was used in [31] to synthesize a hazy image.
The image and its depth map are shown in Fig 17(a). In this
image, the foreground pixels are not bright, so it will not tend
to invalidate the DCP and MIP assumptions. Thus, it is useful
for testing the capability of the compared methods to restore
underwater images with different BL. For a fair comparison,
all of the compared methods use the 7×7 local patch �(x) in
Eq. (5)–(7), (9), (12), (14) and (18), a lower bound t0 = 0.1 for
the TM in Eq. (8), and the guided filtering to smooth the TM.
To compare the color restoration results, we adopt two metrics,
PSNR and SSIM.

The ground truth image, denoted Jg , its ground truth depth
map, dg ∈ [0.6, 3.1 m], and four BLs are used to simulate
underwater images with four different underwater color tones,
shown in Fig. 17. For each color tone, we modify the depth
map in two test modes to adjust the relative amounts of
BL and scene radiance in the synthesized observed intensity.
The first test mode, “TestMode–InitD,” adds an initial distance
d0 to the ground truth depth: d0 + dg = ds , where ds is the
final depth map used in the synthesis, and d0 takes values
in the set {4, 5, 6, 7, 8 m} for testing. The second test mode,
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TABLE III

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 ∈ [4, 8 m] FOR “TESTMODE–INITD.”

TABLE IV

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED rs ∈ [1, 5] FOR “TESTMODE–SCALED”

TABLE V

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 FOR “TESTMODE–INITD”

TABLE VI

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED rs FOR “TESTMODE–SCALED”

“TestMode–ScaleD,” increases the scene depth by multiplying
by a scaling factor: ds = d f + dg × rs , where d f = 4 is a
fixed initial distance, and rs ∈ {1, 2, 3, 4, 5}.

The TM for the red channel is calculated by tr (x) =
e−βr

s ds(x) as Eq. (2) with βr
s = 1

5 , and the TMs for the green
and blue channels are estimated by Eq. (10) and Eq. (11) based
on the chosen BL. For the point spread function in Eq. (28),

we set γ = β
2 , and a = 8. By putting Jg , tc and Bc into

Eq. (27), we can synthesize underwater images. Examples are
shown in Fig. 18.

For each test mode, we compute the PSNR and SSIM
results between the ground truth image Jg and the synthe-
sized underwater images restored using the five IFM-based
restoration methods [9], [12], [14]–[16], and the proposed
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TABLE VII

COMPARISON OF AVERAGE PSNR/SSIM OF THE RESTORATION RESULTS OVER ALL THE TESTED d0 AND rs OBTAINED USING THE PROPOSED METHOD

AND ITS MIXED METHODS USING THE TM ESTIMATION FOR THE RED CHANNEL t̃r BASED ON DCPS, MIP, OR IMAGE BLURRINESS

TABLE VIII

AVERAGE BRISQUE SCORES AND UIQM VALUES OF THE ORIGINAL

IMAGES IN FIG. 24 AND THEIR RESTORED VERSIONS FROM

ALL THE COMPARED METHODS

method, shown in Fig. 19 and Fig. 20. In Fig. 19, we see
that the proposed method performs better for all the four
underwater color tones. As the scene depth increases, the
PSNR and SSIM results of the compared methods become
close. In Fig. 20, the proposed method is better than the other
ones except for [12] in the PSNR results for Tone I and IV
colors. This is because we set D∞ = 8 m in Eq. (25) to
restore the color of underwater objects in the range of scene
depth [0, 16 m], and thus the proposed method does not
restore well scene points farther than this range. However, the
proposed method still outperforms all the other methods in the
SSIM results in “TestMode–ScaleD.” Note that the proposed
method excels more in restoring images with Tone II color,
which represents very dim BL. This is because dim BL violates
the assumptions underlying the DCPs and MIP. Examples
of restoring synthesized underwater images with Tone I–IV
colors obtained using the proposed method are in Fig. 21.

To measure the effectiveness of the TM estimation based
on our proposed depth estimation, we compare the restoration
results obtained using the TMs estimated based on the DCPs
and MIP, as well as ours. That is, we adopt different TM esti-
mation methods to generate the TM for the red channel t̃ r .
The TMs for the green and blue channels are then estimated
by Eq. (10) and Eq. (11) based on the proposed BL. We com-
pare the restoration results obtained using these different TM
estimation methods. Table II lists average PSNR/SSIM results
over all the tested d0 and rs obtained using the proposed
method and its mixed methods using other TM estimation
methods based on DCPs, MIP, or image blurriness. Namely,
the column marked d0 contains average PSNR/SSIM of the
restoration results over all the test d0 in “TestMode–InitD,”
while the column marked rs contains the results over all the
test rs in “TestMode–ScaleD.” We can see that the proposed
TM estimation outperforms the others.

Moreover, we demonstrate the average PSNR and
SSIM results for all the compared methods in Table III
and Table IV for “TestMode-InitD” and “TestMode-ScaleD.”
We also show the results attained using the exact BL and TM
in the compared methods in order to further analyze the pre-
ciseness of the BL and TM estimation methods, individually.
In Table III, we see the superiority of the proposed method

in each compared category. In Table IV, the proposed method
is better in all the tested underwater color tones on average
except for Tone I color, which represents bright blue BL,
where it incurs small PSNR deficits compared to [9] in the
category of the exact TM and [12] in that of the exact BL.

In addition to “reindeer”, three more images with ground
truth depth maps were selected from [31] to synthesize
underwater images with six different BLs (two for each
image), as shown in Fig. 22. The ground truth depth dg for
the three images, “lawn,” “flower,” and “road,” are in the
range [0.4, 11.3 m], [0.5, 13.2 m], [0.3, 9.5 m], respectively.
To vary the initial distance d0 for each image, we set d0 ∈
{1, 2, . . . 5 m} for “flower,” d0 ∈ {2, 3 . . . 6 m} for “road,” and
d0 ∈ {3, 4, . . . 7 m} for “lawn,” while rs still takes values in the
set {1, 2, . . . , 5}. As can be seen in Tables V to VII, the results
are generally in line with those based on “reindeer,” supporting
the superiority of the proposed method. Note that Table VII is
like Table II, where the column marked d0 contains average
PSNR/SSIM results over all the test d0 in “TestMode–InitD,”
while the column marked rs contains the results over all the
test rs in “TestMode–ScaleD,” where d f is the smallest value
in their corresponding d0 set for each test image.

2) No-Reference Quality Assessment: One can also objec-
tively evaluate underwater image restoration methods on real
images [18]–[20]. Here, we adopt two non-reference image
quality metrics. One is the Blind/Referenceless Image Spa-
tial QUality Evaluator (BRISQUE) [18], a natural scene
statistics-based distortion-generic blind/no-reference image
quality assessment tool for evaluating possible losses of natu-
ralness of an image because of the presence of distortions.
The score ranges from 0 to 100, where 0 represents the
best quality and 100 the worst. We download its software
release from [32] for testing. The other is the Underwater
Image Quality Measure (UIQM) [19], a linear combination
of three underwater image attribute measures: the colorful-
ness (UICM), sharpness (UISM), and contrast (UIConM) mea-
sures, where UIQM = c1×UICM+c2×UISM+c3×UIConM.
A greater value of the UIQM represents higher image quality.
In the experiment, our implementation of UIQM uses αL =
αR = 0.1 in UICM, a 8×8 window size for the EME measure
and a constant 40 for Sobel edge detection in UISM, μ(M) =
γ (M) = k(M) = 1026 for the PLIP operations in UIConM,
and the default coefficients c1 = 0.0282, c2 = 0.2952,
and c3 = 3.5753.

To give an idea of output values for both metrics, Fig. 23
lists BRISQUE scores and UIQM values for real underwater
images as well as for synthesized underwater images with
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Fig. 25. Comparisons between the processed images obtained using [1] and the proposed method with and without contrast enhancement. The
UCIQE score/UIQM value pair is shown below each image. (a) and (e) Original images. The processed results are obtained using (b) and (f) [1],
(c) and (g) the proposed method, and (d) and (h) the proposed method+histogram equalization (The original images in column (a) are from Emberton’s
data set [17] and the ones in column (e) are from [35]–[37].)

different attenuation levels (for which BRISQUE scores
increase and UIQM values decrease monotonically with
attenuation level). In Fig. 24, we show 70 real underwater
test images with different contents and a variety of color
tones. Table VIII lists the average BRISQUE scores and
UIQM values for the original underwater images in Fig. 24
and their restored images from all the compared methods.

We can see that the proposed method outperforms the other
methods.

V. COMBINING IFM-BASED RESTORATION AND

HISTOGRAM EQUALIZATION

Methods based on the IFM, such as ours, have the goal of
restoration, rather than enhancement. This paper first aimed
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to demonstrate that our IFM-based method outperforms other
IFM-based methods both for synthesized images (for which
a ground truth is available, and full-reference fidelity metrics
such as PSNR can be used), and for real underwater images
(for which no-reference image quality metrics can be used).

It is also of interest to compare our IFM-based method
against an underwater image enhancement method. The
fusion-based enhancement method for underwater images pro-
posed by Ancuti et al. [1] first generates two images based on
the input image: one has colors adjusted by white balancing
and the other is contrast-enhanced via local adaptive histogram
equalization. Then these two images are fused based on
their contrast, saliency, and exposedness to produce the final
enhanced result with better contrast and white balance.

Histogram equalization [33] is a simple contrast enhance-
ment method that can be added as a post-processing to an
IFM-based method if some application needs the contrast of
an underwater image to be enhanced. In Fig. 25, we com-
pare our proposed method (both with and without histogram
equalization contrast enhancement [34]) with the method by
Ancuti et al. [1], using both subjective and objective compar-
isons. For objective assessment, we choose two no-reference
quality assessment tools, the UIQM [19] and Underwa-
ter Color Image Quality Evaluation Metric (UCIQE) [20].
UCIQE quantifies image quality via a linear combination of
the variation of chrominance, average saturation, and lumi-
nance contrast.

Fig. 25(a) shows the 10 original images from Emberton’s
data set [17]. In Fig. 25(b)-(d), we see that the enhanced
images via Ancuti’s method [1] (column (b)) have better con-
trast compared to those by the proposed method (column (c)).
Since UCIQE and UIQM reward high contrast, the images
obtained using [1] also have higher scores than those using
the proposed method. Using histogram equalization [34] on
our method, the contrast and UCIQE/UIQM values go up.

Fig. 25(e) shows an additional 10 original images. In the top
four rows of Fig. 25 (e)-(h), the images are very dark or have
artificial lighting. The method [1] does poorly because contrast
enhancement is often not effective for such images, and the
white balancing of [1] sometimes introduces unwanted colors
to the output images, such as the original images in the first
row of Fig. 25 (a) and (e), which makes the processed images
unnatural even though it boosts its UCIQE/UIQM scores. For
the bottom six rows of Fig. 25 (e)-(h), since the color of the
original images is more balanced, the white balancing has
little effect on these images. In comparison, the restored and
enhanced results via the proposed method with and without
histogram equalization look better for such images.

Comparing image enhancement methods using UCIQE and
UIQM or other no-reference metrics is difficult because the
metrics weight contrast and colorfulness differently. For exam-
ple the UIQM algorithm removes the 10% of pixels with
brightest and darkest values before computing the image
colorfulness, whereas the UCIQE algorithm uses all pixels.
Depending on factors like this and the weight given to different
components, a white balancing step or a histogram equaliza-
tion step can have a significant effect on the quantitative output
of the metrics.

VI. CONCLUSION

For underwater image restoration, we have proposed to
exploit image blurriness and light absorption to estimate the
background light, scene depth, and transmission maps instead
of using the DCPs or MIP. Using both synthesized and real
underwater images with different color tones and contents,
we demonstrated satisfying restored and enhanced underwater
images. The proposed depth estimation works well for a wide
variety of underwater images. Both the subjective and objec-
tive experimental results showed that the proposed method can
produce better restoration and enhancement results in different
underwater color tones and lighting conditions compared to
other IFM-based underwater image restoration methods.
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