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Abstract—We propose a low complexity Generalized Linear Model Developing these perceptual loss visibility models usinigjective
(GLM) for prioritizing slices during real-time H.264/AVC ¢ ompressed techniques is time consuming as human observers are needed t

video streaming. We train the GLM over a video database to prdict the il
Cumulative Mean Square Error (CMSE) corresponding to individual evaluate a visibility score before parameters can be mdd@leough

slice losses by using a combination of efficient video parartees which W€ share the same motivation to gauge video quality, thieipap
can be easily extracted during the encoding of a frame. We poritize ~ focuses on evaluating the relative importance of each Hi6do
the slices generated within a Group of Pictures (GOP) basedrothe  slice, based on its expected loss distortion determinedredigbed
predicted CMSE by using a Quartile Based Prioritization (QBP) scheme. ~,mulative MSE (CMSE) from a low complexity GLM model.
For comparison, we also perform QBP on measured CMSE valuesdm o . . . .
individual pre-encoded slice losses and analyze the pridyi misclassifi- By monitoring the video C,O”tent being transm'tFed over aeleiss
cations of the slices. We validate our model by applying Unaal Error ~ Network, our low complexity model can be easily updated asd r
Protection (UEP) using RCPC codes to the different prioritzed bitstreams  trained periodically to improve the prediction accuracyemdme.
and evaluating their performance over noisy channels. Simlation results  \ye propose a model development framework which determines t

show that predicted CMSE schemes achieve PSNR performancéose to - : . : . .
that of the measured CMSE schemes for different slice sizegideo bitrates subset of video parameters affecting slice loss distotbiqredict the

and over different channel SNRs. CMSE value from a video databgse useq asa training.set. hetee
Index Terms—H.264/AVC video compression, real-time CMSE predic- parameters are extracted real-time during the encodingepsofor
tion, slice prioritization, RCPC codes, unequal error protection. performing Quartile Based Prioritization (QBP) of sliceansmitted

over an AWGN channel.

The remainder of the paper is organized as follows. Section |

The demand for real-time video transmission over wirelests n discusses the video factors used to model the impact of @ lelss,
works is increasing rapidly. In order to efficiently utilizenited followed by the model development in Section lll. Section dis-
wireless bandwidth, video data is compressed using sdgdtistt cusses our QBP slice prioritization scheme and problem dtation
video coding techniques such as H.264/AVC, which is theestét for minimizing the expected video distortion over an AWGNanhel
the-art and widely used video coding standard jointly devetl by by providing unequal error protection (UEP) using Rate Catifybe
ITU and ISO [1]. As real-time transmission of multimedia tamt Punctured Codes (RCPC). The simulation setup and expetdmen
is becoming popular, the study of video quality evaluatiomd a results are discussed in Section V. Section VI concludep#per.
monitoring has also gained importance. Modeling video igudbr
such systems has two basic requirements: firstly, the mdumild Il. VIDEO FACTORSAFFECTINGSLICE DISTORTION
account for various video application parameters acclyratd We study the video factors that capture the effect of indigid
secondly, the complexity of parameter calculation shoeldépt low. slice losses on video quality and help in predicting thestattion

Our work is motivated by past research in [2]-[6] where scitje  in terms of CMSE. We consider only those factors that arelaiviai
techniques are used to model the video packet loss vigibilihe during the encoding process by evaluatira) the encoded frame,
authors in [2] focused on estimating Mean Square Error (M&)g and @) the error frame at the location of slice loss. Let the o@agin
three approaches (Full-Parse, Quick-Parse, and No-Parsecess uncompressed video frame at timee f(t), the reconstructed frame
spatio-temporal parameters. This work was extended to MPEGvithout the slice loss bef(¢) and the reconstructed frame with the
video bitstreams in [3] using two techniqueB:4 tree based classifier slice loss bef (t).
called Classification and Regression Trees (CART) [7] thaeled
each possible packet loss as being either visible or ifeisénd {i) a
Generalized Linear Model (GLM) which predicts the probiapithat The attributes of slice loss can be expressed in terms of the
a packet loss will be visible to an average viewer. Scendfsignce underlying video content. The magnitude of distortion icelti by
characteristics were explored in [4] through packet lossairments @ slice loss is influenced by the presence of texture compsnen
in MPEG-2 and H.264 compressed videos by using Patient Rutgninance masking and motion masking. For our model, weystud
Induction Method (PRIM). It was extended in [5] and a vetsati the following factors extracted at the location of the sliegs during
GLM was developed that is applicable for different compi@ss the encoding process.
standards, concealment techniques and Group of Pictur@P)YG « Motion Characteristics: We compute the mean motion vectors
structures by considering attributes of packet loss innpauts. MOTX andMOTY over all the Macroblocks (MBSs) in the slice.

I. INTRODUCTION

A. Encoded Frame Factors



o AVGINTERPARTS : Represents the number of sub-partition®f our response variable, i.e., measured CMSE values. Eath d
averaged over the total number of MBs in the slice. If theointinY is expressed as a linear combination of a known covariate
underlying motion is complexAVGINTERPARTS would be vector X = [z1,z9,...,2p] and a vector of unknown regression

high.

coefficients 3 = [Bo, 81, ..., Bp]*. The regression coefficients are

o Maximum Residual Energy (MAXRSENGY): First, Residual estimated through an lteratively Re-weighted Least SqudRLS)
Energy RSENGY) is computed for a MB as the sum oftechnique. After estimatingd, we use it to derive the predicted
squares of all its integer transform coefficients after owti response variable (i.e, predicted CMSE) vecibr= [91, 92, -, UN]
compensation. TheMAXRSENGY of a slice is equal to the computed asy = E(Y) = g~ (X ) whereg(-) is a link function.

highestRSENGY value of all the MBs contained in it. If the

scene has high motion, then the MAXRSENGY would also b

high.
« Signal Characteristics We consider measigMean and vari-

%' Model Fittng

In the model fitting, a subset of covariates are chosen fob#st

fit. We use the statistical software R [9] for our model fittinagd

anceSigVar of the slice luminance. We also consider the slic@nalysis. Th_e steps f0|_' sglec_ting covariates are as falloyvs
type Slice type, such as IDR or P or B slice, and it is treated  Evaluating the Distribution of the Response Variable A

as a categorical factor in our model development framework

discussed in Section Ill.

B. Error Frame Factors
We characterize the slice loss in the error frard = f(t)— f(t),

by its amplitudeand support(e.g., size, spatial extent, and temporal e

duration). The size is controlled by slice size either irelsydér number
of macroblocks contained in it. The spatial extent is infesh by

the number of slice groups and FMO setting in H.264/AVC. The

amplitude depends heavily on the underlying video context the

decoder concealment strategy, and may decrease as we gxogre

towards the end of the GOP due to the motion-compensatiarepso

[5].

« Temporal Duration (TMDR) : It is defined as the temporal error
propagation length due to a slice loss. A slice error in a non-
reference B frame has a TMDR of 1 since it is not used for

predicting other slices, while an error in a reference IDiRes|
propagates to the end of GOP.
o Initial Mean Squared Error (IMSE) : The IMSE of the loss of

a slice in a frame is computed between the compressed frame

£(t) and the reconstructed franjét) within the encoder instead

of the original uncompressed frame.

o Initial Structural Similarity Index (ISSIM) : It is a measure
of the structural similarity [6] between two frames.

o Cumulative Mean Squared Error (CMSE): We use CMSE as

the ground truth in our model as it is an effective measure of

the distortion contributed by a slice loss which also cagstuhe
error propagation within the GOP.

I1l. M ODEL DEVELOPMENT

visual analysis of the measured CMSE distribution revetiat
low CMSE values occurred with higher frequency than higher
CMSE values. Hence for our model, we classified our response
variable as a member of the exponential family of distritiosi
with identity as its link function.

Akaike’s Information Criterion (AIC) : We use the AIC index
[10] to determine the order in which the covariates are fitted
It is defined as—2max(L) + 2p, wherep is the number of
covariates and. is the log-likelihood estimate for the model.
Choosing Covariates We let Y* represent the model with a
subset ofk covariates. The!” data point inY*, y*, where
i=1,2,..., N is expressed as:

@)

Here, 55 is the interceptgl, j = 1,2, ...,k are the fitted coef-
ficients,z;; represents thg'" covariate for thei’” observation

in Y*, ande; is the error coefficient. The simplest model is
the Null Model having only the intercegt? whereas the Full
Model has all thep covariates, i.e.k = p. We use a forward
stepwise approach to choose the covariates.

Step 1: We fit a group gf univariate models and compute their
AIC values. The best univariate model has the smallest AIC
value.

Step 2: We then fity{ — 1) multivariate models where each
model has two covariates. The first covariate is from the best
univariate model in Step 1 and the second covariate is chosen
from the remaining if — 1) available covariates. We compute
the AIC values for thgp — 1) multivariate models and choose
the best multivariate model with the smallest AIC value. The
two covariates fitted at this stage would progress to the next

yb = BE 4 BFwa 4 Bz 4 ..+ BEri e

We generated a video database with sequences that have a wide step to be fitted with the third covariate. This process ainfitt

variety of scenes such as a bird’s eye view of a city, crowdedss
portraits and still water. These videos were compressetudil 14.2
reference software of H.264/AVC [8]. The GOP structure WaR |

B P ... B with GOP length of 20 frames. The frames were encoded

using dispersed FMO and a fixed slice configuration mode wiihere
size of the slice in bytes is predetermined by the user. Atddwder,

Motion Copy Error Concealment (MCEC) was used to conceal any

slice losses in P and B frames, and spatial interpolation wezsl
to conceal losses in the IDR frames. A training and test sebto
model development was formed by randomly splitting the luzde

into a 70:30 ratio, where we train our model on 70% of the dath a

test on the remaining 30% of the data.

A. Overview of Model Development

We use a generalized linear model (GLM) to predict the CMSE

contributed by a single slice loss. L¥t = [y1, y2, ..., y~] be a vector

covariates is repeated until the stopping criterion issfiatl.
Stopping Criterion: If the model withk + 1 covariates, has

a higher AIC index than the corresponding model with
covariates the process stops. It is also possible that the fu
model was fitted (i.e.k = p) and the stopping criterion has not
been satisfied, as was observed during our model fitting with
the factors described in Section II.

Random Forests We improve the performance of our model
by introducing two new factors which are interactions betwe
the three most important factors. We use a random forest [11]
which is a tree structured classifier, to determine the cater
importance over a large number of decision trees. The tnees a
grown to the full extent (i.e., trees are not pruned) throbiglary
recursive partitioning. Each response variable data poasts

a vote for the most important covariate. Finally random $ore
outputs the most popular covariates.



TABLE |- Final Model Coefficients in Order of Importance Heren, is the number of slices of priority. The formulation only

Name of Covariate | Regression Coefficient considers slice loss distortion, and ignores compressistortion,
T”"\/'ASDE 192; ?}871 and so will be more applicable if compression distortionegligible
VAXRSENGY 955 % 10=° compared to slice loss distortion. Constraint 1 in Equatbris
ISSIM —1.91 x 10T the channel bit rate constraint and constraint 2 ensurdshighaer
SigMean —3.03 x 107! priority slices have code rates which are at least as goochas t
SigVar —2.86 x 10:‘3 code rates allocated to the lower priority slices. It speedsthe
mgK —298 X 10 optimization process by narrowing down the selection setasfe
AGINTERPARTS 108 X 107 rate combinations for the four priorities. The optimizatiproblem
Slice type.f2 1.20 x 107 is solved using Branch and Bound (BnB) with interval arithime
Slice type.f3 —1.95 x 1011 analysis [13] to yield the optimal UEP code rates. We alscsictat
IMSlléwiEMXA)-(I—F'lASDERNGY Z:Zg i 1879 EEP based transmission over the AWGN channel where theesing|
Intercept 515 5 10 strongest code rate that can be used for all the slices witieén

channel bit rate constraint is determined. Though the fiitaldte

after adding the parity bits does not exceed the bit budgetetis
We observed that IMSE, TMDR and MAXRSENGY are the mos® Possibility that not all of the available bits are utilizéde to the

important covariates as shown in Table I. We introducedraations S€tR being a limited discrete vector of punctured code rates.€o b

between covariates IMSE and TMDR, and IMSE and MAXRSENG Yair, we limit the bit budget of the UEP scheme to the numbebitsf

to improve the model. Intuitively, as IMSE increases, CMSgoa Used by the EEP scheme.

increases since slices that are harder to conceal resugherhdistor-

tion. As TMDR increases, CMSE increases due to error prdjmya V. SIMULATION SETUPAND EXPERIMENTAL RESULTS

The regression coefficients of our final model are also redo  \yg have studied the performance of out CMSE prediction model
Table I. CMSE shows a positive correlation with IMSE, indicg 4, c|F Foreman and Tempete video sequences encoded at 552 Kbp
that if a slice is harder to conceal, its propagative effeatsid also 5,4 1024 Kbps using H.264/AVC JM 14.2 reference software [8]
be greater. Our interaction variables also show similaretation 1,4 different slice sizes. 300 and 900 bytes were used. rOthe

with CMSE. encoding parameters used can be found in Section lll. Due to
IV. SLICE PRIORITY ASSIGNMENTAND PROBLEM the space constraints, we show results for only Foremanesegu
FORMULATION encoded at 1024 Kbps. We use scatter plots to examine theaagcu

our prediction model based on the video factors in Table I.
e correlation coefficientp indicates the strength of linearity
between the measured CMSE and predicted CMSE values. Figure
A} illustrates that the CMSE prediction model accuracy i higth

large correlation coefficient values. It also show outlievbich are
data points that were not predicted accurately. These datésgesult
rWomisclassification of the slices into different priorgtie

In order to validate our model, we analyze and compare t}%I
performance of Quartile Based Prioritization (QBP) on miead and
predicted slice CMSE values over an AWGN channel. The ptredic
CMSE values are computed using GLM derived in Section IlI-
after deriving video factors while encoding whereas mess@MSE
values are computed by decoding videos affected by indiligue-
encoded slice losses. We divide the slices from each GOP i
4 priorities based on the quartiles, where priority 1 slices/en
highest predicted/measured CMSE and priority 4 slices hawest
predicted/measured CMSE.

Our objective is to find the optimal Equal Error ProtectiorE g 8% e : 8%
and UEP code rate allocation for the four priorities in théedent 3
bitstreams. We formulate the total expected video digiortf our 3
prioritized data as in [12]. LeRcy be the transmission bit rate of
the channel in bits per second. The video is encoded at a fratee
of fs frames per second, and the total outgoing bit budget for a GC Moasured GMSE
of length L is £<4£G. The RCPC code rates are chosen from a @ ®)
candidate seR of punctured code rateSR:, Rz, R, ..., Rk }. The
expected video distortion within the GOP is the sum of thertized ~ Fig. 1: Scatter plot of Predicted CMSE vs. Measured CMSE tefan
slice loss distortion over the AWGN channel. The expectstbdion encoded at 1024 Kbps and slice size of (a) 300 bytes Q.75), and (b)
of the j*"* slice depends on the measured/predicted CMSE distorti&Q0 bytes £ = 0.79).
due to its lossD, (j), slice error probability for a given channel SNR,
slice sizeS,(j) in bits, and RCPC code rate for slice priority Table Il shows the percentage of slices contributed by esohd
1 selected from the candidate sBt The optimization problem is type in the encoded bitstream. On an average, the IDR, P and B
formulated as: frame slices contribute 25%, 55% and 20% slices, respégtiVbe

(sp@-)) share of IDR slices decreases slightly as the slice sizeasess from
min, {Zf_l >0 {1 — (1 =ps(SNR,r;))\ ™ } D, (j)} 300 to 900 bytes. The converse is true for B slices.

200 300 400 500
Measured CMSE

su(bj)ect to TABLE II: Percentage Distribution of Slices in Foreman
4 n; Sp(d R L
1) i XL E— < (%) SliceSize | IDR | P B
(2) rio1<r for i=234 300 250 | 558 | 18.3
@) 900 22.6 | 55.6 | 21.7




Next, we discuss the misclassification of slices in différpri- i
orities. If a slice is assigned a priority;, such thati = 1,2, 3, 35| |5 Measured CMSE
or 4, based on the measured CMSE, then we defilfiesa degree
(1°) misclassification of the slice if it is assigned a priority.; or
pi—1 based on the predicted CMSE. Likewisesecond degree’)
misclassification would result if the slice is assigned anity of
pi+2 OF p;—2 based on its predicted CMSE value. Irihérd degree 15
(3°) misclassification, a slice with the highest priority is gssid )
the lowest priority or vice versa. A° misclassification represents ° ' Zpamainr@s, 0 © % ' Zramanr@s,  ° 0 °
moderate CMSE prediction error and may be tolerable whea@as (@) ()
and3° misclassifications should be minimized. Also, it is dedieab
minimize misclassification of higher priority slices. Talll shows Fig. 2: Average PSNR performance of Foreman video over an AWG
the percentage misclassification for slices from each ipyidfor the channel. Video was encoded at 1024 Kbps and slice size oD(apgtes,
slice size of 300 bytes, less than 20% slices misclassified by and (b) 900 bytes.
belong to prioritiesp; and p2, and less than 8% and 4% slices are
misclassified by a degree of 2 and 3, respectively. For 908 dliges,
less than 15% slices misclassified by belong to prioritiesp; and different priorities using the QBP scheme. We showed theorse
p2, and less than 1% of the slices are misclassified bth&he total degree and third degree priority misclassifications werainmal
misclassification is much smaller for 900 byte slices. Weeoked a indicating that we have achieved similar levels of priagtion in our
similar behavior for Tempete video sequence. proposed scheme and the UEP performance of the predictedECMS

prioritization over an AWGN channel is close to that of theasered
TABLE III: Percentage Slice Misclassification by Degree @sponding CMSE prioritization.
to Each Priority for Foreman using QBP Scheme.

<-EEP
35\ |-©-Measured CMSE
—Predicted CMSE

Average PSNR (dB)
]
Average PSNR (dB)
N
]
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