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ABSTRACT

Whole frame losses are introduced in H.264 compressed
videos which are then decoded by two different decoders
with different common concealment effects. The videos are
seen by human observers who respond to each glitch they
spot. We found that about 38% of whole frame losses of B
frames are not observed by any of the subjects, and well over
58% of the B frame losses are observed by 20% or fewer of
the subjects. Using simple predictive features which can be
calculated inside a network node with no access to the orig-
inal video and no pixel level reconstruction of the frame, we
developed a model which can predict the visibility of whole
frame losses in B frames. This model could be useful for
designing an intelligent frame dropping approach for use at a
router during congestion.

Index Terms— H.264, packet loss, frame interpolation,
frame freeze, error concealment, subjective metric.

1. INTRODUCTION

Compressed video transmission in networks suffers from
packet losses, which affect the decoded video quality to dif-
ferent degrees. It is important to characterize the packet loss
impact in terms of video quality. Traditionally, objective
measures like MSE (mean-square error) or PSNR are used as
indicators of video quality. However, MSE is not correlated
with human perception well. Therefore subjective tests col-
lecting direct responses from subjects who watch impaired
videos is necessary to understand how different packet losses
are perceived. In our prior studies [1, 2], we reported sub-
jective test results and built packet losses visibility models
to predict the visual importance for each packet when it is
lost and concealed by the decoder. In [1, 3], we show that
in the case of network congestion, the router can choose the
best packets to drop according to our model and achieve a
better visual quality, compared to existing methods in the
literature [4] and in industry [5].

However, the packet loss visibility modeling in our prior
work was designed for packets that are just slices (defined to
be one horizontal row of macroblocks) of a frame. For these
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types of packet losses, after error concealment, spatial mis-
alignment relative to the intact portion of the frame stands
out. Spatial misalignment artifacts can be more distracting
than temporal frame freeze [6]. In [3], under the same drop-
ping size constraint, we dropped packets on a slice basis, and
on a frame basis. We showed that the frame-level temporal
interpolation artifact is better than the slice-level spatial mis-
alignment artifact using the Video Quality Metric (VQM) [7].
VQM is a full-reference metric developed by the National
Telecommunication and Information Administration that has
been shown to be better correlated with human perception
than other full reference video quality metrics [8].

Nevertheless, which whole frame to be dropped in [3]
was estimated by the visibility model for single-slice packets.
That is, the visibility score for the frame was taken to be sim-
ply the sum of the visibility scores for the slices which com-
pose the frame. And those visibility scores for slices came
from a model designed using a human observer experiment
involving slice loss data. Therefore, to obtain more meaning-
ful scores for frame losses, in this paper, we conduct a sub-
jective experiment to concentrate on the subjective results for
whole frame loss, and build a direct model for whole frame
loss. Two common concealment methods for whole frame
losses are frame freeze and temporal frame interpolation. In
this experiment, we simulate frame freeze by the frame copy
error concealment in the JM standard decoder [9], and frame
interpolation by FFMPEG [10]; these two decoders are pop-
ular in research and industry. In this paper we analyze the
experimental data, and model the whole frame packet loss vis-
ibility based on information associated with the lost frames.

We hope to build a model that is suitable for router oper-
ation so that in the case of network congestion, the router is
able to decide based on our model which frame or frames to
drop to relieve the congestion while maintaining good video
quality. Therefore, as in [3], we consider factors associated
with the frame considered for dropping to be self-contained,
meaning that the computation of the factors does not need
other (reference) packets. This is desired since in a router,
the incoming packets may be out of coding order or may be
multiplexed with other video streams, so the router may not
be able to identify which is the reference packet of the current
packet. Also we want the complexity of the factor extraction
process to be low. Therefore we do not consider factors such
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as initial mean square error or scene cut detection that require
pixel domain reconstruction by full decoding as used in [1].

Perceptual quality of frame losses is discussed in [11].
The work studies different whole frame loss type as a func-
tion of frame loss burst length and frame loss burst distribu-
tion. The authors conclude that the visibility of frame drop-
ping is dependent on content, loss duration and motion. Later,
in [12], they built an assessment model for subjective video
quality as a function of frame loss burst and frame loss burst
distribution. However, the quantities are computed in the
pixel domain and require the original video. And the model
aims to evaluate the quality of a lossy video, and does not
indicate the visual importance of a specific frame.

This paper is structured as follows: in Section 2, the setup
of the subjective experiment is introduced. Section 3 covers
the analysis of data, and Section 4 introduces the whole frame
loss modeling process and feature selection. Section 5 con-
cludes the paper.

2. SUBJECTIVE EXPERIMENT ON WHOLE FRAME
LOSSES

In this section, we introduce the subjective experiment setup,
including the encoding configuration, decoder concealment
and experimental design.

The video encoder is H.264 JM 9.3. Encoder settings
(Table 1) adhere to ITU and DSL Forum Recommendations
[13, 14]. Each Network Abstraction Layer (NAL) packet con-
tains a horizontal row of Macroblocks (16 × 16 pixels) in a
frame. Our tested resolution is SDTV (720 × 480), so we
have 30 packets per frame. Nine videos with widely vary-
ing motion and texture characteristics are concatenated into a
20-minute sequence.

The decoders we considered are the JM 9.3 standard de-
coder [9] which produces frame freeze artifacts, and FFM-
PEG [10] which conceals whole frame losses using temporal
frame interpolation. For the JM decoder, the lost frame is
concealed by copying the pixels from the previous frame. For
the FFMPEG decoder, a lost P frame is concealed by copy-
ing the pixels from the previous reference frame, and a lost
B frame is concealed by temporal interpolation between the
frame pixels of the previous and the future frames. These two
decoders are widely used in academia and industry.

In this experiment, we concentrate on B frames. We in-
troduce whole frame losses once every 4 seconds to allow ob-
servers enough time to respond to each individual loss. The
losses occur in the first 3 seconds of each 4-second interval.
Among these intervals, we inject evenly single or dual whole
frame losses in a GOP; we want to understand the visual re-
sponse to isolated whole frame losses and any interaction be-
tween nearby whole frame losses. In this paper, we concen-
trate on the analysis of the data from isolated whole frame
losses.

We create six different realizations of whole frame loss

SDTV
Resolution 720 × 480
Bitrate 2.1 Mbps
H.264
Profile

Main profile
Level 3

Viewing
Distance 6H
Frame rate 30 fps
GOP IBBPBBPBBPBBPBB 15/3

Table 1. Summary of the subjective experiment setup. H is
the height of the video.

events of the 20-minute video, producing 900 distinct isolated
whole frame losses. All the six lossy videos are decoded by
FFMPEG and JM decoders. A subject watches two different
loss realizations of whole frame loss events from the same
decoder, so a session involves 40 minutes of actual watching
time per subject. The experiment takes one hour, including an
introductory session and a break. When viewers see a glitch,
they respond to that glitch by pressing the space bar. If the re-
sponse time is within 2 seconds of the loss, the loss is regarded
as visible. Each of the 40-minute lossy videos is watched by
10 people. The ground truth loss visibility score for a spe-
cific frame loss is calculated as the number of people who see
the loss artifact divided by 10. We have a total of 60 peo-
ple participating in the experiments, where 30 people watch
JM-decoded videos and 30 people watch FFMPEG-decoded
videos. 1800 ground truth visibility scores are obtained ( 900
for JM decoder and 900 for FFMPEG decoder).

3. DATA ANALYSIS

In this section, we compare the visual performance of frame
freeze (JM) and frame interpolation (FFMPEG).

Figures 1(a) and 1(b) show the histograms of the visibil-
ity of the JM decoder and the FFMPEG decoder respectively.
For the JM decoder, 40.78% of the losses are not observed by
any subjects (visibility is zero). For the FFMPEG decoder,
38.89% of the losses are not observed by any subjects. In
other words, more than 1/3 of losses are not seen by any
user. And for the JM decoder, 62.43% of losses have visibility
less than or equal to 0.2, whereas for the FFMPEG decoder,
58.29% of losses have visibility less than or equal to 0.2. For
both decoders well over half of isolated whole B frame losses
are seen by 2 or fewer out of 10 people. One implication is
that if we can identify these frames that are less visible to
viewers when lost, in the case of network congestion, we can
choose to drop unimportant frames to relieve network conges-
tion, and not many end users will observe the losses.

In the design of our experiment, because there is a loss
event in every 4 second interval, it could be a concern that
viewers would begin to anticipate the next loss event. How-
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Fig. 1. (a) Histogram of whole frame loss visibility by JM decoder, (b) Histogram of whole frame loss visibility by FFMPEG
decoder.

ever, we do not believe that viewers noticed the loss pattern
because there was such a high percentage of loss events which
were invisible, so viewers were not perceiving losses in each
time slot.

Figure 2 is the 3-D histogram of the visibility with respect
to the JM and FFMPEG decoders. This figure shows that the
invisible whole frame losses decoded by JM usually are also
invisible by FFMPEG and vice versa. Most losses are of zero
visibility for both FFMPEG and JM decoders, and it is rare
that one loss is highly visible in one decoder and less visible
in the other. Most of the time, the visibility of a particular
whole frame loss is similar (not exactly the same) for differ-
ent concealment methods. The correlation of the visibility
scores between JM and FFMPEG is 0.6043. This motivates
us to develop one model to predict the whole frame packet
loss visibility for both JM and FFMPEG decoders. We dis-
cuss it in the next section.

Also, we want to know whether one decoder is better than
the other in terms of whole frame error concealment visu-
ally. We start with a simple paired comparison of the ground
truth loss visibility scores between JM and FFMPEG. We say
a decoder wins if the ground truth of one decoder is lower
(visually better) than the other, and loses if is higher. The re-
sult shows that the fractions of JM wins, FFMPEG wins and
ties are 33.16%, 29.64% and 37.18%. This means more than
1/3 of the whole frame losses are observed by exactly the
same number of observers for both error concealment meth-
ods used. Among the tie cases, 79.05% represent losses with
zero visibility for both JM and FFMPEG. Also JM wins more
times against FFMPEG. When JM conceals the whole frame
loss by frame copy, there are no spatial concealment artifacts;
it is just a copy of the previous intact frame. However, for
FFMPEG that conceals by temporal interpolation, ghosting
artifacts may appear when there is enough motion. A visual

example is demonstrated in Figure 3. Frame 35 is lost and
concealed by JM with frame copy as in Figure 3(a) and by
FFMPEG with temporal frame interpolation as in Figure 3(b).
The average whole frame loss visibility over all the data is
0.1716 for JM and 0.1879 for FFMPEG, indicating that on
average, the whole frame losses concealed by JM are less vis-
ible than by FFMPEG.

For a significance test between the visibility scores of
FFMPEG and JM, we can not perform a hypothesis test
that assumes the data to be normal (e.g., t test) since from
Figures 1(a) and 1(b), their distribution is far from normal.
Therefore we resort to nonparametric hypothesis testing. The
Wilcoxon Signed Rank Test (paired comparison) [15] com-
pares paired data x and y in a two-sided test where the null
hypothesis H0 is that the median of x − y comes from a con-
tinuous, symmetric distribution with zero median, against the
alternative that the distribution does not have zero median.
Let xi and yi be the visibility for FFMPEG and JM in the ith
comparison set. Define w =

∑n

i=1
rizi where ri is the rank

of |xi − yi| among all |xj − yj |, and zi = 1 if xi − yi > 0
and zi = 0 otherwise. Here n = 900, the number of losses.
The statistic for the test,

Z =
w − [n(n + 1)]/4√

[n(n + 1)(2n + 1)]/24
, (1)

distributes approximately as Normal(0,1) when n > 12. The
p-value is 0.176 (> 5%), meaning that we can not reject
the null hypothesis at 95% confidence level that the visibil-
ity scores of FFMPEG minus JM come from a distribution of
zero median.
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(a) Lost frame number 35 of Stefan. Whole frame concealment by JM decoder
with frame copy.

(b) Lost frame number 35 of Stefan. Whole frame concealment by FFMPEG
decoder with temporal frame interpolation.

Fig. 3. Frame 35 is lost and concealed by JM decoder with frame copy in (a) and by FFMPEG decoder with temporal frame
interpolation in (b)

Fig. 2. 3-D Histogram of whole frame loss visibility by JM
decoder and FFMPEG decoder

4. WHOLE FRAME PACKET LOSS VISIBILITY
MODEL

In this section, we introduce the prediction model for whole
frame loss visibility. To predict the loss visibility, we first
cover network-extractable factors associated with a particu-
lar frame computed from a bitstream. The process of model
building and feature selection will be discussed.

4.1. Factors extractable from bitstream for predicting
frame loss visibility

From a frame, we want to obtain factors that can be extracted
without the need for other frames. Therefore, we do not con-
sider initial MSE and other metrics involving operations re-
lated to pixel domain reconstruction (as pixel reconstruction
would require access to the reference frame). By this, the
frame loss visibility can be determined even in the case that
we do not have access to other frames.

Several factors are shown to be important to the predic-
tion of packet loss visibility in our prior study [1, 2]. We con-
sider the residual energy distribution of the MBs in a frame,
denoted by RSENGY. We take the average of the residual
energy of all the MBs in a frame. We denote this quan-
tity as MeanRSENGY. MaxRSENGY denotes the maximal
residual energy after motion compensation among all MBs
in a frame. VarRSENGY denotes the variance of the resid-
ual energy of MBs in a frame. Aside from these which were
used in [1, 2] , here we include two more descriptions of the
distribution. The skewness [15] of RSENGY describes the
amount of asymmetry of the RSENGY distribution, denoted
as SkewRSENGY, and the entropy [16] of RSENGY cap-
tures the randomness of the RSENGY distribution, denoted
as EntRSENGY.

In addition to RSENGY, the QP distribution used for each
MB is also included. In H.264, the partition of a MB is sup-
ported, so the Interparts distribution of MBs in a frame is in-
cluded as a factor. Another important factor involves motion
vectors. MotX and MotY are motion vectors distributions in
x and y directions of MBs in each frame. MotM, the motion
magnitude distribution of MBs in a frame, is considered. To
compute the factors related to phase of motion vectors, we
only consider macroblocks with non-zero motion, for which
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the phase is well defined. We denote the phase information
distribution of the motion vectors as MotA. The packet size
distribution in bits in a frame, denoted as SliceSize, is also
included for prediction.

For each one of these distributions (QP, Interparts, MotX,
MotY, MotM, MotA and SliceSize), we include the Mean,
Max, Var, Skew and Ent (as we do for RSENGY) as pre-
dictive features in our model. In addition, we are interested
in how the way MBs are coded can affect the frame loss
visibility, thus we include the number of MBs in a frame
that are coded in the mode of INTRA (NumIntraMB), IN-
TER (NumInterMB), DIRECT (NumDirectMB) and SKIP
(NumSkipMB) into factor consideration.

For residual energy, as in [1], we found that this factor
after logarithm was more correlated with frame loss visibility
(where we add 10−7 before taking the log to avoid a log of
zero problem). Therefore we use this transformation.

Note that the motion information mentioned above is es-
timated by the network node where reference frames are as-
sumed to be not available; in some cases, the “true” values
for those quantities require the reference frames. For exam-
ple, the “direct” mode of coding a macroblock assumes that
an object is moving with constant speed, so the motion vec-
tor for the current MB is copied from the previous co-located
MB. Within a frame, we do not have any information on the
previous co-located macroblock. We instead copy the motion
vector from a spatial neighbor. This way, the model is fully
self-contained at the frame level, and can suitably be imple-
mented at a network node.

4.2. Modeling Process

In the experiment and data analysis, we assume each viewer’s
response is an independent observation of the average viewer
(for whom we are developing the model). Therefore, each
viewer response can be considered iid with probability p for
seeing a particular packet loss. Hence, we choose a general-
ized linear model (GLM) with the logit function as link func-
tion, since it can predict a probability parameter in a binomial
distribution.

GLMs are an extension of classical linear models [17, 18].
The probability of visibility is modeled using logistic re-
gression, a type of GLM which is a natural model to pre-
dict the parameter p of a binomial distribution [17]. Let
y1, y2, ..., yN be a realization of independent random vari-
ables Y1, Y2, ..., YN where Yi has binomial distribution with
parameter pi. Let y, Y and p denote the N-dimensional vec-
tors represented by yi, Yi and pi respectively. The parameter
pi is modeled as a function of P factors. Let X represent
a N × P matrix, where each row i contains the P factors
influencing the corresponding parameter pi. Let xij be the
elements in X. A generalized linear model can be represented
as

g(pi) = γ +

P∑

j=1

xijβj (2)

where g(.) is called the link function, which is typically non-
linear, and β1, β2, ...., βP are the coefficients of the factors.
Coefficients βj and the constant term γ are usually unknown
and need to be estimated from the data. For logistic regres-
sion, the link function is the logit function, which is the
canonical link function for the binomial distribution. The
logit function is defined as

g(p) = log(
p

1 − p
). (3)

Often the parameters of the GLM are estimated such that
the resulting model has the least deviance (the deviance is
a generalization of the residual sum of squares). This treats
data points equally, no matter how far they are from the re-
gression line. However, outliers may distort the results. To
give unequal treatment to data points to suppress outliers, we
minimize the M-estimator [19]; data points farther from the
regression line have smaller weights, and contribute less to
the final modeling result. We chose the “Fair” function as the
M-estimator function, shown in Figure 4. The M-estimator is
computed as the sum of the weighted residual squares, where
the weight of each data point is computed by the residuals in
the previous iteration. The M-estimator function in Figure 4
is chosen to avoid the weights of the curve going close to zero
at the two ends, because we do not want to have a final model
that has least M-estimator just because most of the data points
are at the two ends. The model developing procedure uses 4-
fold cross validation to prevent the model overfitting the data,
so an average M-estimator is produced for a set of factors.

190



Order Factors Coefficients
α 1 -2.3502
1 MeanMotM 8.5907e-2
2 VarMotY -2.4423e-3
3 log(MaxRSENGY +10−7) 5.7905e-2
4 VarMotX -7.5725e-4
5 MeanSliceSize × VarMotY 4.8017e-7
6 NumInterMB -6.0581e-4
7 MaxMotM 3.6750e-3

Table 2. Table of factors in the order of importance for
Avg JM FFMPEG model.

Order Factors Coefficients
α 1 -1.930
1 MeanMotM 9.4313e-2
2 VarMotY -2.2636e-3
3 log(MaxRSENGY +10−7) 5.5021e-2
4 VarMotX -8.3054e-4
5 MaxMotM 9.2753e-3
6 MaxMotY -6.0405e-3
7 MeanSliceSize × VarMotY 3.9402e-7
8 NumInterMB -5.1083e-4
9 MaxMotX -4.4854e-3

Table 3. Table of factors in the order of importance for
Max JM FFMPEG model.

The factor which most reduces the average M-estimator goes
next into the model. This procedure repeats until there is no
improvement in the average M-estimator by including an ad-
ditional factor.

4.3. Discussion

We use the factor set described in Section 4.1, plus interaction
terms between any two factors in the set by multiplication
between two factors. We then perform the feature selection
process described in Section 4.2.

From Section 3 we know that the concealed result for JM
is not significantly better than for FFMPEG, and that a whole
frame loss with high visibility for one decoder is very likely to
be highly visible for the other decoder, therefore it is reason-
able to make one generalized model for both decoders. One
can make such a model by taking the average of the two vis-
ibility scores associated with the same whole frame loss. We
denote the result Avg JM FFMPEG. Another way is taking
the maximum of the two visibility scores of the JM and FFM-
PEG; this aims to predict the visibility for the worst decoder
for a loss, and we denote the result Max JM FFMPEG.

Figures 5(a) and (b) show decreasing M-estimator as we
add factors in the order of importance into the models that pre-

dict Avg JM FFMPEG and Max JM FFMPEG respectively.
The circle markers in the plots consider all the factors dis-
cussed in Section 4.1. We observe that adding more factors
in the model produces diminishing returns. In fact, most of
those factors involve the computation of skewness and en-
tropy, which are very complicated. Therefore, we remove the
factors involving skewness and entropy from consideration.
The factors in Figure 5(a) and (b) that are marked by dia-
monds do not include skewness and entropy. We can see that
by saving the computation and reducing the number of fac-
tors in the model, we only lose 12.4% for (a) and 6.45% for
(b) of the full performance achieved by all the circled factors.
The factors in the order of importance and the correspond-
ing coefficients of the final models of Avg JM FFMPEG and
Max JM FFMPEG are listed in Table 2 and Table 3 respec-
tively. One interesting observation is that the first four impor-
tant factors are the same for both models. Also, for all the
factors, the information relating to motion vectors is very im-
portant; more than 70% of factors in the model involve motion
vector computations. This indicates the amount of motion in
the lost frame dominates the visual performance of conceal-
ment by both the JM and FFMPEG decoder.

5. CONCLUSIONS

We present a subjective test and its results on whole B frame
loss visibility of the H.264 encoded bitstream. We com-
pare the visual result of the concealment by the JM standard
and FFMPEG decoders. For whole frame loss, JM produces
frame copy artifact, while FFMPEG produces temporal frame
interpolation artifact. We found that there is no statistically
significant difference in the visibility of these losses between
the two different decoders. Experimental results showed that
approximately 40% of all isolated losses were not observed
by any viewers, and about an additional 20% of the loss
events were only observed by 1 or 2 out of 10 observers. We
then developed two whole frame loss visibility models; one
predicts the average visibility by the decoders, the other is for
the worst case visibility .
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