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Classification Using Vector Quantization 
Karen L. Oehler Pamela C. Cosman Robert M. Gray Jack May* 

Information Systems Laboratory 
Department of Electrical Engineering 

Stanford University 
Stanford, CA 94305-4055 

Abstract 
We describe a simple technique for combining vec- 

tor quantization and low level classijication of images. 
The goal is to classify automatically certain simple 
features in an image as part of the compression pro- 
cess in order t o  enhance lheir appearance in  the re- 
constructed image. Images in the training sequence 
are divided into blocks and each block is classified into 
a particular class by a human observer. This a pri- 
ori knowledge is then used when designing the code- 
book s o  that both small average distortion and accurate 
implicit classification are achieved. T h e  codebook can 
also be designed to have different averczge distortions 
for the different classes. The technique i s  a varia- 
tion on a variable rate tree-structured vector quantizer 
which is grown by splitting a single terminal node at 
each iteration. The splitting criterion selection allows 
tradeoffs among compression rate, distortion and mis- 
classification rate. 

1 Introduct ion 

Because digitized images require tremendous mem- 
ory storage and transmission bandwidth, image com- 
pression is often a necessity. Vector quantization (VQ) 
has for several years been used for image compression 
[l, 2, 3, 41. We describe a simple technique for com- 
bining vector quantization and low level classification 
of images in order to enhance their appearance in the 
reconstructed image. The cluster analysis and nearest 
neighbor techniques used for vector quantization have 
also long been used for traditional pattern classifica- 
tion [5]. The two applications differ primarily in the 
measures of algorithm quality and cost and in the fact 
that pattern classification often implies an a priori set 
of desired patterns while in quantization the design al- 
gorithm can choose the templates to best approximate 
the possible inputs. Because of the similarity of the 
two methods, it  is natural to consider combinations 
that both compress and classify. One possible use of 
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this combination is t o  highlight regions in the recon- 
structed image belonging to a specific class, in order 
to draw attention to certain features. Another use is 
to develop codebooks which have improved represen- 
tations for those classes that are deemed important. 

2 Codebook s t ruc ture  

A tree-structured vector quantizer (TSVQ) is used 
because it has’the advantage of greatly reduced search 
complexity over full search VQ. Traditionally, a bal- 
anced TSVQ is designed one layer a t  a time and im- 
plements a fixed rate code [6]. Makhoul et al. [7] 
introduced an alternative design algorithm that grows 
the tree one node at  a time by splitting the node that 
contributes most to the overall distortion of the coder. 
This method results in an unbalanced tree because the 
node that is split can be a t  any depth. Because un- 
balanced trees generally produce lower distortion than 
balanced trees, we consider unbalanced TSVQ. 

Another unbalanced tree design algorithm is pre- 
sented in [$I. Here, a technique from classification 
and regression tree design is extended to  variable rate 
coding. In [9], decision trees are grown by splitting 
one node at  a time. An “impurity function” measures 
the lack of homogeneity of a particular node in a tree 
T .  The “goodness” of a candidate split of node t is 
defined as the decrease in node impurity that it effects 
and is given by 

Here, s is a binary test (a nearest neighbor selection 
in a TSVQ), i(t) is the impurity measured at  node 2 
of tree T (average distortion in a TSVQ), p t  is the 
proportion of the samples in node t that  go to the left 
child t ~ ,  and p~ is the proportion that go to the right 
child tR. 

For a TSVQ with a squared error distortion, the 
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impurity function becomes 

(’4 
1 

i ( t )  = d ( t )  = - d ( X k , X t )  
ll‘ll k : x ~ E 7 ,  

where ’& is the set of all training vectors x k  mapping 
into node t ,  11’&7;11 is the number of vectors in ’&, Xt 
is the reproduction codevector associated with node t ,  
and d ( x ,  y) = (x - y)‘(x - y). In growing an unbal- 
anced TSVQ, the terminal node measuring the highest 
Ad(s,  t )  is always split. Let D and R stand for the dis- 
tortion and rate, respectively, measured by T ,  and let 
D’ and R’ stand for the distortion and rate of the tree 
after t is split into t L  and t R .  Let A D  = D’ - D and 
A R  = RI- R be the change in the distortion and rate, 
respectively, due to splitting 2 .  The splitting criterion 
from [8] is 

Criterion Split the node that provides the largest 
ratio of decrease in distortion to increase in rate, 
i.e. split the node with the largest value of 

It was found that such trees outperform balanced 
trees of equivalent bit rates by up to 3.5 dB at high 
rates on a magnetic resonance image database [8]. Ob- 
serve that average squared error is simply one example 
of a node impurity measure that can be used to grow 
TSVQs. We will here consider other measures. 

3 Hand-labeled classification 

The problem chosen here is to highlight areas in  im- 
ages that are deemed to belong to a specific category. 
In aerial images, image sublocks that are suspected of 
being “manmade” as opposed to “natural” are high- 
lighted to attract attention of human observers. The 
classification of the training set of aerial photographs 
is done by hand labeling those features (man-made 
and natural regions) that are to be recognized in sub- 
sequent images. This a priori knowledge is used when 
designing the TSVQ codebook so that both small aver- 
age distortion and accurate implicit classification are 
achieved. Hence, the TSVQ encoder is designed to 
classify image subblocks while compressing the im- 
age. Several codebook design methods are possible 
with differing compression and classification abilities 
on the test images. The splitting criterion selection 
allows tradeoffs among compression rate, distortion, 
and misclassification rate. 

The new approach taken here is that the classifica- 
tion is done simultaneously as the image is encoded. 
One codebook search is sufficient to both encode a 
subblock and to classify it into one of the previously 
determined categories. Stored with each codeword in 
the codebook is a class label representing the best class 
prediction for image subblocks that will be represented 
by that codeword. Thus, once the encoder selects the 
most appropriate codeword, the preliminary classifi- 
cation of the subblock at  hand is simply a matter of 
memory lookup; no other computations are required. 
In effect, we are getting this classification knowledge 
“for free.” A simple means of incorporating classifi- 
cation into a TSVQ is to classify each terminal node 
according to a majority vote of the a priori class as- 
signments of the training vectors that were represented 
by that node after encoding. This makes sense if the 
costs of misclassifying the image subblocks of the var- 
ious classes are equal. However, if the error costs are 
unbalanced, then a more sophisticated weighting func- 
tion would be appropriate. 

It is important to point out similarities and dif- 
ferences between this approach and Classified Vector 
Quantizers (CVQ) [lo]. Both approaches divide the 
training sequence vectors among different categories 
or classes. While the CVQ algorithm constructs a VQ 
codebook for each class, the algorithm described here 
constructs only one VQ codebook using the class in- 
formation. In [lo], the key goal was to code edges 
with higher visual quality and to reduce the complex- 
ity of the overall encoder by creating many indepen- 
dent subcoders. Here the key goal is to recognize and 
“highlight” specific classes; complexity is not reduced 
by the classification information, but the encoder is 
already low complexity due to its tree structure. 

3.1 Alternative splitting criteria 

The codebooks are constructed by splitting one 
node at  a time. The splitting criterion, i.e. the 
methodology for deciding which node to split next, 
can have a strong effect on the quality of the code- 
book. Three different criteria are investigated: 

Criterion 1 Ignore the classification information and 
split the node with the largest goodness of split as 
defined in Equation 3 where the distortion mea- 
sure is mean-squared error. This design yields an 
ordinary VQ for comparison [8]. 

Criterion 2 Split the node that has the greatest per- 
centage of misclassified training vectors, i.e. split 
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the node with the largest value of 

(Number of misclassified vectors) 
A2 = (Total number of vectors) . (4) 

This corresponds to measuring impurity by the 
Hamming distance between the node class, c t ,  
and the hand-labeled class, ~(t) .  Thus, if 
dH(z,y) = 0 if t = y and d ~ ( t , y )  = 1 if 3: # y, 
then the impurity of node t is given by 

Criterion: 
Training PSNR (dB) 
Training classification abilitv 

from Equation 2. The node with the highest such 
impurity is split. Thus the encoder nearest neigh- 
bor mapping and the centroid reproduction levels 
are chosen to minimize squared error, but the tree 
is grown to reduce classification error. 

Criterion 3 Split the node that has the greatest 
number of misclassified training vectors. This is 
equivalent to splitting the node with the largest 
impurity defined by the partial Hamming distor- 
tion d( t )  = I lT l ldH( t ) .  

Note that the latter two splitting criteria are not 
formatted in the traditional “goodness” of split crite- 
rion as are criterion 1 and [8], but are more similar to 
the splitting criterion used in 171. Because the classifi- 
cation of each node is based on majority rule, splitting 
criteria based on classification error can lead to a de- 
sirable split having a zero ‘‘goodness” of split. 

1 2 3  
26.7 25.4 25.1 
0.72 0.74 0.70 

3.2 Experimental Results 

Test P<NR (dB) 
Test classification ability 

The training set consisted of 5 images provided by 
ESL, Inc. The images were 512 x 512 pixels of 8 bit 
grayscale consisting of aerial photography of the San 
Francisco Bay area. Each 16 x 16 pixel subblock in the 
training set was assigned to be either “man-made” or 
“natural” based on the perceptions of a human ob- 
server. While the training vectors were classified in 
16 x 16 vectors to simplify the task of the human clas- 
sifier (even using the 16 x 16 subblocks, over 5000 deci- 
sions had to be made), the codebook construction and 
image encoding were carried out using 4 x 4 pixel vec- 
tors. This coarse resolution is partially responsible for 
the relatively low classification abilities demonstrated 
with the data. Classification ability is defined as the 
percentage of vectors classified correctly by the TSVQ, 
compared to  the classification standard created by the 
human observer. 

Sets of codebooks having either the same rate or 
the same number of nodes were constructed to allow 

I 

23.4 I 22.8 22.7 
0.71 I 0.74 0.75 

Table 1: PSNR and classification ability using TSVQ 
codebooks grown using various splitting criteria for 
both the training sequence and the test image. 

for comparison. Results for codebooks at  a rate of 0.5 
bpp are shown in Table 1. In general, the first split- 
ting criterion provided the lowest mean squared error 
in the encoded image at  the expense of relatively poor 
classification ability. The latter two splitting methods 
provided poorer encoded images (much more blocky in 
appearance) but better classification ability. Criterion 
3 classified more vectors as man-made than criterion 
2. For a given number of nodes, criterion 2 produced 
a higher rate code than 1, and 3 higher than 2. Like- 
wise, for a given rate the tree structure produced by 
criterion 1 has substantially more nodes than criterion 
2 ,  and 2 more nodes than 3. Choosing the splitting 
criterion involves a tradeoff between compression and 
classification quality; or similarly, a tradeoff between 
rate and memory requirements (memory being prc- 
portional to the number of nodes.) 

Images outside the training sequence were encoded 
with the resulting codebooks. Because the simultane- 
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Figure 3: Natural sublocks using encoder designed us- 
ing Criterion 1. Man-made subblocks are replaced by 
solid white subblocks. 

Figure 5: Natural sublocks using encoder designed us- 
ing Criterion 3. Man-made subblocks are replaced by 
solid white subblocks. 
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ous display of the compression and classification re- 
sults is difficult in a grayscale format, the results of 
compression and classification are shown separately. 
Figure 1 shows the original test image (not in the 
training set) that was used to evaluate the differ- 
ent codebooks. Figure 2 shows the image after com- 
pression at  0.5 bpp using the codebook constructed 
with Criterion 2 (results from the other criteria are 
similar.) Figures 3, 4 and 5 demonstrate classifica- 
tion from codebooks constructed with Criteria 1, 2, 
and 3 respectively. The images show the subblocks 
that the encoder classified as natural, whereas the 
man-made subblocks are replaced by solid white sub- 
blocks. Although this information is not as amenable 
to grayscale display, the images shown here reflect the 
accuracy of the classification encoder. The classifica- 
tion ability was  modest; a t  0.5 bpp the best classifi- 
cation encoder still had 25% misclassification rate on 
the training sequence, that is, one in four decisions 
disagreed with the hand-labeled classes. However, the 
resulting error rate was partly due to the fact that 
the hand-labeling of the training and test images was 
performed at  one-fourth the resolution that the clas- 
sifier was trying to achieve. This resolution mismatch 
not only degrades the training sequence but also pro- 
duces an imperfect “gold standard” classification for 
the test image. Since the classification ability is com- 
puted with respect to the hand-labeling of the training 
and test images, it is also affected by the human ob- 
server’s perception and consistency limitations. 

Ideally, the compressed images would be viewed on 
a color monitor so that classification information can 
be indicated by color superimposed on the grayscale 
compressed image. Such a contrast makes the natu- 
ral and man-made features of the image easier for a 
human viewer to differentiate. 

Test classification ability 
Comp. Test classification ability 

3.3 Comparison with other classification 
met hods 

CART 
0.81 
0.72 

The classification results were compared with re- 
sults obtained using the CARTTM algorithm, de- 
scribed in [9]. CART uses training data to construct 
a decision tree for classification. Here, we considered 

Table 2: Classification ability using CART algorithm 
for both the test image and a 0.5 bpp compressed ver- 
sion of the test image. 

decision trees constructed as a series of binary splits, 
where each split is conducted along one coordinate in 
the training data. The training vectors were prepro- 
cessed to obtain new vectors consisting of the mini- 
mum, maximum, average and standard deviation of 
pixel values within the vector. CART trees developed 
with these preprocessed vectors showed better classi- 
fication ability than trees developed with the original 
training vectors. This was due to the fact that split- 
ting along a single coordinate in the image vector is 
not as efficient as splitting along a function of several 
coordinates. A classification tree was trained using 
preprocessed vectors from the same 5 images as in 
Section 3.2,  and was applied to the same test image. 
A compressed version of the test image (compressed 
to 0.5 bpp using the “standard” TSVQ tree built with 
Criterion 1) was also classified using the CART tree. 
The results are shown in Table 2. This preprocess- 
ing allowed CART to classify test images very well, 
considering the limitations on the training sequence. 
However, there was notable degradation in classifica- 
tion ability on the compressed image. 

On the test image, CART performed better than 
the vector quantizer classifier; however, CART per- 
formed worse on the compressed test image. In gen- 
eral, the two classification methods are comparable. 

4 Automatic classification based on 
input-weighted distortion measures 

In the previous experiment, we used the classified 
training vectors to grow the tree in such a way that 
it attempts to keep vectors of the same class together. 
Instead of, or in addition to, this classification pur- 
pose, classified training vectors can also be used for an 
enhancement purpose: the tree can be grown so that 
i t  does a better job of encoding certain classes. We 
consider two examples of this type of enhancement. 
Both examples involve an automatic classification of 
the training vectors: in one case a classification by 
brightness, and in the other, by texture. A weight is 
associated with each class, and the tree is grown with 
a weighted distortion measure that causes the tree to 
have “growth spurts” for certain types of inputs that 
have been declared a priori to be important, and to 
become “stunted” for inputs that are less important. 
Further information on this approach can be found in 

The most common distortion measure for growing 
and pruning TSVQs is the squared error. We now con- 
sider the splitting criterion of Equation 3 with instead 

[Ill.  
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Figure 6: Compressed image at  0.75 bpp: regular dis- 
tortion measure. 

an input-weighted distortion measure of the form 

where W, is a strictly positive definite weight,ing ma- 
trix that depends on the input x .  In  our examples, 
W, will equal w,I, where I is the identity matrix, 
and w, is a weight assigned to each training vector x 
according to its classification. Training vectors which 
are more important according to some criterion will be 
assigned higher weights. Thus nodes having high con- 
centrations of training vectors from important classes 
will have an inflated AD and therefore will split ear- 
lier and more often than they would in the unweighted 
case. 

4.1 Classification based on intensity 

A classification based on intensity, in which bright 
training vectors are weighted more heavily than dark 
ones, is appropriate for MR brain scans because the 
bright parts of the image correspond typically to what 
is medically most important in the image. A training 
sequence consisting of 8 MR brain scans was blocked 
into 2 x 2 pixel blocks, and each vector was automat- 
ically assigned a weight proportional to its energy. A 
tree was grown to 2 bpp using the weighted distortion 
measure for splitting, and pruned back to 0.75 bpp. 

Figure 7: Compressed image at  0.75 bpp: weighted 
distortion measure. 

The tree was evaluated on images not in the train- 
ing sequence. The same training sequence without 
weights assigned was used to grow an unweighted un- 
balanced tree according to the original greedy growing 
algorithm. The compressed images at  bit rates of 0.75 
bpp produced by the two different trees are shown in 
Figures G and 7. The image made from the weighted 
tree looks better in the bright regions (e.g., the cor- 
tex and cerebellum) which generally correspond to  the 
diagnostically important part of these images. 

4.2 Classification based on texture 

Due to pattern masking, the human visual system 
is generally less sensitive to noise in highly active or 
textured regions of an image, and we used our class- 
weighted distortion measure to effect a redistribution 
of quantization noise into regions of more texture. The 
training sequence consisted of six USC database im- 
ages, blocked into 4 x 4 vectors. A weight was assigned 
to each training vector according to how many of the 
pairs of adjacent pixels had differences exceeding some 
threshold. Highly textured vectors having many pairs 
exceeding the threshold were assigned low weights, 
and highly homogeneous vectors were assigned large 
weights. A tree was grown to 2 bpp using the weighted 
distortion for the splitting criterion, and pruned back 
to 0.54 bpp. The test image showed clouds, a lake, and 

444 



trees. A comparison of compressed images encoded [5] M. R. Anderberg. Cluster Analysis for Applica- 
from the weighted and unweighted trees showed that 
the one from the weighted tree had less distortion in 
the cloud regions, where distortion is most noticeable, 
and it had more in the areas of trees, where the high 
texture masks the noise. 

tions. Academic Press, San Diego, 1973. 

161 A. B u z o y  A. H. Gray, Jr., R. M. Gray, and J .  D. 
Markel. Speech coding based upon vector quan- 
tization. IEEE Trans. Acoust. Speech Signal Pro- 
cess., ASSP-28:562-574, October 1980. 

5 Conclusions 

We have used classification information in conjunc- 
tion with a greedy growing algorithm to grow unbal- 
anced TSVQ. Hand-labeling of aerial images was used 
to grow TSVQ which combine moderate classification 
ability with encoding, useful in highlighting the re- 
constructed images. The classification schemes used 
so far have classified each training vector without re- 
gard to its context in the training image. It might be 
possible to develop classifiers which incorporate more 
contextual information. Classified training sequences 
were also used to redirect quantization noise to dif- 
ferent parts of compressed images, by using a class- 
weighted distortion measure. A weighting based on 
brightness for medical images and one based on tex- 
ture for outdoor scenes both produced weighted trees 
that significantly improved the perceptual compressed 
image quality. 
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