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Abstract— For a fixed total bandwidth expansion factor, and
for a fixed channel code rate, we consider the problem of optimal
bandwidth allocation between the source coder and the spread-
spectrum unit for a multicarrier direct-sequence CDMA system
operating over a frequency-selective fading channel with narrow-
band interference. Assuming a Gaussian source with the opti-
mum scalar quantizer and a binary convolutional code with soft-
decision decoding, we obtain both a lower and an upper bound
on the end-to-end average source distortion. The optimal band-
width allocation is then numerically computed by minimizing up-
per and lower bounds on the average distortion. We show that
the upper bound based cost function is a convex function of the
source code rate, and the optimal allocation depends on the sys-
tem and the channel conditions, such as the total number of ac-
tive users, the number of carriers, and the average jammer-to-
signal power ratio.
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cross-layer optimization

I. INTRODUCTION

Direct-sequence CDMA (DS-CDMA) technology is pop-
ular due to its robustness against channel fading, capability
to suppress intentional/unintentional narrow-band interference
(NBI) and multiple access capacity [1]. For providing wide-
band multimedia services with non-availability of contigu-
ous frequency spectrum, and for the purpose of overlaying
a CDMA system on existing narrow-band systems, a multi-
carrier version of the traditional DS-CDMA systems can be
realized by employing more than one carrier [2]. Studies
have shown that, with hostile NBI, multicarrier CDMA (MC-
CDMA) systems with efficient channel coding can provide
improved system performance relative to their single carrier
counterparts [3]- [4]. However, for a fixed total system band-
width, transmission of high quality source information com-
petes for the available bandwidth with channel coding and
spreading. This motivates us to study the tradeoffs involved
among source coding, channel coding and spreading in a mul-
ticarrier DS-CDMA system.

We now briefly review the related previous work. In [5]-
[7], an information theoretic approach is taken to investigate
the tradeoffs between source and channel coding. In [8] and
[9], the tradeoff between coding and spreading is investigated
for a spread-spectrum system. Using system level simula-
tions, in [10], Zhao et al. studied the problem of optimal
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bandwidth allocation among source coder, channel coder, and
spread-spectrum modulator for progressive transmission of
images over frequency-selective fading DS-CDMA channel
with MAI. Recently, in [11], an analysis was presented for
the optimal bandwidth allocation on AWGN and flat Rayleigh
fading CDMA channels with both block coding with hard-
decision decoding and convolutional coding with soft-decision
decoding.

In this paper, we study the bandwidth allocation problem
between the source coding and spreading, for a fixed channel
code rate, when a MC-CDMA system is used in the presence
of NBI. We assume a Gaussian source with the optimum scalar
quantizer and a binary convolutional code with soft-decision
decoding. The NBI is a modeled as a Gaussian distributed
partial-band interferer (PBI). First, using a standard Gaussian
approximation for the MAI, we obtain upper and lower bounds
on the pairwise error probability (PEP) with soft-decision de-
coding, and we use these results to bound the end-to-end av-
erage source distortion. The optimal bandwidth allocation is
then numerically computed by minimizing upper and lower
bounds on the average distortion. We show that the upper-
bound based cost function is a convex function of the source
code rate, and the optimal allocation depends on the system
and the channel conditions, such as the average jammer-to-
signal power ratio (JSR), the number of carriers, and total
number of active users.

The rest of this paper is organized as follows. In Section II,
we introduce the system and the channel model, and derive up-
per and lower bounds on the PEP with soft-decision decoding.
Analysis of the end-to-end average distortion is presented in
Section III, whereas the optimum bandwidth allocation prob-
lem is detailed in Section IV. Numerical results and discussion
are provided in Section V. Finally, we conclude our work in
Section VI.

II. SYSTEM MODEL

The transmitter-receiver pair for the kth user is shown in
Fig. 1. The information source is quantized by the source en-
coder with a rate of rs bits per source sample, which are then
mapped onto a new bit index of the same length rs using an
index assignment block, whose output bit stream is denoted by
{b(k)

n }. As detailed in [13], the purpose of this latter block is
to permute the indices so that those with small Hamming dis-
tance between them correspond to close quantization levels.



2

Fig. 1. Block Diagram of the transmitter-receiver pair for the desired user.

This way, the distortion caused by the most probable errors,
and hence the total distortion, is kept minimum. For ease of
analysis, similar to [13], [11], we assume a random index as-
signment with a one-to-one mapping of indices from 0 through
2rs − 1.

Each bit b(k)
n is encoded by a convolutional code of rate rc,

and the resulting code symbols are interleaved. For the pur-
pose of analysis, we assume an ideal interleaver. Each code
symbol d(k)

n is then spread, binary phase modulated and trans-
mitted over the M frequency bands, each of width W1. An
optional symbol mapper can be used for coding across the
carriers, as studied by [3]. If Tc and W , respectively, de-
note the chip duration and system bandwidth of a compara-
ble single carrier CDMA (SC-CDMA) system, then we have
W = (1 + β)/Tc, where β ∈ (0, 1] is the roll-off factor of
the chip wave-shaping filter. The bandwidth available per car-
rier in a MC-CDMA system is then given by W1 = W/M =
(1 + β)/(TcM) = (1 + β)/Tc1 , where Tc1 = MTc is the
corresponding chip duration in MC-CDMA system.

Mathematically, the signal at the output of the kth user’s
transmitter can be written as

Sk(t) =
√

2Ec

∞
X

n=−∞

d
(k)

bn/Nc
c(k)
n h(t− nMTc) ×

M
X

m=1

cos(2πfmt+ θ(k)
m ), (1)

where bxc is the largest integer that is less than or equal to
x, c(k)

n denotes the spreading sequence, fm is the center fre-
quency of the mth carrier, θ(k)

m denotes the initial phase angle
of the kth user’s mth carrier, N is the number of chips-per-
code symbol-per-carrier, and Ec denotes the energy-per-chip.
Also, h(t) denotes the chip wave-shaping filter, and we as-
sume that X(f) = |H(f)|2 satisfies the Nyquist criterion,
where H(f) is the Fourier transform of h(t). If we denote
by SF the spreading factor associated with a single carrier,
then we have SF = Ts/Tc = MTs/Tc1 = MN , where Ts

is the code symbol duration. With this, we can express N as
N = SF /M .

We assume that the channel is frequency-selective over a
bandwidth of W . However, the total bandwidth W is as-
sumed to be partitioned into M disjoint frequency bands in
such a way that each of the M bands experiences indepen-
dent, frequency-flat fading. In [2], conditions were derived
for satisfying this assumption. With this, the received signal
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Fig. 2. Comparison of exact pairwise error probability with the one based
on the Chernoff bound and the one based on a lower bound. The system
parameters are the following: Ku = 25, JSR = 10 dB, ρJ = 0.25, rc = 1/3,
SF = 128, and M = 4.

of the kth user can be written as

r(t) =

Ku
X

k=1

√
2Ec

∞
X

n=−∞

d
(k)

bn/Ncc
(k)
n h(t− nMTc − τk) ×

M
X

m=1

α(k)
m cos(2πfmt+ ψk,m) + nW (t) + nJ (t), (2)

where τk is the random time delay corresponding to the kth
user, assumed to be uniformly distributed in [0,MTc), Ku is

the total number of active users in the system, α(k)
m denotes

the fade amplitude, φ(k)
m denotes the random phase on the mth

carrier of the kth user, and ψ(k)
m = θ

(k)
m + φ

(k)
m is the resultant

phase on themth carrier. The term nW (t) denotes the additive
white Gaussian noise (AWGN) with a two-sided power spec-
tral density (PSD) of η0/2, whereas nJ(t) represents partial
band Gaussian interference with a PSD of SJ(f).

We assume that the fades are independent across the users,
the carriers, and over time. We further assume that α(k)

m

is Rayleigh distributed with density function f
α

(k)
m

(x) =

2xe−x2

, for x ≥ 0, and φ
(k)
m is uniformly distributed over

(−π, π]. The PSD of the jammer, SJ(f), can be written as

SJ (f) =



ηJ

2
for fJ − WJ

2
≤ |f | ≤ fJ + WJ

2
0 otherwise,

(3)

where ηJ is the one-sided PSD of the jammer, and WJ and
fJ are the bandwidth and the center frequency of the PBI, re-
spectively.

The receiver operation, assuming the first user is the de-
sired user, can be briefly explained as follows. We assume
that perfect carrier, code, and bit synchronization for the first
user has been accomplished. The received signal of Eqn.
(2) is first chip-matched filtered, using the band-pass filters
H∗(f − fi) +H∗(f + fi), i = 1, . . . ,M , and then low-pass
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filtered with
√

2 cos(2πfit + φ
(1)
i ), i = 1, . . . ,M . Each of

these M outputs are correlated using the local pseudo-noise
sequences. If zi denotes the output of the correlator on the ith
carrier, then we have

zi = Si + Ii + Ji +Ni, (4)

where Si is the desired signal, Ii is the signal due to the other
Ku −1 interfering users, Ji is the contribution due to the jam-
mer and Ni is the output due to AWGN. From ([2], Eqn.(23),
the conditional mean of zi, conditioned upon α(1)

i and d(1)
bn/Nc,

can be obtained as

E[zi|α(1)
i , d

(1)
bn/Nc] = d(1)N

√
Ecα

(1)
i , (5)

where d(1) = ±1 is the corresponding transmitted code sym-
bol.

To obtain the variance of zi, conditioned on α(1)
i , we assume

that the interference from other users, the PBI, and the AWGN
are independent of each other. With this, we have

Var{zi|α(1)
i } = σ2

i

= Var{Ii|α(1)
i } + Var{Ji|α(1)

i } + Var{Ni|α(1)
i }

≈ NRIi
(0) +NRJi

(0) +Nη0/2, (6)

whereRIi
(τ) andRJi

(τ) are the autocorrelation functions of
the interference and jammer, respectively. In Eqn. (6), the ap-
proximation in the last line is due to ignoring the contribution
of RIi

(τ) and RJi
(τ) when τ 6= 0 (see Eqns. (25), (26) and

(27) in [2]). For simplicity, we assume that the Gaussian PBI
overlaps Ks carriers, where 1 ≤ Ks ≤ M . Without loss of
generality, now assume that the first Ks bands are affected by
the jammer. Then we have [2]

σ2
i =

N

2
Ec(Ku − 1)(1 − β

4
) +N

ηJ

2
+
Nη0

2
, i = 1, . . . , Ks,

=
N

2
Ec(Ku − 1)(1 − β

4
) +

Nη0
2

, i = Ks + 1, . . . ,M. (7)

We note that the total jammer power is given by PJ =
ηJKsW1 = ηJW (Ks/M). By defining JSR = PJ/(Ec/Tc)
as the jammer-to-signal power ratio, we can solve for ηJ as
ηJ = JSR × Ec

ρJ (1+β) , where ρJ = Ks/M is the fraction of
the carriers affected by the jammer.

For each code symbol, the M outputs, zm,m = 1, . . . ,M ,
are processed using the maximal ratio combiner (MRC) to re-
sult in an output Z. Since each zm is affected by the fade α(1)

m

and has a noise variance of σ2
m, the MRC weights should be

proportional to α(1)
m /σ2

m to yield maximum signal-to-noise ra-

tio (SNR). Assuming perfect knowledge of {α(1)
m } and {σ2

m}
at the receiver, the output of the MRC, Z, can then be ex-
pressed as

Z =
M
X

m=1

α
(1)
m

σ2
m

zm = d(1)N
√
Ec

M
X

m=1

(
α

(1)
m

σm
)2 + ξ, (8)

where ξ is zero-mean Gaussian with variance σ2
ξ =

∑M
m=1(α

(1)
m /σm)2. The instantaneous SNR random variable,

γ, at the output of MRC is given by

γ =
(E[Z|α(1)

1 , . . . , α
(1)
M ])2

2Var{Z|α(1)
1 , . . . , α

(1)
M }

=
M
X

m=1

[α(1)
m ]2γm, (9)
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Fig. 3. Lower and upper bounds on the average distortion on Rayleigh fading
channels with M = 4 carriers. The channel code rate is fixed to rc = 1/2

and the bandwidth expansion factor is set to 500. Binary convolutional codes
with various constraint lengths are used with an optimum distance spectrum.
The other system parameters are: JSR = 0 dB, ρJ = 0.25, Ku = 10 and
γb = 20 dB.

where γm = N2Ec/(2σ
2
m) is the average signal-to-

interference-plus-noise ratio (SINR) on themth carrier. Using
Eqn. (7) we can simplify γm as

γm =
1

M

rcγb

1 + rc

SF
γb(Ku − 1)(1 − β/4) + rc

SF
γb

JSR
ρJ (1+β)

, m = 1, . . . , Ks

=
1

M

rcγb

1 + rc

SF
γb(Ku − 1)(1 − β/4)

, m = Ks + 1, . . . ,M. (10)

For convenience, we define a = rcγb/M , ∆0 = γb(Ku −
1)(1 − β/4) + γb

JSR
ρJ (1+β) and ∆1 = γb(Ku − 1)(1 − β/4).

Clearly, ∆0 ≥ ∆1 and γm can be expressed in terms of a, ∆0,
∆1, rc and SF as

γm =
a

1 + rc∆0/SF
, m = 1, . . . , Ks,

=
a

1 + rc∆1/SF
, m = Ks + 1, . . . ,M. (11)

A. Frame Error Rate with Convolutional Coding

The MRC outputs, {Zn}, corresponding to a given coded
frame are passed to the deinterleaver and then to the Viterbi
decoder for soft-decision decoding. It is well known that at
high SNR regions, the key performance metric with chan-
nel coding is the pairwise error probability (PEP) between
two codewords [14]. The PEP between two codewords x =
(x1, . . . , xNF

) and y = (y1, . . . , yNF
) which differ in d posi-

tions, when x is the transmitted codeword, is given by

P2(d|α) = Prob

 

NF
X

n=1

(Zn − xn)2 >

NF
X

n=1

(Zn − yn)2
!

= Prob

 

NF
X

n=1

ξn(xn − yn) < −
NF
X

n=1

N
√
Ecxn ×

M
X

m=1

(α(1)
m,n/σm)2(xn − yn)

!

, (12)
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where in the last step of Eqn. (12) we have used Eqn. (8),
NF is the coded frame length of the terminated convolutional
code, and the additional subscript n in α(1)

m,n shows the time
index of the code symbol. Without loss of generality, we as-
sume that the codewords x and y differ in the first d positions.
Then, using the Chernoff bound,Q(x) ≤ 1/2 exp(−x2/2) for
x ≥ 0, we can upper bound Eqn. (12) as

P2(d|α) ≤ 1

2
exp

 

−
d
X

n=1

M
X

m=1

(α(1)
m,n)2γm

!

. (13)

Upon taking the expectation of Eqn. (13) over the distribution
of {α(1)

m,n}, we obtain

P 2(d)E {P2(d|α)} ≤ 1

2

M
Y

m=1

„

1

1 + γm

«d

<
1

2

M
Y

m=1

γ−d
m

=
1

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d, (14)

where Eqn. (11) was used in Eqn. (13). An exact expression
for the frame error rate (FER) for a convolutional code with
soft-decision decoding is difficult to derive, which motivates
us to employ the union bound, as it is sufficiently tight at high
SNRs. A tight upper bound on the FER of a convolutional
code with block lengths larger than the constraint length is ob-
tained in [11], using which we obtain the FER for our system
as

PB ≤
X

d

t(d)P 2(d)

<
X

d

t(d)

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d,(15)

where t(d) is a function of the weight spectrum [14] of the
underlying convolutional code. We are also interested in a
lower bound on the FER, which can be obtained by taking
only the dominant term of Eqn. (15). However, the Chernoff
upper bound on the PEP of Eqn. (14) is no longer useful. A
lower bound on the FER can be obtained as

PB ≥ t(dfree)C(m,dfree)

M
Y

m=1

(1 + γm)−dfree , (16)

where dfree is the free distance of the code, C(m, d) =
1
2πβ

(

Md+ 1
2 ,

1
2

)

, and β(p, q) is the standard beta inte-
gral [18].

III. END-TO-END AVERAGE DISTORTION

We assume that the information source is Gaussian-
distributed with independent and identically distributed source
samples, each with unit variance. If rs denotes the number of
bits-per-source sample, then the average source distortion with
minimum mean square error scalar quantization on a noise-
free channel is given by D(rs) = ε2−2rs , where ε depends on
the quantizer [15]. Note that each coded frame of length NF
contains NF rc/rs source samples. Then, the average distor-
tion per source sample can be written as ([16], Eqn. (10))

D(rs, rc,SF ) = (1 − PB(rc,SF ))ε2−2rs + PB(rc,SF )

≤ ε2−2rs + PB(rc,SF )

≤ ε2−2rs +
X

d

t(d)

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d

4
= Du(rs, rc,SF ), (17)

where the above upper bound is quite accurate in the high
SNR region.

A lower bound on the end-to-end average distortion can
be obtained by first lower bounding the frame error rate,
PB(rc,SF ) by the term with minimum free distance dfree as
PB(rc,SF ) ≥ t(dfree)P2(dfree). With this a lower bound on
the average distortion can be obtained as

D(rs, rc,SF ) ≥ ε2−2rs + t(dfree)P2(dfree)(1 − ε2−2rs )

= ε2−2rs + (1 − ε2−2rs )t(dfree)C(m, dfree)
M
Y

m=1

(1 + γm)−dfree

4
= Dl(rs, rc,SF ), (18)

where in the second step of Eqn. (18) we have used Eqn. (16).

In what follows, we consider both the upper bound and
lower bounds on the average distortion of Eqns. (17) and (18),
respectively, as our objective functions.

IV. OPTIMUM BANDWIDTH ALLOCATION

If we denote by U the number of source samples-per-second
available to the source coder, then the chip rate at the output of
the spread-spectrum modulator is given by Urs

1
rc
SF , which is

limited to W/(1 + β), where W is the spread-spectrum band-
width and β is the excess fractional bandwidth due to Nyquist
chip wave-shaping filtering. That is, the variables rs, rc and
SF are related by rsSF /rc ≤ C0, whereC0 = W/((1+β)U).
The distortion function is given by D(rs, rc,SF ), which can
also be written asD(rs, rc, C0rc/rs). We notice that by fixing
the channel code rate, rc, the distortion can be expressed only
as a function of the source rate rs, together with the bandwidth
constraintC0. In this section, we minimize the objective func-
tions, Du(rs, rc,SF ) of Eqn. (17) and Dl(rs, rc,SF ) of Eqn.
(18), as a function of the source code rate rs.

A. Upper Bound Based Optimal Allocation

With rc fixed, we substitute SF = C0rc/rs in Eqn. (17) and
rewrite Eqn. (17) as a function of only rs as follows:

Du(rs) = ε2−2rs +
X

d

t(d)

2aMd
(1 +

∆0

C0
rs)

dKs(1 +
∆1

C0
rs)

(M−Ks)d. (19)

The first derivative with respect to rs can be obtained as

d

drs
Du(rs) = (−2ε ln 2)2−2rs +

X

d

t(d)

2aMd

(

Ksd∆0

C0
×

„

1 +
∆0

C0
rs

«Ksd−1 „

1 +
∆1

C0
rs

«(M−Ks)d

+
(M −Ks)d∆1

C0
×

„

1 +
∆0

C0
rs

«Ksd„

1 +
∆1

C0
rs

«(M−Ks)d−1
)

(20)



5

By taking the derivative of Eqn. (20) we arrive at

d2

dr2s
Du(rs) = 4ε(ln 2)22−2rs +

X

d

t(d)

2aMd
(1 + ∆0rs/C0)

Ksd(1 + ∆1rs/C0)
(M−Ks)d ×

(

„

Ksd∆0

C0 + rs∆0
+

(M −Ks)d∆1

C0 + rs∆1

«2

−

Ksd∆
2
0

(C0 + ∆0rs)2
− (M −Ks)d∆

2
1

(C0 + ∆1rs)2

)

. (21)

Since 1 ≤ Ks ≤ M , both the terms within (·)2 of Eqn. (21)
are positive. Using (x + y)2 ≥ x2 + y2 for x ≥ 0 and y ≥ 0,
we can simplify Eqn. (21) as

d2

dr2s
Du(rs) ≥ 4ε(ln 2)22−2rs +

X

d

t(d)

2aMd
(1 + ∆0rs/C0)

Ksd(1 + ∆1rs/C0)
(M−Ks)d ×

(

Ksd(Ksd− 1)∆2
0

(C0 + ∆0rs)2
+

(M −Ks)d((M −Ks)d− 1)∆2
1

(C0 + ∆1rs)2

)

(22)

By noting that the expression inside {·} of Eqn. (22) is non-
negative, we conclude that Du(rs) is a convex function of rs.
The optimal 2-tuple is then given by (r∗s , rc, C0rc/r

∗
s), where

r∗s uniquely solves d
drs

Du(rs) = 0.

B. Lower Bound Based Optimal Allocation

By fixing rc, and, as before, substituting SF = C0rc/rs we
express Dlower(·, ·, ·) of Eqn. (18) as a function of only rs.
For convenience, let us define

f(rs)
4
= t(dfree)C(m, dfree)

 

1 +
a

1 + ∆0rs

C0

!−Ksdfree

×

 

1 +
a

1 + ∆1rs

C0

!−(M−Ks)dfree

(23)

so that Eqn. (18) can be expressed as

Dl(rs) = ε2−2rs + (1 − ε2−2rs )f(rs). (24)

Notice that since f(rs) is a lower bound on the frame error
rate, we have 0 ≤ f(rs) ≤ 1. The first derivative of Eqn. (24)
with respect to rs can then be computed as

d

drs
Dl(rs) = −ε(2 ln 2)2−2rs + f(rs)ε(2 ln 2)2−2rs +

(1 − ε2−2rs )
d

drs
f(rs), (25)

where, after some simplification, we can show that

d

drs
f(rs) = f(rs) ×

"

Ksdfreea∆0C0

(C0 + rs∆0)((1 + a)C0 + rs∆0)

+
(M −Ks)dfreea∆1C0

(C0 + rs∆1)((1 + a)C0 + rs∆1)

#

, (26)

which is positive for all rs. Upon setting d/drsDl(rs) = 0
and solving for rs, we arrive at the following implicit equa-
tion:

r∗s =
1

2
log2

0

@

ε×
h

d
drs

f(rs)
˛

˛

rs=r∗

s
+ (2 ln 2)

“

1 − f(rs)
˛

˛

rs=r∗

s

”i

d
drs

f(rs)
˛

˛

rs=r∗

s

1

A .

(27)

Since d
drs

f(rs)|rs=r∗

s
> 0, the argument of the logarithm in

Eqn. (27) is always positive.

V. RESULTS AND DISCUSSION

In this section, we present some numerical results based on
the analysis presented in Sections II-IV. First, Fig. 2 shows
the tightness of the lower and the upper bounds on the PEP on
Rayleigh fading channel with M = 4 carriers. Also shown
is the true PEP, which is numerically evaluated. We conclude
from Fig. 2 that the bounds are sufficiently tight. In particular,
for SNR-per-bit, γb, values less than 15 dB, the upper bound
is within 2 dB of the true PEP.

The lower and upper bounds on the average end-to-end
source distortion, as derived in Section III, are plotted in Fig.
3. For a fixed spread bandwidth and channel code rate, the
average distortion is plotted as a function of the source code
rate. A family of such curves is obtained for varying levels of
channel code complexity, as measured by its constraint length.
We notice from Fig. 3 that i) there exists a source code rate
at which the distortion can be minimized, ii) the minimum
source code rate shifts to the right for increasing values of the
channel code complexity, since a stronger channel code en-
ables the spread-spectrum modulator to use a small value of
the spread factor, iii)the lower and the upper bounds coin-
cide at all rs that are below the rs at which the distortion is
minimized, after which the bounds differ by an order of mag-
nitude. This difference in the lower and the upper bounds can
be explained as follows: Notice that for a fixed channel code
rate with moderate constraint lengths, increasing source code
rate limits the available spread factor. This results in increas-
ing variances for both the MAI and the PBI, which makes the
Chernoff based union upper bound ineffective and is not com-
parable with the dominant term-based lower bound.

In Table I, we present the optimum source code rate, the op-
timum spreading factor, and the resulting average distortion
for various channel code rates. For all the channel codes, the
complexity of the encoder is fixed at a constraint length of 6.
Both lower and upper bounds on the distortion are considered
with the constraint on the bandwidth expansion factor set to
500 (i.e., rs 1

rc
SF = 500). The number of users is fixed at

Ku = 5. From Table I, we observe that both the lower and
the upper bounds result in approximately the same optimum
bandwidth allocation. Table I also indicates that with decreas-
ing channel code rates, it is beneficial to allocate more band-
width to the source coder than to the spread-spectrum modu-
lator. This can be explained as follows: For a given constraint
length, a low rate channel code provides higher free distance,
and hence large diversity order, which, together with the M -
fold diversity provided by the MRC, helps to reduce the bur-
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den on the spread-spectrum modulator in combating the inter-
ference.

The effect of increasing system load (i.e., the number of
users, Ku) on the bandwidth allocation is also investigated.
The results are summarized in Table II, which corresponds to
M = 4 carriers, γb = 20 dB and JSR = 0 dB. The band-
width constraint is set to 500. From Table II, for a given
channel code rate, it is seen that the source code rate has to
be decreased as the number of users increases to allow suf-
ficient processing gain to suppress the additional MAI. Also,
for a given number of users, the best performance is seen to be
achieved at the lowest channel code rate (with the exception
of the lower bound result for Ku = 25 and 50 users, where
the use of a rate 1/3 code yielded slightly better performance
than the use of a rate 1/4 code).

Finally, we compare the performance of a single-carrier
CDMA system employing a RAKE receiver against the per-
formance of a MC-CDMA system in terms of the optimum
bandwidth allocation. We assume that the number of multi-
paths resolved by the SC-CDMA system is the same as the
number of carriers in an MC-CDMA system. Furthermore,
we assume that the multipath fading in SC-CDMA is Rayleigh
distributed with uniform intensity profile. The two systems are
compared by varying the JSR, and the results are tabulated in
Table III. It is evident, from Table III, that the single-carrier
version performs worse than the MC-CDMA system for in-
creasing values of the JSR. Also, as the JSR increases, the
source coding rate is reduced in the SC-CDMA system and
more bandwidth is allocated to spreading in order to combat
the jammer. However, as we notice from the resulting mini-
mum distortion in Table III, even with increasing spread fac-
tor the SC-CDMA cannot reach the performance of the MC-
CDMA. This is due to the fact that no additional signal pro-
cessing is employed in SC-CDMA, apart from a simple RAKE
processing, whereas the MC-CDMA system has effectively
nullified the effect of the jammer using the MRC receiver, in
a simple way, by attenuating all the carriers that are affected
by the PBI. We also note that, by incorporating a notch-filter,
although at a higher complexity, to mitigate the effects of the
jammer, the tradeoff performance of SC-CDMA can be ex-
pected to improve.

VI. CONCLUSIONS

For a fixed total bandwidth expansion factor, and for a fixed
channel code rate, we studied the problem of optimal band-
width allocation between the source coder and the spread-
spectrum unit for an MC-CDMA system operating over a
frequency-selective fading channel with NBI. By assuming a
Gaussian source with the optimum scalar quantizer and a bi-
nary convolutional code with soft-decision decoding, we ob-
tained both a lower and an upper bound on the end-to-end
average source distortion. The optimal bandwidth allocation
was then numerically obtained by minimizing upper and lower
bounds on the average distortion. We have shown that the
upper bound-based cost function is a convex function of the
source code rate, and the optimal allocation depends on the
system and the channel conditions, such as the total number of
active users, the number of carriers, and the average jammer-
to-signal power ratio.

rc Lower Bound Upper Bound
r∗s SF D(r∗s ) r∗s SF D(r∗s )

1
2 9.15 27 1.07 · 10−5 8.40 29 2.68 · 10−5

1
3 10.48 15 1.57 · 10−6 9.69 17 4.23 · 10−6

1
4 10.65 11 1.16 · 10−6 10.18 12 2.11 · 10−6

TABLE I
OPTIMUM SOURCE CODE RATE, SPREADING FACTOR, AND THE MINIMUM

DISTORTION, FOR A FIXED CHANNEL CODE RATE, BASED ON BOTH

UPPER AND LOWER BOUNDS ON THE END-TO-END AVERAGE

DISTORTION. NUMBER OF SUB-CARRIERS M = 4. THE JSR IS 10 DB

WITH THE JAMMER COMPLETELY OVERLAPPING ONE SUB-CARRIER (I.E.,

Ks = 1). Ku = 5, γb = 10 DB AND FRAME LENGTH = 500 BITS.
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rc Ku Lower Bound Upper Bound
r∗s SF D(r∗s ) r∗s SF D(r∗s )

1
2 5 10.30 24 2.146 · 10−6 9.66 25 4.776 · 10−6

10 7.93 31 4.536 · 10−5 7.20 34 1.104 · 10−4

25 5.26 47 1.481 · 10−3 4.43 56 3.909 · 10−3

50 3.65 68 1.203 · 10−2 2.79 89 3.142 · 10−2

1
3 5 11.75 14 2.658 · 10−7 11.06 15 6.410 · 10−7

10 8.93 18 1.081 · 10−5 8.15 20 2.836 · 10−5

25 5.87 28 6.197 · 10−4 5.00 33 1.754 · 10−3

50 4.08 40 6.598 · 10−3 3.18 52 1.851 · 10−2

1
4 5 11.98 10 1.805 · 10−7 11.56 10 3.095 · 10−7

10 8.96 13 9.805 · 10−6 8.49 14 1.751 · 10−5

25 5.75 21 6.939 · 10−4 5.21 23 1.312 · 10−3

50 3.90 32 7.935 · 10−3 3.33 37 1.516 · 10−2

TABLE II
OPTIMUM SOURCE CODE RATE, SPREADING FACTOR, AND THE MINIMUM

DISTORTION, FOR A FIXED CHANNEL CODE RATE, BASED ON BOTH

UPPER AND LOWER BOUNDS ON THE END-TO-END AVERAGE

DISTORTION. THE OTHER SYSTEM PARAMETERS ARE AS FOLLOWS:

SNR-PER-BIT, γb = 20 DB, JSR = 0 DB, ρJ = 0.25. THE BANDWIDTH

CONSTRAINT, C0 , IS SET TO 500. THE CONSTRAINT LENGTH OF THE

CHANNEL CODE IS FIXED TO 6.

rc JSR MC-CDMA SC-CDMA
(dB) r∗s SF D(r∗s ) r∗s SF D(r∗s )

1
2 0 9.66 25 4.776 · 10−6 9.85 25 3.710 · 10−6

10 8.40 29 2.668 · 10−5 7.90 31 4.458 · 10−5

20 7.72 32 7.530 · 10−5 3.14 79 0.02012
25 7.65 32 8.540 · 10−5 1.31 190 0.1995

1
3 0 11.06 15 6.410 · 10−7 11.27 14 4.778 · 10−7

10 9.69 17 4.233 · 10−6 8.97 18 9.735 · 10−6

20 9.04 18 1.126 · 10−5 3.57 46 0.0112
25 8.97 18 1.258 · 10−5 1.52 108 0.1502

1
4 0 11.56 10 3.095 · 10−7 11.79 10 2.276 · 10−7

10 10.18 12 2.114 · 10−6 9.35 13 5.673 · 10−6

20 9.55 13 5.401 · 10−6 3.73 33 0.009006
25 9.49 13 5.988 · 10−6 1.62 77 0.13402

TABLE III
COMPARISON BETWEEN SC-CDMA WITH A RAKE RECEIVER AND

MC-CDMA FOR THE SAME SYSTEM BANDWIDTH AND CHANNEL CODE

RATE. THE NUMBER OF CARRIERS IN MC-CDMA SYSTEM IS SET TO 4

WHEREAS AN EQUAL NUMBER OF MULTIPATH COMPONENTS, WITH I.I.D

RAYLEIGH FADING, ARE ASSUMED TO BE RESOLVED BY THE

SINGLE-CARRIER CDMA SYSTEM. AN UPPER BOUND ON THE AVERAGE

DISTORTION IS MINIMIZED AND THE RESULTING OPTIMAL ALLOCATION

IS TABULATED. THE OTHER SYSTEM PARAMETERS ARE AS FOLLOWS:

SNR-PER-BIT, γb = 10 DB, ρJ = 0.25 AND Ku = 5. THE BANDWIDTH

CONSTRAINT, C0 , IS SET TO 500. THE CONSTRAINT LENGTH OF THE

CHANNEL CODE IS FIXED TO 6.


