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Abstract—Optimization of multimedia transmissions over
wireless channels should be aimed at maximizing the video
quality perceived by the final user. For transmission of video
sequences over an orthogonal frequency division multiplexing
(OFDM) system in a slowly varying Rayleigh faded environment,
we develop a cross-layer technique, based on a slice loss visibility
(SLV) model used to evaluate the visual importance of each
slice. In particular, taking into account the visibility scores
available from the bitstream, depending on the scenario, we
optimize the mapping of video slices within a 2-D time-frequency
resource block and/or the channel code rates, in order to better
protect more visually important slices. The proposed algorithm
is investigated for several scenarios, with different levels of infor-
mation about the channel available in the optimization process.
Results demonstrate that, for different physical environments and
different video sequences, the proposed algorithm outperforms
baseline ones which do not take into account either the SLV or
the CSI in the video transmission.

Index Terms—Slice loss visibility, channel coding, cross-layer
design, diversity, multimedia communications, orthogonal fre-
quency division multiplexing (OFDM).

I. INTRODUCTION

S INCE cross-layer optimization schemes can improve the
quality of experience (QoE) by optimizing the network

architectures across traditional OSI stack layers, such tech-
niques have been under intense research as primary strategies
for adaptation to dynamic channel conditions [1]–[3]. A well-
performing cross-layer optimization design strongly depends
on an efficient QoE metric, that faithfully reflects the level of
quality experienced by the user [4]. This has led researchers to
investigate objective metrics able to assess the visual quality
of wireless video communication [5]. One approach is the
evaluation of a set of simple metrics which can provide a level
of priority of the encoded slices to be used in the optimiza-
tion problems. When fine-grain scalable video sequences are
considered, each bit of the encoded enhancement bitstream
within a frame is more important than the subsequent bit,
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and the level of priority is intrinsic in the encoding process.
By adopting unequal error protection (UEP), a more reliable
transmission is offered to the more important bits, and the
QoE can be improved compared with an equal error protection
(EEP) system [6]–[8].

For non-scalable video sequences, assigning priority levels
to portions of the compressed bitstream is more challenging,
as it is not the simple case that earlier bits are more important
than later ones. In [9], the authors optimized a H.264 flex-
ible macroblock ordering (FMO)-based classification of the
macroblocks with a jointly optimal channel rate allocation.
The final goal was to exploit and improve the error resilience
features of an H.264/AVC codec, when video sequences
were transmitted over erasure channels. Rather than operating
at the source encoder, in [10], rate-compatible punctured
convolutional (RCPC) code rate allocation was optimized for
non-scalable pre-encoded video sequences transmitted over
error-prone channels. The authors proposed a low-complexity
algorithm, which optimized the RCPC rate per packet using
the subgradient method to search in the dual domain, mini-
mizing the distortion of the video sequence transmitted over
additive white Gaussian noise (AWGN) channels. In both these
works, the mean square error (MSE) induced by a packet loss
was considered as the metric for the cross-layer optimization.
As in [10], we aim at optimizing the RCPC channel code
rates for non-scalably encoded video sequences. Our goal is
to propose a cross-layer technique to optimize the QoE metric,
without any change to the source encoder.

When dealing with QoE metrics, an important aspect is the
relation between the distortion metric and the packet losses
[11], [12]. This relation usually depends on many parameters
(e.g., the coding scheme, the bit rates and the network archi-
tectures), which are not always included in distortion metrics.
A great part of the effort to understand the visual impact of
packet losses has been focused on modeling the mean quality
of videos as a function of average packet loss rate (PLR)
[13]–[15]. However, PLR can provide wrong interpretations of
video quality since packet losses are perceptually not equal. In
[16], [17], the authors studied the problem of predicting packet
loss visibility for non-scalable compressed video, and they
proposed a metric able to predict the probability that a slice
loss is visible by a final user. The proposed slice loss visibility
(SLV) score can be viewed as priority level information for
non-scalably encoded video slices, which can be employed in
cross-layer optimization techniques. In [17], the SLV model
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was used to design a policy for perceptual-quality based packet
discarding. An intermediate router in a congested network,
for example, might employ the SLV metric to decide which
packets should be dropped to minimize degradation in the
quality of the transmitted video streams.

In this paper, we aim at maximizing the QoE of a non-
scalable bitstream when the compressed video sequence is
transmitted over a frequency selective orthogonal frequency
division multiplexing (OFDM) network. Based on the informa-
tion available from the feedback channel and the application
layer, we propose a technique that jointly groups the encoded
bitstream into packets, optimizes the channel code rate for
each packet, and maps the encoded slices into the 2-D resource
block (RB). The proposed algorithm can be applied to a
multitude of scenarios, from point-to-point communication,
in which both channel state information (CSI) and SLV
information are available at the transmitter, to a broadcasting
scenario, in which the CSI will not be available in the feedback
channel. At the same time, based on the SLV and the physical
environment, the cross-layer algorithm might select a UEP or
an EEP profile as the best choice.

The main goals of this work are the following:
i) to demonstrate that the SLV model can improve the system
design and optimization;
ii) to provide a study from which a system designer is able
to select the best mapping and forward error correction (FEC)
profile based on the considered scenario;
iii) to examine the performance gain of three algorithms that
have increasing levels of complexity.

The remainder of this paper is organized as follows. In
Section II, we describe some technical preliminaries, including
the basics of SLV and OFDM systems. In Section III, we
discuss the proposed cross-layer diversity approach, and the
associated tradeoff issues. The theoretical problem formulation
is described in Section IV. In Section V, we provide simulation
results and discussion, and we conclude in Section VI.

II. PRELIMINARIES

In the following, we provide a brief introduction to the SLV
metric and a description of the system model.

A. Slice Loss Visibility Overview

We consider a non-scalable video encoder and assume that
each frame is divided into Ns slices (each slice consists of a
constant number of macroblocks), as depicted in Fig. 1. The
priority level of each slice is determined by the SLV model
which estimates the quality degradation the video experiences
when that slice is lost. The SLV model was introduced in
[17] as a bitstream-based metric for non-scalable compressed
video. Bitstream-based metrics predict video quality using
packet header information and limited information from the
encoded bitstream, such as motion vectors, but do not involve a
full decoding or pixel-level reconstruction of the video source.
The authors conducted subjective tests in which the viewers’
task is to indicate when they observe a packet loss artifact.
From these tests, an SLV metric was proposed with the goal of
predicting whether a packet loss in the video stream is visible
to a viewer. Note that, in [17], one of the factors in the packet
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Fig. 1. Slice structure for the kth frame of a video sequence.

loss visibility model is called “SpatialExtent” and it refers to
the spatial extent of the loss caused by the loss of this packet.
In our work, we use the visibility model to give us a score for
one slice at a time (we define a slice as one horizontal row
of macroblocks), in which case this factor is identical for all
slices, and the packet loss visibility model of [17] becomes our
SLV model. The proposed SLV scores provide priority level
information for non-scalably encoded video slices, which we
will employ in our cross-layer optimization techniques.

In our model, the ith slice of frame k is encoded into Lk(i)
bits and has a priority level Vk(i). The Vk(i) values range from
0 to 1, where Vk(i) = 0 means that the slice, if lost, would
produce a loss artifact glitch that would likely not be noticed
by any observer, and Vk(i) = 1 means that the loss artifact
would likely be seen by all users. So, each encoded slice is
characterized by the pair (Vk(i), Lk(i)), for i = 1, . . . , Ns and
k = 1, . . . , NF, where NF is the number of frames per group
of pictures (GOP).

B. System Model

The video sequences are transmitted over frequency-
selective OFDM channels, and we use a block fading channel
model to simulate the frequency selectivity [18]. In this model,
the spectrum is divided into blocks of size (Δf)c. Subcar-
riers in different blocks are assumed to fade independently;
subcarriers in the same block experience identical fades. As
illustrated in Fig. 2, we assume an OFDM system with an
overall system bandwidth WT, such that we can define N
independent subbands. Each subband consists of M correlated
subcarriers spanning a total bandwidth of (Δf)c. The total
number of subcarriers in the OFDM system is Nt = N × M .
Often, the maximum achievable frequency diversity Df is
given by the ratio between the overall system bandwidth WT

and the coherence bandwidth (Δf)c.
In the time domain, the channel experiences slow fading,

so that a constant fade per packet is considered. Although
there is no time diversity to exploit by using channel codes,
coding gain can still be obtained, and a concatenation of
cyclic redundancy check (CRC) codes and RCPC codes are
applied to each transmitted packet. We assume that the fading
gain hi experienced by the ith subcarrier is distributed as a
complex Gaussian random variable with mean zero and vari-
ance σ2

h per dimension. We denote the instantaneous signal-
to-noise ratio (SNR) experienced by the ith subcarrier by
γi = |hi|2Es/N0, i = 1, . . . , Nt, which will be constant over
the whole subband (i.e., γi = γj if the ith and jth subcarriers
are within the same subband). Note that Es is the transmitted
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Fig. 2. OFDM spectrum.

symbol energy, and N0/2 is the two-sided spectral density of
the AWGN. The RB will experience a constant mean SNR,
which is denoted by γ = E

{|h|2}Es/N0 = 2σ2
hEs/N0,

where E {·} denotes the statistical expectation (evaluated over
the fading).

C. Scenarios Considered

We now describe the possible scenarios considered in our
work and listed in Table I. In particular, we focus on the avail-
ability of instantaneous CSI and SLV parameters. We consider
all possible combinations of knowing the instantaneous CSI
and not the SLV, knowing the SLV and not the instantaneous
CSI, knowing both pieces of information, or knowing neither.
If one knows neither (Table line 0), the algorithm corresponds
to our baseline approaches (sequential and random) which are
described later.

In Fig. 3, a schematic description of the proposed algorithm
is depicted to show how the SLV and CSI information might
be employed in the optimization scheme. While a detailed
characterization of the cross-layer algorithm is provided in
the next section, the main point is that if the sender has at
least one of the two types of information, then the algorithm
can exploit the information. In particular, we consider two
types of exploitation: the first is UEP FEC (using different
RCPC channel code rates for different slices, or for different
subcarriers) and the second is slice-to-subcarrier mapping, in
which the algorithm maps the visually more important slices
to the better subcarriers. Note that the UEP FEC could, in
principle, make use of the information of either the SLV or the
instantaneous CSI, or both. That is, heavier error protection
could be provided to specific slices (because they are more
important) or to specific subcarriers (because they are not
reliable). In contrast, the slice-to-subcarrier mapping operation
requires both the SLV and instantaneous CSI information. If
the instantaneous CSI is available from the feedback channel,
the subcarriers of the RB can be ordered from the most reliable
to the least reliable, and if in addition the SLV information
is available, then the most important slices (highest SLV
parameter) can be allocated (mapped) to the most reliable
subcarriers.

So, lines 2, 3, 5 and 6 in Table I are marked as impossible
because the slice-to-subcarrier mapping can only be done if
you know both pieces of information. Line 1 of the table
is skipped as we are not interested in the case where the
SLV is not known. Line 7 of the table is skipped because,
knowing both pieces of information, it seems more sensible
to use the information for mapping (Line 8) or for both UEP
and mapping (Line 9). Accordingly, this paper considers the

scenarios corresponding to lines 4, 8, and 9 of the table, which
are referred to as Scenarios A, B, and C, respectively, in
addition to the two baseline algorithms in line 0.

Scenario A covers channels such as a broadcast and/or
fast fading, where instantaneous CSI is not available. This
means that the “Subcarrier Ordering” step in Fig. 3 of the
optimization algorithm cannot be done. However, the SLV
information is known, and provides priority levels to the slices
that should be mapped in the RB. So we use UEP to ensure
that the most visible slices (i.e., slices which, if lost, are most
likely to produce a visible glitch) will be transmitted over
subcarriers protected with the lowest RCPC code rate.

In Scenarios B and C, we would like to see the gain of
a cross-layer optimization when both the SLV and the CSI
are available at the transmitter. This would be the case for
point-to-point communications. In both Scenarios B and C,
instantaneous CSI is exploited to order subcarriers from best
to worst. Scenario B is the lower complexity algorithm, where
the more important slices (in order) are allocated to better
subcarriers (in order). To keep the algorithm simple, we do
not consider UEP; all subcarriers have the same RCPC code
rate. In Scenario C, at the cost of increasing optimization
complexity, we investigate a joint UEP profile-slice mapping
optimization.

D. VQM versus SLV

The Video Quality Metric (VQM) is a standardized full-
reference method of objectively measuring video quality con-
sidering both coding artifacts and transmission errors [19]. It
measures the perceptual effects of a broad range of quality
impairments, including blurring, jerky or unnatural motion,
global noise, block distortion, color distortion and packet loss.
It has been adopted by the ANSI as a U.S. national standard
and as an international ITU Recommendation and has been
shown to be better correlated with human perception than
other full reference video quality metrics. The output scores
range from 0 (best quality) to 1 (worst quality). In this work
we use VQM to evaluate the quality of our output video
sequences.

Evaluating the average VQM score for a particular encoding
configuration requires passing the encoded video over many
simulated realizations of the channel, decoding the video,
and putting the resulting video, together with the original,
into the VQM metric calculation. As a design algorithm to
choose the best encoding configuration, this evaluation with
multiple realizations of the channel is time consuming. So
we also consider an approach in which the algorithm design
involves optimizing a weighted SLV score (which can be
done numerically, without channel realizations and decoding
operations) rather than optimizing for the VQM. However, it
is important to note that, even when the design of the encoding
configuration is based on weighted SLV, the final performance
evaluation is always based on VQM.

III. DESIGN ALGORITHM BASED ON OPTIMIZING VQM

The main steps of the proposed algorithm are applied to
each GOP of the video sequences. Since the number of bits
in which a single frame is encoded might be considerably
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TABLE I
INVESTIGATED SCENARIOS AND ASSOCIATED OPTIMIZATION SCHEMES.

Available Information Algorithm includes
instantaneous CSI SLV FEC-UEP Slice/Subcarrier

Mapping
0 Baselines: sequential, random
1 X X Skip
2 X X impossible
3 X X X impossible
4 X X Scenario A
5 X X impossible
6 X X X impossible
7 X X X Skip
8 X X X Scenario B
9 X X X X Scenario C

different (e.g., the number of bits for an I-frame will be greater
than the number required for a B-frame), assuming a constant
RB for each frame would not make good use of available
resources. Instead, we adopt a fixed-sized 2D time-frequency
RB for each GOP. This cross-layer choice corresponds to a
very common approach in application-layer video rate control,
in which the number of bits allocated to individual frames is
allowed to vary, but the number of bits given to each GOP is
held roughly constant.

As illustrated in Fig. 3, the current GOP is processed
by a joint mapping/coding step. In our notation, NF frames
form a GOP; each frame is divided into Ns slices. After
the optimization algorithm, groups of slices are allocated to
packets. Then, each packet will consist of one or more slices
plus the FEC added by the RCPC code and the bits added by
the CRC code. It should be noted that information bits and
CRC/RCPC parity symbols would be interleaved in an actual
system. However, for illustration, we show the de-interleaved
version so that the relative amounts of parity symbols and
information symbols can be depicted. After channel coding,
packets have constant length (equal to Lm modulated symbols)
and will be assigned to a subcarrier. Then, for each RB, Nt

packets will be transmitted on Nt subcarriers.
Note that the mapping of the slices into the RB and

the channel code rate optimization are mutually dependent
processes. The best FEC profile for the RB depends on the
SLV parameters for the slices within each packet. On the
other hand, the mean SLV for a packet depends on how
many information bits get allocated to the packet, and thus
it depends on the channel code rates adopted for the RB.
This joint allocation/coding step is the focus of our work. We
propose an algorithm able to allocate the slices of each GOP
and evaluate the optimal RCPC profile by taking into account
the SLV, the channel model parameters, and either the
frequency diversity order (Scenario A) or the instantaneous
CSI (Scenarios B and C). The proposed method can be
described with the following steps.

Step 1: Slice Ordering and Grouping
We order all the NF ×Ns slices of the GOP and divide them
into Kv groups based on the SLV parameter. The first group
(Λ1) contains the most visible slices and the last one (ΛKv)
contains the least visible slices. Equally spaced thresholds
in the range [0,1] are chosen to divide the slices into Kv

groups.

Note that the slice grouping will be applied in both
Scenarios A and C, while Scenario B might be considered as
a degenerate case in which Kv = 1, and Step 1 reduces to
slice ordering.

Step 2: Subcarrier Ordering
Information about the fading gain, if available, is exploited
in this step. The subcarriers of the 2-D RB are ordered
from the most reliable to the least reliable. Denoting by
γγγ = [γ1, γ2, . . . , γNt ] the SNR information available in the
feedback channel (Scenarios B and C), the subcarriers are
ordered in such a way that γsort,1 ≥ γsort,2 ≥ . . . ≥ γsort,Nt ,
where γγγsort = [γsort,1, . . . , γsort,Nt ] is the ordered SNR vector.
When Scenario A is considered, since no instantaneous CSI
is available at the transmitter, the subcarriers are not ordered.

Step 3: Mapping and RCPC code rate optimization
Slices within each group are given the same protection; we
assign a single RCPC code rate for each group. We seek the
best rate vector rrr∗ = [r1, r2, . . . , rKv ], where rj denotes the
RCPC code rate assigned to the slices within group Λj . That
is, all slices in the jth visibility group will be allocated to
packets encoded with a code rate rj . We use Ri to denote
the RCPC code rate for the ith subcarrier or packet. 1 As
depicted in Fig. 4, where Step 3 is described in detail, if the
ith packet contains slices from group Λj , then Ri = rj .

Step 3 involves repeatedly cycling through the following
three phases:

a) Among all the possible FEC profiles, select a rate vector
rrr to be evaluated.

b) Based on both the information about the channel (either
instantaneous CSI or frequency diversity order, depending on
the scenario) and rrr, the slices of each group will be allocated
to subbands. For example, assuming that the group Λ1 needs to
be allocated to the RB, the first m subcarriers will be occupied
by the group Λ1, and each one of these m packets will be
protected with an RCPC code rate Ri = r1, for i = 1, . . . , m,
plus the CRC code. The number of subcarriers in which group

1Since the CRC code will assign a constant number of bits per subcarrier,
from here onwards, in the optimization description we will only refer to the
RCPC channel code rate.
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Fig. 3. Slice ordering and subcarrier mapping. Note that the CRC/RCPC parity symbols are interleaved with the information symbols in an actual system.

Λ1 is allocated has to meet the following constraint
∑

k:Vk∈Λ1

Lk(i) ≤ m × Lp × r1

where Lp = Lm log2(Mod), where Mod is the constellation
size of the adopted modulation (QPSK in our case, constant
for all the RBs), and Lp × r1 is the number of information
bits per subcarrier. The first group will be allocated to the
first m subcarriers, and the other groups will be sequentially
allocated within the RB. Note that for Scenarios B and C,
this allocation choice allows us to map the most important
slices to the most reliable channels. For the case in which
instantaneous CSI is not available (Scenario A), we use simply
a sequential mapping. This step is considered for all Kv

groups. It is worth noting that the visibility model is applied
to one slice (one horizontal row of macroblocks) at a time.
The slice is then allocated to a position in the resource block.
Wherever possible, we try to allocate the entire slice in a given
subcarrier, but if it has too many bits, then it may spill over to
another subcarrier. In particular, if the first part of the slice is
allocated in the jth subcarrier, the remaining bits of the slice
will be allocated in the next subcarrier, i.e., the (j+1)th one in
the SNR vector γγγ for Scenario A and the (j + 1)th one in the
ordered SNR vector γγγsort for Scenarios B and C. Moreover, if
the number of bits in the GOP is greater than the number of
information bits available in the RB, randomly chosen slices

from the least important group are dropped. We use the word
“dropped” or “discarded” to describe slices which are pre-
emptively dropped by the encoder because the RCPC code
rate profile does not allow all the information bits to fit in the
RB, whereas we use the word “lost” to describe slices which
are allocated to the RB but which fail to be decoded correctly
at the receiver. Both dropped and lost slices are concealed at
the decoder.

c) Once the slices are allocated within the RB, based on the
chosen FEC profile rrr, we evaluate the mean VQM score by
simulating 1000 random realizations of the channel. The mean
VQM score is then compared with the best one, VQMbest.

2 If
VQM(rrr) < VQMbest, then the best VQM is updated.

The phases a, b, and c are repeated for all the possible
FEC profiles considered in the optimization process. With this
algorithm, the best FEC profile is chosen for each GOP of the
video sequence (GOP-by-GOP optimization). Alternatively, if
the final goal of the proposed method is to choose the RCPC
channel code rate profile able to maximize the mean quality
of the whole video sequence, Step 1 and Step 2 are repeated
for all the GOPs of the sequence. Then, for each rrr in Step
3a, each GOP is mapped into a RB (Step 3b), and then, the
VQM is evaluated for the whole video sequence (Step 3c). It is
worth noting that using the GOP-by-GOP optimization rather

2As an initial value, we set VQMbest = 1.
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than the whole video sequence optimization, one increases the
algorithm complexity but substantially decreases the latency
and increases the performance.

IV. OPTIMIZATION OF SLV SCORE

In the previous section, we considered an optimization
aimed at minimizing the VQM score. This implies that, for
each RCPC profile, we need to simulate many realizations of
the RB transmission, decode the received video sequences,
and evaluate the average quality of the received bitstream in
terms of VQM. A simpler optimization would be one in which
the best RCPC code rate is the one maximizing a weighted
SLV. Here we view SLV as an importance score, and we
want to maximize a quantity which takes into account the
importance of the slices being received, weighted by their
probability of being received. In this way, the mapping/coding
optimization would involve a calculation involving the SLV
and channel characteristics, but would not require multiple
channel realizations and multiple decodings of the video
source.

When the channel coding optimization is based on the SLV,
and instantaneous CSI is available at the receiver, the problem
formulation is the following. This formulation is provided for
whole-sequence optimization, but it can be easily extended to
the GOP-by-GOP optimization. Using Btot to denote the total

number of bits which can be transmitted in each RB, we aim
to determine the best RCPC code rate profile. Consider N
i.i.d. subbands, each with M subcarriers, and packet size for
the jth subcarrier equal to lj bits before channel coding using
RCPC/CRC codes. The constraint on the bit budget/packet can
be written as

Nt∑
j=1

lj + Bcrc

Rj
≤ Btot (1)

where Bcrc is the bit budget allocated in each packet for the
CRC codes, Rj is the channel code rate of the RCPC on the
jth subcarrier, and Btot is the total bit budget of the RB. The
slices, ordered by decreasing SLV, are characterized by the
pair (Vk, Lk). To describe the allocation process, we introduce
a mapping function αααj which allows us to know which
slice has been allocated to the jth subcarrier. In particular,

αααj =
[
a
(j)
1 a

(j)
2 . . . a

(j)
(NF×Ns)

]T

, with j = 1, . . . , Nt, and

a
(j)
k = 1 if the kth slice is allocated to the jth subcarrier,

and a
(j)
k = 0 otherwise. For Scenario B, the most important

slices are allocated to the most reliable subbands. This means
that the mapping function depends on the instantaneous SNR
experienced by the RB, i.e. αααj = αj(γγγ)αj(γγγ)αj(γγγ), ∀j ∈ [1, Nt],
where γγγ = [γ1, . . . , γNt ] is the SNR vector and γj is the
instantaneous SNR experienced by the jth subcarrier. Note
that the mapping function αααj depends not only on γj , but also
on the SNR vector, since the mapping function compares the
instantaneous SNR of the jth subcarrier with the instantaneous
SNRs of the other subcarriers. So, the bit budget constraint
in (1) can be written as

Nt∑
j=1

LLL ·αααj(γγγ,rrr) + Bcrc

Rj
≤ Btot = Lp × Nt (2)

where LLL = [L1, L2, . . . , LNF×Ns ].
Considering the constraint in (2), for the whole-sequence

optimization, the best RCPC profile is given by rrr�(γ), where

rrr�(γ) = arg max
rrr

{WSWSWS(γ,rrr)} (3)

and WSWSWS(γ,rrr) is the weighted SLV for the video sequence,
for a given mean SNR γ and a given UEP profile rrr. We use
Ngop to denote the number of GOPs in the video sequence,
and WSl(γ,rrr) to denote the weighted SLV score for the lth
GOP of the video. Given the vector of instantaneous SNRs
per subcarrier γγγ and the imposed UEP profile rrr, WSl(γ,rrr)
is defined by

WSl(γ,rrr) =
Nt∑
j=1

VVV ·αααj(γγγ,rrr) · [1 − pj(γj , Rj)] ,

∀l ∈ [1, . . . , Ngop] (4)

where VVV = [V1, V2, . . . , VNF×Ns ], γγγ = [γ1, . . . , γNt ], and
pj(γj , Rj) is the probability of losing the jth subcarrier, which
experiences an instantaneous SNR of γj and which has been
protected with an RCPC code of rate Rj . The decision of
which RCPC rate to adopt in a given subcarrier depends on
the mapping function αααj(γγγ,rrr).

Averaging WSl(γ,rrr) over the fade vector γγγ, we obtain
WS l(γ), which is the weighted visibility score for the lth
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TABLE II
VALUES OF p(γ, R), THAT IS THE PACKET LOSS RATE ON A CONDITIONAL AWGN CHANNEL WITH SNR EQUAL TO γ AND RCPC CODE RATE EQUAL TO

R.

������γ(dB)
R 8

8
8
9

8
10

8
12

8
16

8
20

8
24

2 1 1 1 1 0.89 0.12 5 × 10−3

4 1 1 1 0.90 0.03 2 × 10−4 4.8 × 10−5

6 1 0.99 0.54 0.04 1.1 × 10−4 < 10−6 < 10−6

8 1 0.06 6.3 × 10−3 1.5 × 10−4 < 10−6 < 10−6 < 10−6

10 0.98 2.5 × 10−4 7.5 × 10−5 < 10−6 < 10−6 < 10−6 < 10−6

GOP, for a specific mean SNR γ and UEP profile rrr. Then,
the optimization problem in (3) can be formulated as

rrr�(γ)= arg max
rrr

⎧⎨
⎩

1
Ngop

Ngop∑
l=1

WSl(γ)

⎫⎬
⎭ (5)

= arg max
rrr

⎧⎨
⎩

1
Ngop

Ngop∑
l=1

Eγγγ

⎧⎨
⎩

Nt∑
j=1

VVV ·αααj(γγγ,rrr)·[1−pj(γj , Rj)]

⎫⎬
⎭

⎫⎬
⎭

given the overall bit budget constraint in (2).

V. RESULTS

We carried out simulations on videos of 10s duration, coded
at R = 600 kbps using the H.264/AVC JM codec with
SIF resolution (352 × 240), and with Motion-Compensated
Error Concealment (MCEC) as used in [20], implemented
in the decoder. For brevity, we provide results for two se-
quences: “LowMot”, and “HighMot”. “LowMot” is an almost
static video, while “HighMot” has higher motion and several
scene changes. We used the IBBP encoding structure with
I-frames every 24 frames. There are Nt = 128 OFDM
subcarriers in total. The RCPC codes of rates Rrcpc ={

8
8 , 8

9 , 8
10 , 8

12 , 8
16 , 8

20 , 8
24

}
were obtained by puncturing an

Rc = 1/3 mother code with K = 7, p = 8 and generator
polynomials (133, 165, 171)octal with the puncturing table
given in [21]. QPSK modulation is considered and a slow,
block fading channel is assumed. Thus, each subcarrier j will
experience a channel fading gain γj that is constant for the
whole packet duration. This means that the experienced PLR is
equal to the one experienced by a conditional AWGN channel
with γj and Rj as SNR and RCPC code rate, respectively. In
Table II, values of the PLR are provided for several values of
γ and for the set of RCPC rates considered in our simulations.
To evaluate the conditional PLR provided in the table, for each
given γ and channel code rate, we simulate several channel
realizations. We selected the number of these realizations such
that PLR values greater than 10−6 can be evaluated with high
precision. The packet size after the RCPC/CRC coding was
set equal to 588 bytes, i.e., Lm = (588 · 4) QPSK modulated
symbols, such that Lm×Ts ≈ 24/30s (to respect the constraint
of 30 fps), where Ts is the symbol period. Due to the imposed
constraint, the packet length after the RCPC encoding cannot
be greater than Lm modulated symbols. However, for some
subcarriers, the number of total bits allocated might be lower
than the number of bits that the subcarrier can support. In
this case, we use zero padding, in order to have all packets
with the same length after the channel coding. Results are
provided in terms of the VQM.

For comparison, we consider two baseline algorithms: Se-
quential and Random. In both of these, we assume that slice
importance is not known, and so no packet is more important
than another. Thus, EEP is considered for the RCPC coding.

The Sequential algorithm sequentially allocates the slices
of each frame to the RB. This means that the first slice of the
first frame of the considered GOP will be allocated to the first
subcarrier. When no more information bits are available in
the first subcarrier, the algorithm starts allocating the current
frame to the next subcarrier. Once the slices of the first frame
of the GOP are allocated, the second frame is considered. The
Random algorithm allocates each slice of the GOP to a random
position of the RB.

For the visibility-based model in Scenarios A and C, we
used 6 visibility groups for the slices (i.e., Kv = 6) and
considered all possible combinations of RCPC code rates for
the 6 groups. In the plots which have RCPC code rate on the x-
axis, the x-coordinate of each plotted value represents the EEP
code rate for the random and sequential methods, as well as for
the visibility-based Scenario B which also uses EEP. However,
for the visibility-based methods in the remaining scenarios
which use UEP, the x-coordinate represents the average rate
(that is, it is the ratio of the number of information bits to
the total bits for the whole sequence). Since a slow fading
scenario is considered, we take fnd = 10−4 throughout this
paper, where fnd is the normalized Doppler spread (i.e., its
inverse is the coherence time of the channel, expressed in units
of symbols). This choice means that there is no time diversity.

In the following figures, we illustrate the proposed channel
coding optimization under different fading environments, and
the gain that it can achieve in terms of VQM score, when
compared to baseline algorithms. We begin by studying the
three considered scenarios, providing results for the sequential,
the random and the visibility-based algorithm, for different
mean SNRs, for both the cases of GOP-by-GOP optimization
and whole-sequence optimization. The first results are for
the “HighMot” sequence, when the optimization algorithm
is aimed at minimizing the VQM score. Then we show
how the visibility-based method performs for different video
sequences. We show the optimization based on the weighted
visibility score for Scenario B, and show the optimized results
for different SNRs, different numbers of correlated subcarriers,
and numbers of total subcarriers.

We first compare the visibility-based and the baseline al-
gorithms for whole sequence optimization. Fig. 5 depicts the
VQM vs. the mean RCPC rate when “HighMot” is transmitted
over a system with SNR = 16 dB and (N, M) = (32, 4). The
diversity order experienced by the system in the frequency
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Fig. 5. VQM vs. Rrcpc for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with SNR = 16 dB,
(N, M) = (32, 4). “HighMot” video is considered.

domain is Df = 4. The visibility-based algorithms were
tested for all three scenarios. We observe that the best RCPC
profiles for the visibility-based algorithms (the best is the
one that produces the lowest VQM value) lead to VQM
scores which are better (lower) than the best VQM provided
by the sequential or random methods. For Scenario A, this
means that, even if no instantaneous CSI is assumed in the
optimization algorithm, there is a UEP level able to outperform
the baseline algorithms. In the literature, a VQM gain of 0.1
is considered to be a significant improvement, and the gain in
Fig. 5 is about 0.04, reached with the best UEP rate vector
rrr∗ = [8/18 8/12 8/9 8/9 8/9 8/9]. Note that Scenario A with
EEP results in the sequential algorithm. This means that the
best VQM achieved by the Scenario A is lower than or equal
to the best VQM of the sequential algorithm. However, among
all the possible UEP profiles, some of them can lead to a VQM
worse than the one achieved by the EEP (i.e., the sequential
algorithm). For example, a UEP profile which includes ex-
cessive protection for the most important slices can force too
many of the unimportant slices to be dropped, resulting in
worse performance than EEP. However, the best UEP profile
always outperforms the EEP. This behavior is shown in the
figure for mean RCPC rates lower than 0.7. Taking into
account the instantaneous CSI in the algorithm (Scenarios B
and C), the gain experienced by the proposed method is about
0.2 in VQM score, compared to the baselines. Both Scenarios
B and C achieve the same best VQM value, which means that
the best UEP FEC profile for the system happens to reduce
to EEP (i.e., rrr∗ = [8/9 8/9 8/9 8/9 8/9 8/9 ]). This can be
understood by the fact that the instantaneous CSI used in the
optimization results in unequal protection to the transmitted
slices, and no additional UEP level in the channel coding is
required. Moreover, as expected, the case with instantaneous
CSI outperforms Scenario A (where only coherence bandwidth
information is used), with a noticeable gain of 0.17 in VQM
score. The best UEP profile also corresponds to a higher
average RCPC rate, and this leads to a reduction in discarded
slices.
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Fig. 6. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized GOP-by-GOP, for systems with
(N, M) = (32, 4) and SNR = 16 dB.
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Fig. 7. VQM vs. Rrcpc for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with SNR = 8 dB, (N, M) =
(32, 4). “HighMot” video is considered.

We now provide results when the RCPC profile is optimized
GOP-by-GOP. Fig. 6 compares the best VQM for each GOP
of “HighMot” achieved from the sequential, the random and
the visibility-based algorithm (all scenarios) for the same
system parameters of the previous figure, i.e., SNR = 16 dB
and (N, M) = (32, 4). As already observed, the proposed
algorithm achieves VQM values lower (better) than the ones
provided by the baseline algorithms, for all three scenarios.
However, here the improvement for some GOPs is very much
larger than those in the earlier figure. The visibility-based
algorithm in Scenario A outperforms the baseline ones by
more than 0.11 in VQM score (GOP 6), although the gain
was only 0.04 in VQM score when the RCPC profile was
optimized for the whole sequence. As in the previous figure,
knowing instantaneous CSI again produces an improvement
in performance, when compared to both baseline algorithms
and to Scenario A. Moreover, it should be noticed that, in
the GOP-by-GOP optimization, Scenario C outperforms B.
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Fig. 8. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized for the whole sequence, for
systems with (N, M) = (32, 4) and SNR = 8 dB.

For example, for the 7th GOP, Scenario C achieves a VQM
of 0.15, whereas Scenarios A and B achieve scores of 0.34
and 0.21, respectively. So, for the GOP-by-GOP optimiza-
tion, UEP optimization improves the performance, even if
an unequal level of protection has already been achieved by
exploiting knowledge of instantaneous CSI through subcarrier
ordering.

Fig. 7 provides the VQM score vs. the mean RCPC code
rate when “HighMot” is transmitted over a system with
SNR = 8 dB, fnd = 10−4, and (N, M) = (32, 4). Compared
to the system in Fig. 5, the orders of diversity are the same,
while the mean SNR is reduced. This reduction of reliability
leads to an increase in the FEC level of the best RCPC
code rate for the visibility-based methods. For Scenario A,
the best FEC profile for the visibility-based algorithm is
rrr∗ = [8/24 8/16 8/12 8/12 8/12 8/10], which leads to a gain
in terms of VQM score of 0.03. Due to the low SNR value, the
most visually important groups Λi are more heavily protected
than they are in the 16 dB case. This increasing FEC level in
the RB keeps the slice loss rate due to channel losses roughly
the same as it was for the system with mean SNR = 16 dB,
at the expense of an increase in the number of low-priority
slices being discarded prior to transmission. The remaining
scenarios experience an EEP of 8/12 as the best FEC profile,
which leads to a gain of 0.11 in VQM score, compared to the
baseline ones, and a gain of 0.07 with respect to Scenario A.

Rather than providing results of the whole sequence opti-
mization in terms of mean VQM, in Fig. 8, the VQM score
for each GOP is provided for the “HighMot” sequence for
(N, M) = (32, 4), fnd = 10−4, and SNR = 8 dB. As
expected, for all the GOPs the visibility algorithms outperform
the baseline ones, and Scenario A leads to a VQM score per
GOP greater than Scenarios B and C for almost all the GOPs.
Moreover, even in these poor channel conditions, where the
average improvement for the whole sequence is limited for
all the scenarios, the gain of the visibility-based algorithm
over the sequential algorithm, for some individual GOPs, is
significant, i.e., the gain is up to 0.12 (0.2) in VQM score
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Fig. 9. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized GOP-by-GOP, for systems with
(N, M) = (32, 4) and SNR = 8 dB.
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Fig. 10. Best VQM for each GOP of the “LowMot” sequences for visibility-
based and sequential algorithms optimized GOP-by-GOP, for systems with
(N, M) = (32, 4) and SNR = 16 dB.

for Scenario A (B and C). For the GOP-by-GOP optimization
(Fig. 9), the gain of the proposed algorithm is substantial, and
Scenario C using both UEP and subcarrier ordering achieves
a VQM better (lower) than all the other algorithms.

Fig. 10 depicts the best VQM for each GOP of “LowMot”
for (N, M) = (32, 4) and SNR = 16 dB. Since, in the
whole-sequence optimization, Scenarios B and C led to close
results, for clarity in Fig. 10, we study Scenarios A and
B only, compared to the sequential algorithm. As for the
“HighMot” sequence, the visibility-based algorithms achieve
VQM lower (better) than the sequential method, and Scenario
B outperforms Scenario A. However, for the quasi-static
sequence “LowMot”, which has few visually important slices,
the gain is reduced for most of the GOPs.

After comparing the possible algorithms and scenarios, we
now provide results for the case in which the channel code rate
is optimized based on the weighted visibility rather than the
VQM score. With this aim, we consider the whole sequence
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Fig. 11. Best RCPC rates for baseline algorithms and the visibility based
algorithm (Scenario B), aimed at optimizing both the weighted visiblity score
and the VQM of the whole video sequence. “HighMot” is considered over
systems with (N, M) = (32, 4) and variable mean SNRs.

optimization for Scenario B, which has been selected due to
its simplicity (EEP only is required) and effectiveness. Fig.
11 depicts the best RCPC code rate vs. the mean SNR for
the visibility-based algorithm Scenario B (optimized based on
both the VQM and the weighted visibility), and the baseline
ones (optimized based on the VQM score). From the figure,
a close match between the two optimizing methods can be
observed. Except for γ = 6 and 8 dB, the two optimization
techniques lead to the same optimized design. This means that,
rather than evaluating the VQM score for each RCPC channel
code rate, we can simply evaluate the weighted visibility
score for each RCPC configuration and select the best channel
code rate. Note that the VQM evaluation requires simulated
transmission and decoding of each RB, while the weighted
visibility can be evaluated from (5), as detailed in the previous
section. We can also see in the figure that, for almost all the
mean SNR values, the best channel code rate for the visibility-
based algorithm in Scenario B is greater than the one which
achieves the best VQM value in the baseline algorithms. This
means that the proposed optimization in Scenario B allows
the system to substantially reduce the slice discarding.

In Fig. 12, the best VQM for “HighMot” is provided as a
function of γ for systems with fnd = 10−4, and (N, M) =
(32, 4), when Scenario B is considered. For Scenario B, we
provide two optimization techniques: one based on minimizing
the VQM score and one based on maximizing the weighted
visibility. Note that for each γ value, we provided the best
VQM optimized over the whole video sequence. As expected,
the general behavior (common to all the algorithms) is that
the VQM decreases with increasing mean SNR (i.e., with
increasing channel reliability). More important, for all the
considered mean SNRs, Scenario B outperforms the baseline
algorithms, and the gain is up to 0.19 in VQM score (for
γ = 14 dB). It is worth noting that, for the comparison
of Scenario B optimized based on both the VQM and the
one based on the weighted visibility in Fig. 11, we observed
that the channel code rate selected as the best differs only
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Fig. 12. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with (N, M) = (32, 4).
“HighMot” video and Scenario B are considered.
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Fig. 13. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence for systems with (N, M) = (8, 16).
“HighMot” video and Scenario B are considered.

at γ = 6 and 8 dB. In Fig. 12, this difference in the
optimization algorithms can be converted into a VQM score
gap. In particular, at γ = 6 and 8 dB, the algorithm based on
the weighted visibility is outperformed by the one based on
the VQM by only 0.005 in VQM score.

We now provide the performance of the proposed algorithm
when the optimization is aimed at maximizing the weighted
visibility score. We consider the case of a variable number
of independent subbands, and we compare the visibility-based
algorithm for Scenario B with the baselines. Fig. 13 depicts the
system performance when (N, M) = (8, 16) and “HighMot”
is used for transmission. From the figure, it can be observed
that, even reducing the number of independent subbands
(which would represent in our model the number of degrees
of freedom we can exploit), the visibility-based optimization
in Scenario B, when compared to the baseline algorithms,
still achieves a large gain in terms of VQM. When only 2
independent channels are considered (Fig. 14), as expected,
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Fig. 14. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence for systems with (N, M) = (2, 64).
“HighMot” video and Scenario B are considered.

due to the limited number of degrees of freedom offered by the
channel, the algorithms lead to almost the same performance.

Finally, in Fig. 15, rather than having the number of
subcarriers constant and equal to 128, the VQM as a function
of the total number of subcarriers is provided for systems
with M = 4 and SNR = 12 dB, for the “HighMot” sequence
and Scenario B. Observing the algorithm performance as a
function of the system bandwidth, we see that the visibility-
based method significantly outperforms the sequential one
most of the time. In particular, to reach a given VQM value,
Scenario B requires fewer subcarriers (i.e., smaller bandwidth)
compared to the sequential case. For example, a VQM value
of 0.4 is reached with the system consisting of 128 subcarriers
for the visibility-based algorithm, whereas 278 subcarriers are
required for the sequential algorithm, and the capacity gain
increases for lower VQM scores.

VI. CONCLUSIONS

We studied the optimization of channel coding in a 2-D
time-frequency resource block of an OFDM system, aimed
at maximizing the quality of experience when non-scalable
compressed video sequences are transmitted. We used a
network-based slice loss visibility (SLV) model to estimate the
visual importance of slices to be transmitted over a wireless
channel, and to provide the best level of protection to the
video slices, opportunistically mapped within the 2D RB.
We created three versions of the proposed algorithm, for
three different scenarios, characterized by a different level of
CSI available in the optimization process, and by different
levels of complexity. In all cases, the results demonstrated
that the proposed methods outperform the baseline algorithms
considered in this paper. In poor channel conditions, due
to the high packet loss rates and/or the large number of
slices that need to be discarded in order to fit the bitstream
within the resource block, the gain of the proposed algorithm
is almost negligible, but it increases with the improvement
in channel conditions. When instantaneous CSI is available
from a feedback channel, the proposed algorithm provides a
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Fig. 15. VQM vs. number of total subcarriers for both visibility-based
and baseline algorithms optimized for the whole sequence for systems with
M = 4. “HighMot” video and Scenario B are considered.

considerable improvement in the system performance (up to
0.2 in VQM score), demonstrating the validity of the SLV
model in the optimization process. We also showed that,
for the parameter values used in these simulations, when
instantaneous CSI is available and the FEC profile is optimized
for the entire video sequence, an EEP profile is selected as the
best profile. However, when the channel coding is optimized
GOP-by-GOP, UEP substantially enhances the performance,
at the expense of increasing complexity. It was also illustrated
that the proposed technique is especially useful for video
sequences with medium-high motion content, which means in
video sequences for which a substantial portion of slices are
visually important. Lastly, in order to simplify the optimization
process, the channel coding scheme can be optimized for the
weighted visibility score. Results demonstrated the reliability
of this measure in several physical environments.
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