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Abstract— We consider modeling the visibility of individual
and multiple packet losses in H.264 videos. We propose a
model for predicting the visibility of multiple packet losses
and demonstrate its performance on dual losses (two nearby
packet losses). We extract the factors affecting visibility using
a reduced-reference method. We predict the probability that
a loss is visible using a generalized linear model. We achieve
MSE values (between actual and predicted probabilities) of
0.0253 and 0.0398 for individual and dual losses respectively.
We also examine the effect of various factors on visibility.

Index Terms: Video codecs, Quality Control

I. INTRODUCTION

Compressed video streams transmitted over heteroge-
neous networks experience visual quality impairments due
to various factors such as delay, jitter, packet loss, drift
(due to scalability) and compression artifacts. Being able
to quantify the perceptual quality degradation due to these
factors is important for a network quality monitor. Objective
quality measures such as PSNR do not correlate well
with subjective results. The current work concentrates on
modeling the quality degradation in H.264 video due to
packet losses by predicting the packet loss visibility.

Predicting the visibility of a packet loss is useful for sev-
eral reasons. Packets which are perceptually important can
be given more error protection (unequal error protection).
If one assigns perceptual importance levels to each of the
packets at the encoder, the packets with lower importance
level can be discarded, if the buffer in a network node
overflows. Thirdly, packet loss visibility can be very useful
for accurate, real-time network quality monitoring.

In our previous work [1], we looked at the problem
of predicting the visibility of individual packet losses in
MPEG-2 bitstreams. However, video transmission over in-
ternet or wireless links is typically characterized by bursty
losses. Stuhlmuller et al. [2] analyzed the distortion (MSE)
of isolated packet losses. They also used a linear additive
model to quantify the distortion of multiple packet losses.
In [3], the authors compare bursty losses with isolated losses
of equal combined length. They conclude that: (a) the loss
pattern has significant impact on distortion, (b) bursty loss
produces larger distortion than an equal number of isolated
losses. Chakareski et al. [4] proposed a scheme to predict
the distortion incurred by bursty losses.
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In this paper, we extend our previous work [1] in two
ways. First, we model the visibility of isolated packet losses
in H.264 instead of MPEG-2 bitstreams. We use motion-
compensated error concealment (MCEC) to conceal the
losses, instead of the zero error concealment (ZEC). Second,
we model the visibility of multiple packet losses for H.264.
We define a multiple loss as a set of N individual losses oc-
curring in close temporal proximity. We introduce a model
framework to predict the visibility of a multiple packet loss
and we examine the performance of this approach when
N = 2 (dual loss). We compare the importance of factors
between the isolated and dual loss cases.

Section II describes the design of the subjective exper-
iment. Section III discusses the factors we use to predict
the visibility of a loss. Section IV describes our modeling
approach, while Section V provides results.

II. SUBJECTIVE TESTS

We conducted subjective tests to obtain ground truth
on the visibility of packet losses. The viewers’ task is to
indicate when they see an artifact or abnormality. Our tests
are single stimulus tests, so viewers are only shown videos
with packet losses, not original videos. We assume a packet
loss entails the loss of a single slice, namely a horizontal
row of macroblocks (MBs)!. The initial error induced by
a packet loss depends on the decoder’s error concealment
strategy. We use motion-compensated error concealment
(MCEC). The initial error incurred with this method is less
than that of the zero-error concealment method used in our
previous work [1].

The video sequences in the subjective test are muted
travel documentaries at SIF resolution (352 x 240) and 30
fps. They are encoded and decoded using the extended
profile of H.264 IM Version 9.1 Codec. Our encoding
structure is I B P B P B...P B with a GOP size of 20
frames. For P frames, we use two reference frames for
motion compensation: one long-term and one short-term.
The long-term reference frame is always the I frame of
the current GOP. We follow the usual convention for the

1We do not consider the Flexible Macroblock Ordering (FMO) available
in H.264.
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short-term reference frame to be the previous P frame. B
frames use the future P frame and either reference frame
for bidirectional prediction. We use fine quantization (28)
without rate control, so that the only artifacts in the lossy
videos are due to packet loss. The decoder conceals the
lost slices using MCEC where the concealment motion
vector is estimated as the median of the motion vectors
of surrounding blocks.

We are interested in the visibility of individual and
multiple packet losses. In practice, packet losses tend to
occur together. Different losses within a multiple packet
loss interact with each other; the overall effect is not the
sum of individual effects. This interaction can be either
physical or perceptual. Physical interaction is caused by
inter-frame prediction. Perceptual interaction is caused by
the close proximity (spatial or temporal) of the losses.
Here, we study the overall effect of two packet losses (dual
loss) occurring together. A dual loss is characterized by the
spatial separation I between the two losses in MB units
(ie., D = 1 implies the two packet losses affect adjacent
slices) and by the temporal separation 7' between the two
losses in number of frames. In our case, ) varies from 0 to
14 (15 slices in each frame). T varies from O to 5 frames
(maximum separation of 1/6 of a second).

We choose six videos of 6 minutes each, divided into 4-
second intervals called slots, producing 90 slots per video
and 540 slots in total. A loss (individual/dual) is introduced
in the first three seconds of each slot. The last second is re-
served to create a guard interval, which prevents interaction
between losses across slots and provides the viewer time to
respond to the current loss before the next loss occurs.

We design 4 individual losses for each slot and use
all 6 combinations of individual loss pairs to get 6 dual
losses. Within each time slot, either exactly one of these 4
individual losses will appear, or exactly two of them will
appear (dual loss). The individual losses are designed such
that the set of dual losses are approximately distributed
uniformly over D and 7. Since we have 10 different losses
(4 individual and 6 dual) that can be introduced in a slot, 10
different lossy versions are created from each source video.
Each lossy video has both individual and dual losses, but
in different slots. In total, we introduced 2160 individual
losses and 3240 dual losses.

During the subjective test, a viewer is shown only one set
of 6 lossy videos. Each set of lossy videos was evaluated
by 12 viewers, for a total of 120 viewers. To help viewers
understand their task, we show them a 1-minute pilot
training video before the actual test. Viewers are told that
they will watch videos which are affected by packet losses.
Whenever they see a visible artifact or a glitch, they should
press the space bar. After the subjective test, we generate
a table of the viewers’ boolean responses, corresponding to
whether they saw a loss or not. This defines the ground truth
for the probability of visibility for each loss.
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III. FACTORS AFFECTING VISIBILITY

In this paper, we use a Reduced-Reference (RR) method
for predicting the visibility of packet losses. A RR method
has access to the decoder’s reconstructed video (with losses)
and factors extracted from the encoded video. We classify
the factors that determine packet-loss visibility into Content-
Independent and Content-Dependent Factors.

Content-Independent Factors depend only on the lo-
cation of the loss, not on its actual content. We consider
two content-independent factors. HGT [1] is defined as the
height of the lost slice in a given frame, where slices are
numbered from top to bottom. FRAM ETY PFE is the type
of frame (B/P/) affected by the packet loss and is treated as
a categorical factor, FRAMETY PE_ML is the counter-
part of FRAMETY PE for the dual (multiple) loss case.
Between the two frames affected, FRAMETY PE_ML
represents the type that belongs to a higher category. Cat-
egory I is higher than category P, which is higher than
category B.

Content-dependent Factors, on the other hand, depend
on the actual video content at the location of the loss, such
as Motion, Contrast, etc. We use the following:

1) Initial Mean Squared Error (IMSE) is the MSE
between the error-free reconstructed MB and the lossy
concealed MB. Factors AVGIMSE and MAXIMSE are
the average and maximum IMSE of all MBs in a given slice.

2) Residual Energy is the energy (sum of squares of all
DCT coefficients) of the residual after motion compensa-
tion. If a slice is lost, then even if MCEC does a perfect
job of estimating the lost motion vectors, the resultant slice
still differs from the original. The residual energy, calculated
on a MB basis, is one way to assess the magnitude of this
difference. AVGRSENGY and MAX RSENGY are the
average and the maximum of the residual energy values of
all the MBs in a given slice.

3) Motion-Related Factors: For computing motion-
related factors, we first linearly scale the motion vectors
in each partition of a MB so they represent the motion
between two display frames. Then we assign each MB a
single motion vector which is a weighted average of the
motion vectors in all the MB partitions.

MEANMAG and M AX M AG are the mean and max-
imum magnitudes of all motion vectors of the MBs in
a given slice. For computing phase-related factors, only
MBs with non-zero motion are used. Further, we require
at least half of the MBs to have non-zero motion. If not,
we consider that phase information is undefined and set
PH_UDEF (a boolean factor). If PH_UDEF is not set,
MEANPHASE and MAXPHASE are the mean and
maximum of all the defined phases of the MBs in the
slice. In the dual loss case, we have two boolean factors
PHUDEF1 and PH UDEF2, PHUDEF1 is set if
at least one of the losses has an undefined phase and
PH_UDFEF2 is set if both losses have undefined phase.



Since we cannot assign a value when the phase is unde-
fined, we use MEANPHASE 'V and MAXPHASE 'V
that are variants of MEANPHASE and MAXPHASE.
These variants take on the original values incremented by
1 when the phase is defined, and the value O when it is
undefined.

INTRASLICE (a boolean factor) is set when the
lost slice is coded as an intra slice. In the case of dual
losses, we have two boolean factors INTRASLICE1
and INTRASLICE2, INTRASLICKE1 is set if at least
one of the lost slices is coded as an intra slice and
INTRASLICE? is set if both the lost slices are coded as
intra slices. Unlike MPEG-2, H.264 has motion vectors with
variable block sizes. The number of macroblock partitions
in H.264 can range from one for the coarsest partition
to sixteen for the finest partition. AVGINTERPARTS
and MAXINTERPARTS are the average and maximum
number of Inter macroblock partitions in a slice.

We also explored various spatial clutter and contrast-
based factors which statistically did not turn out to be useful.

For individual packet losses, we use the K factors de-
scribed above to model visibility. For multiple losses, our
goal is to develop a generic model for visibility irrespective
of the number of individual packet losses (/V) in the multiple
loss. However, for each of the K factors in the individual
loss case, we now have N values, one for each packet
loss. Hence, we have a total of VK available factors for
multiple losses. However, a generic model should select
factors irrespective of N. Therefore, we derive 2K + 5
factors representing a multiple loss as follows. We use the
maximum and minimum of the NV values from each of the
K factors to form 2K new factors. They are named by
attaching “MAX_" or “MIN_" as prefix to the factor name.
We also use the maximum and minimum of [J); and Tj,
the spatial and temporal separation between each pair of
packet losses. The final factor is the number of packet losses
in the multiple loss, N. In this paper, we demonstrate the
effectiveness of this framework in predicting visibility of
dual losses (N = 2). With only one pair, we use I} and T
directly, and set N = 2.

IV. MODELING APPROACHES

We model the probability of visibility using logistic
regression, a type of generalized linear model (GLM) [6]
whose link function is set to be the logit function. The
simplest model (Null model) has only one parameter: the
constant . At the other extreme, it is possible to have a
model (Full model) with as many factors as there are obser-
vations. The goodness of fit for a GLM can be characterized
by its deviance, defined in [6]. By definition, the deviance
for the Full model is zero and the deviance for all other
models is positive. A smaller deviance means a better model
fit. Deviance is also useful in determining the significance
of different factors.
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All the factors described in section III may not be
statistically useful. To identify the factors that are important
and to build a good model, we follow the 6-stage approach
described in [7]. The first stage involves a univariable
analysis of each factor to identify factors that show no
association with visibility and they are not considered
further for multivariable analysis. The second stage involves
building a multivariable model using a stepwise approach
for adding factors, one at a time. We start with the Null
model and at every step, we add the factor that causes
the maximum decrease in deviance per degree of freedom.
This gives us a list of models with increasing numbers of
factors. In the third stage, we select the first model in the list
whose cross-validated MSE (between actual and predicted
probabilities) increases when the chosen factor is added. The
significance of each factor in the selected model is verified
and insignificant factors are dropped from the model. This
model is called the preliminary effects model. In the fourth
stage, we check for the correct parametric representation for
each factor in the model. For example, a factor I might be
better represented by F? instead of F. The model at this
stage is called the main effects model. In the fifth stage, we
look for any interaction factors that make intuitive sense
and improve the prediction capability. Interaction factors
are created as the product of pairs of main effect factors.
This gives us the preliminary final model. In the sixth stage,
we verify the importance of each factor in the preliminary
final model and drop insignificant factors. This marks the
completion of our model building process. The model at
this stage is called the final model.

V. RESULTS

We obtained our final models using the model build-
ing process described in section IV. MAXIMSE is
found to be better represented by MAXIMSE_S (scal-
ing with a power of 1/4). We found the interaction be-
tween MAXRSENGY and INTRASLICE to be useful
(INTER_IL - individual loss, INTER_ML - multiple
loss).

Our final model has 8 factors for the individual loss case.
Its residual deviance is 5237.7 whereas the null deviance
is 8597.5 and the MSE obtained during cross-validation is
0.0253. Similarly, in the dual loss case, our final model has
9 factors. Its residual deviance is 10402.2 whereas the null
deviance is 17802.3 and the MSE obtained during cross-
validation is 0.0398,

The factors in the final models and their coefficients are
listed in tables I and II for individual and dual loss cases.
The values of the coefficients do not necessarily convey the
importance of corresponding factors because these factors
have different variances and ranges. However, the sign of the
coefficients is important and informs whether a packet loss
is more visible with a high or low value for a factor. Most of
the factors in the final models for individual losses and dual



Factor Coefficient
Constant y -2.750e+00
MAXIMSE_S 5.141e-01
PHUDEF -1.419e+00
MAXPHASEV -3.566e-01
MAXRSENGY -4.481e-04
FRAMETYPE — P 8.333e-01
FRAMETY PE — 1 9.778e-01
AVGINTERPARTS | -3.298¢-01
VARMOTX -1.861e-03
INTER_IL 7.346e-04
TABLE I

FACTORS AND THEIR COEFFICIENTS IN THE FINAL MODEL
(INDIVIDUAL LOSSES)

Factor Coefficient
Constant y -1.769e+00
MAX_MAXIMSE_S 5.139e-01
PHUDEF2 -1.813e+00
MAX_AVGINTERPARTS | -3.273e-01
MAX_MAXPHASEV -6.127e-01
MAX_MAXRSENGY -5.315e-04
PHUDEF1 -1.767e-01
FRAMETYPE_ML — P 8.862¢-01
FRAMETYPE_ML — 1T 1.249e+00
MAX_HGT -5.114e-02
INTER ML 4.700e-04
TABLE II
FACTORS AND THEIR COEFFICIENTS IN THE FINAL MODEL (DUAL
LOSSES)

losses have one-to-one correspondence and corresponding
coefficients have the same sign.

The importance of a factor in a model can be eval-
uated by the increase in the deviance that results when
that factor is removed from that model. With this anal-
ysis, MAXIMSFE_S is the most significant factor in
predicting visibility, followed by FRAMFETY PE and
AVGINTERPARTS. We observe the following about
the effect of factors on visibility:

1) Factor MAXIMSE_S is directly proportional to
visibility. This makes intuitive sense. If the initial MSE of
a loss is high, one would expect the loss to be more visible.
Visibility increases, as expected, in the order B, P and I for
FRAMETY PE.

2) Factors MAXRSENGY, AVGINTERPARTS,
VARMOTX and MAX_HGT are inversely related to
visibility. A high value for residual energy can occur when
the signal has a lot of high frequency content and the
motion is inconsistent (for example, a market crowded with
people). In such a case, visibility is reduced due to masking
effects. When AVGINTERPARTS is large, the MB
must be subdivided to achieve good motion compensation.
Hence, the underlying motion is complex, generating spatial
and temporal masking that makes the loss less visible.
Similarly, a large VARMOT X means that the motion is
highly variable across the slice. The negative coefficient for
MAX_HGT indicates that viewers’ sensitivity to losses
goes down as we move from the top to the bottom of the
frame. When PH_UDFEF is set (i.e, when the majority of
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the motion vectors in the slice are (0,0)), visibility decreases
since concealment works well.

3) Horizontal motion causes losses to be more visible
than vertical motion does. MAXPHASE_V is very sig-
nificant and has a negative coefficient. One explanation for
this arises because a slice is a horizontal structure, and
a packet loss causes the loss of a slice. When there is
horizontal motion, vertical edges longer than a MB cause
discontinuous edges when concealed, and horizontal edges
cause no new artifacts. On the other hand, when there is
vertical motion, vertical edges do not cause new artifacts,
and horizontal edges either appear twice or disappear com-
pletely depending on whether the concealing slice contains
the horizontal edge or not. However, they do not cause
discontinuous edges.

4) The effect of factors MAXIMSE.S,
FRAMETYPE, MAXRSENGY, VARMOTX,
MAX_HGT is consistent with our earlier findings based
on MPEG-2 videos [1]. However, in our earlier work
which used zero-motion error concealment, the magnitude
of the underlying motion was a highly significant factor for
predicting visibility. Now that we use motion-compensated
error concealment, motion is no longer a significant factor.

Conclusion: We considered the problem of modeling the
visibility of individual and multiple packet losses in H.264
bitstreams, and explored the importance of new factors
in predicting visibility. The factor AVGINTERPARTS
based on variable block size in H.264 turned out to be
significant. Unlike our previous work [1] using zero error
concealment, the amount of motion is no longer a significant
factor in predicting packet loss visibility. Factors such
as MAXIMSELS, FRAMETYPE, MAXRSENGY,
VARMOTX and M AX_HGT continue to be significant
consistent with our earlier findings.
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