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Abstract

In this paper we investigae waysto reduceencaling time, memay consumgtion andsubstitutionerras for
text imagecompessionwith JBIG2. We first look at pagestriping wherethe encode splits the input imageinto
horizantal stripesandprocessesonestripeat atime. We proposedynamicdictionary updaing procedure for page
stripingto redu@ the bit ratepenaltyit incurs. Expeimentsshav thatsplitting theimageinto two stripescansase
30% of encoding time and40% of physical memay with a small coding lossof aboutl.5%. Usingmorestripes
brings further savingsin time andmemoy but the retun diminishes.We alsopropace an adapive way to update
thedictionay only whenit hasbecomeout-d-date. Theadaptve updatingschemecanresohe thetime vs. bit rate
trade-df andthememoy vs. bit ratetradeoff well simultaneasly. We thenproposethreespeedp techniqesfor
patternmatchirg, the mosttime-corsumingencodng actvity in JBIG2. Whencombned togetter, thesespeedup
techniqiescansare up to 75% of the total encodig time with at most1.7%of bit rate pendty. Finally, we look
at improving reconstratedimagequality for lossycompression. We proposeenharted prescreeimg andfeatue

monitaed shapeunifying to significantlyredice substitutiorerrois in therecorstructedmages.
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. INTRODUCTION

TheJBIG2stanard[1], [2] is the new internationd stardardfor bi-level imagecompresion. Bi-level
imageshave only one bit-plane, where eachpixel takes one of two possble colors. Prior to JBIG2,
facsmile stardardssuchasITU-T recanmendatios T.4, T.6, and T.82 (JBIG1) [3], [4], [5], [6], [7]
provide only for lossless compressionof bi-level images. JBIG2 is the first onethat also provides for
lossycompression A properly desgnedJBIG2 encaler not only achieveshigher losslesscompresion
ratios than the other existing stardards but also enable very efficient lossy compressionwith almost
unndiceabe informationloss]8].

A typical JBIG2 encadler first segmens an imageinto different regions [9] and then usesdifferent
coding mechamsms for text andfor halftones. In this paper, we are conernedwith compressingtext
images We definetext images asbi-level imageswhich consst mainly of repeatedtext charactersand
possbly somegenerdgraphic data(e.g.,line art) but no halftones.In JBIG2,the codng of text is basa
on pattern matchirg techiques[1]. JBIG2 definestwo modesfor text compression pattern matching
and substitution (PM&S) [10], [11] andsoft pattern matching (SPM)[12]. For geneaal graphic datanot
identified astext, the encoder usesa basicbitmapcode suchasspecfied by JBIG1lor T.6. Thisis called
clearup codng.

Onatypical pageof text, therearemary repeatedcharacters We call the bitmapof acharaterinstance
a‘“symbol” We canextrad symbds from theinputimageusing a stardardcomectedcomporentanalysis
algarithm [13]. In English andmary other languages mostcharatersarerepresente by oneconneted
pieceandhene are extraded asonesymbol For chamactersthat contan separged parts e.g.,English
letter “iI” or “j”, we usea postpocesing stepto identfy a dot (a smallsymbol)andput it backontoits
stemto form onesymbad.

Ratherthancoding all the pixels of eachsymbolon the page, we code the bitmays of a representaive
sub®t and put theminto the symbol dictionary. Then,eachsymbolon the pageis codedby giving its
postion on the pageandthe index of its bestmatchirg symbd in the dictionary. In the PM&S mode,
the bitmap of the bestmatchdictionary symbolgetsdiredly subgituted for the current symbolon the
recorstruded page In the SPM mode, we trangnit a losdess coding of the current symbd’s actual
bitmapbasednthatof its matchingdictionarysymbol Thislosslesscoding, calledrefinementoding, is
doneby context-basedarithmeticcodng usinga context dravn from boththe bestmatchbitmap,andthe
already codedpartof the current bitmap [1]. In our work, we usethe Hammingdistancebasedmatchirg

criterion which measursthe percentag of differentpixels betwee two symbds.
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The idea of text image compressionbasedon patten matching appeaed several decags ago [10],
[11]. However, the main obstale to its practical implemenation wasits high cost. From the point of
view of physial memoryconsimption buffering the entireinput page(or a big portion of it asin page
striping) is muchmoreexpersive thanbuffering only afew lines of theinput page,asnealedin T.4, T.6
or T.82 (JBIG1). From the point of view of encodng time, pattern matchirg is compuatiorally very
intensive. Recentadwancesin the CPU and memorytechrologies have madeit possible to prectically
implemen patten matching basedtext imagecodng systens. However, it is still of greatimportance
for mary apgdicationsto limit phydcal memoryconsumption and/a to encale faste. In this paper we
investigateseveral tecmiques to lower memoryconsunption andto redwce encodng time in JBIG2. To
save physial memory JBIG2allows page striping wherethe encaler splits a page imageinto horizontal
stripesof appioximatdy equd sizes andprocesse®nestripe at a time. Becausdahe encaler deak with
fewer symbok at atime, pagestriping alsoredwesencaling time. The disadvantage of pagestriping is
thatit offerslower compresion efficiency compaedto coding the pageasa whole. However, sincetext
symbok on the samepageareusually very similar, whencodng the currert stripe, someof the existing
dictionary symbds canbe re-usedto reducethe compressionloss In JBIG2,thisis doneby serding a
1-bit flag for eachdictionary symbd to signal to the decalerwhetherthe currert symbolis to beretaned
or discaded after the current stripe is deaded. In this pape, we proposedynamicdictionary updding
proceduresto retan usell dictionary symbolsanddiscad obsdete ones[15]. We alsoinvestigatetwo
encaling tradeoffs in page striping: the coding time vs. bit rate tradeoff and the memoryusage vs.
bit ratetrade-off. We proposean adapgive dictionaty updding schane that canresdve both tradeoffs
favorably atthe sametime.

A JBIG2 coding sygem for text imagesconssts of severd compaents symbd extraction, patten
matchirg, arithmetic/Hufman integer/bitmap coding, andsoon. To spee up arithmeticbitmapcoding,
JBIG2allows typical predction (TP) asspecifiedin JBIG1[5] andtypical predction for residue (TPR)
aspropasedin [14]. In this paper we focus instea on redicing the encodng time spenton patten
matchirg. In lossless SPM mode,our experimentsshav that, even using the simple Hammingdistance
matchirg criterion, patten matchirg cantake asmuchas90% of the total encaling time. In this pape,
we proposethree speedp technquesthatsignificantly reducethe amountof patten matchng time while
losing little in coding efficiengy. Thesespeedp tecmiques aremoreefficient thanpage striping in terms
of tradng off compressionandcodingtime. Nevertheless pagestriping is still necessaryfor applicatiors

with limited physial memory
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In lossycompresion, we consider onemorefigure of merit, the recorstrucedimagequality. Criteria
suchasPeakSignalto NoiseRatio(PSNR)commonlyusedin measuing gray-scaleimagequdity arenot
suiteble for bi-level images For bi-level text images, it is very important to be ableto corredly recoqize
asmary text charatersas possible at the receaver. If a pair of correspomling charatersin the original
andtherecorstrucedimagesarepercevedto be differentby a humanobsewer, thena substtution error
hasoccured. In this paper, we usethe numberof subditution errors asa quartitative measue for the
recorstrudedimagequdity, andwe proposetechriquesfor suppessimg subditution errors.

This paperis organizedasfollows. In Sectionll, we elalorateon pagestriping and proposeto updde
the current dictionary from dictionariesfor previous stripes. We give resuts on the savingsin time and
memory usageand the bit rate pendty incurred. We also compae the perfomanceof five dictionary
congruction schemesvhenusal in page striping. In Sectionlll, we propcsethreespea&up techmiques
for patten matchng. In SectionlV we propcsewaysto supgesssubstitution errorsin the recanstructed

imagesfor lossyPM&S andlossy SPM.We concludeour paperin SectionV.

[I. DYNAMIC DICTIONARY CONSTRUCTION FOR PAGE STRIPING

In this secton, we quickly review four previous dictionary desgns,the onepass singeton exclusion,
classbasel andtree-taseddictionaries,andproposea new staticdictionary desigh calledthe modified-
classdespn. To redwe the bit rate peralty incurred by pagestriping, we proposedynanic dictionary
updaing techriquesfor the singleton excluson dictionary andthe modified<lassdictionary We inves-
tigatethe encodng tradeoffs betwe@ memoryandbit rateandbetwee codng time andbit ratewhen
using differentdynamic dictionaryconstuction schemes.In particular, we proposeanadaive dictionary

updaing schemehatcanresdve bothtradeoffs favorably atthe sametime.

A. Satic symbol dictionary design

In this secton, we take losdesscompressionasan example We will addesslossy compresionin
further detail in SectionlV. The onepass(OP) dictionary [12] is formedin a seqential way. The
encalermatchesachnewly extracded symbolwith the current dictionary, If the lowestmismatchfound
is belov a preset threshold the new symbd is encaledwith refinementcoding using the bestmatchas
its reference. Otherwise the new symbolis encaleddiredly usinga JBIG1type of arithmeticcoder; this
is called directcoding. Eitherway, the new symbolis addedto the dictionary The main disadrantage
of the OPdictionaryis thatit containsmary singetonswhich aresymbds never referencedby ary other

symbok [17]. Singletas are detrimerial to coding efficiency becaisethey do not provide any usefd
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referenceinformation yet dictionary indicesare assgnedto themaryway, thusincreasiry the average
lengh of all indices. By excluding singetonsfrom the OP dictionary, we obtan the singletonexclusion
(SE)dictionaty.

Previoudy we have propcsedthe classbasedCLASS)[18] andtreebased TREE)[19] symboldic-
tionary desgnsfor SPM-basedBIG2. Comparedwith the simpler OP and SE dictionaries the CLASS
andTREE dictionaniescanimprove compressionby up to 8% for losskessand17%for lossy compresion
[8]. In this pape, we proposea new dictionary desig called the modified-class(MC) desig [15] which
combiresthe ideasof the CLASS and TREE desgns. Designof the MC dictionary foll ows two steps.
At thefirst step,asin the CLASSdesiq, we groupall extracted symbolsinto clas®sby pointing them
to their close$ match.For eachclass, we chocseits repregntatve asthe symbolwith the lowestaverage
mismatchwithin theclass.We putall representaivesinto thedictionary. Thesecad stepfollows theidea
of the TREEdesgn. We conrecteachpair of symbds with aweighted edgewherethe weightis the mis-
matchscorebetweerthetwo symbok; if the mismatchscoreis biggerthanthethresold, thenthereis no
edgeconnectingthesymbolpair. Thiswaywe obtan matchirg graghsamongall dictionarysymbok (i.e.,
classrepresentaives). We thenconstuct minimum spaming trees(MSTs) from thesematching grapls
using Kruskal's algorithm [20]. For eachMST, we chocseits root randamly asary nodewith degree
biggerthan1[19], [8]. TheMC designimprovesoverthe CLASS desigh becaisethereferencerelaion-
ships amongall dictionaly symbds asgiven by the MSTs have the lowesttotal mismatch(the CLASS
design usesthe concept of super-classeswhich aresubgtimal). The MC desig is alsocompuationally

lesscomplex thanthe TREE desiq.

B. Dynamic dictionary update

Pagestriping is an encaling modedefinedin the JBIG2 stardard[1] that allowsthe encodkr to split
theinput pageinto horizontal stripes of approiimately equal sizesandenadeonestripe atatime. Page
striping lowers memoryrequremens for both the encocer and the decaler  Anothe benefitof page
striping is thatit reduesthe encaling time by redudng the time spent on patern matching To decice
which symbolsfrom the input pagewill go into the dictionary the encaler needsto perform patten
matchirg on all extraded symbds. Therefae, if the input pagecontains N symbolsin total, and page
striping is notusedthetime neede for patiernmatching is propationa to M. By spilitting theimageinto
two stripes,the patten matching time canbe appioximatdy cutin half (2 x (N/2)2 = N2/2). However,
pagestriping lowerscompressionefficiency if theencalersendscompletelysepaatedictionariesfor each

stripe. To reducethis coding loss,rather thancodng eachstripe completly sepaately, we reusesomeof

April 22,2003 DRAFT



EDICS:IP 1.1 (IMAGE PROCESSING:CODING) 6

the dictionarysymbds from previous stripesto codethe currentstripe Thisis basedon the observation
thatthe fonts andsizes of the text chaactes in one pageareusualy very similar. We propcse sefarate
updaing processedor the SEdictionary andthe MC dictionary.

Updatirg an SE dictionary is straghtforward. For eachnen symbd in the current stripe, the encoder
matches it with not only all the previoussymbads in the current stripe but alsoall the symbolsfrom the
dictionary usedfor the previous stripe. The encalerthenusesits closest matchasits referencesymbd
andadds the new symbd to the dictionary After the current stripe is processed the enmderexamines
the new dictionary and excludesall singetons from it. Thosepreviousdictionary symbds that are not
usedby any symbad in the current stripe arealsoexpunged. This way, new symbolsusdul for thecurrert
stripe getincludedin the new dictionary, andold dictionary symbok thatareobsoktearediscarded.

Thedesigh of an MC dictionary consigs of two steps thefirst of which is to form classesandchoo®
representaives. In the dictionary updatng procedure, we perform this stepon the combinal setof all
previousdictionary symbds andall nev symbolsfrom the current stripe If apreviousdictionaly symbd
hasthelowestaveragein-classmismatch it will benaturdly selectedasthe repregntative, which means
the encader candiredly reuseits bitmap without sendng it to the decoder again In the casethat the
symbolwith thelowestin-classmismatchis not anexisting dictionary symbd, if thereis anexisting dic-
tionary symbd whoseaveragein-classmismatchis slightly higher thanthelowestonebut the difference
betweerthemis below a prese threstold, we still chocsethe existing dictionaly symbolastherepresen-
tative. This allows usto make useof mary previousdictionarysymbds; we only chocseanen symbolas
therepresentaive if all the existing onesaretoo inaccurate The secad desig stepis to form MSTsfor
thedictionary symbok. In Figurel, we shav pre-existing dictionary symbds in gray andnew onesfrom
the currentstripein black Numbersalongthe edges indicatethe mismatchscores betwea the symbds.
With thes mismatchvalues (Figurel (a)), Kruskal's algarithm will produiceanMST thatincludesedges
conrecting the four gray nodes However, the mismatchscoresand referencerelationships amongthe
pre-«isting symbds are meanimglessbecasethe dewmderalready hastheir bitmaps Therefoe, we can
conrectall existing symbolswith zeroweightedges(thedashdotted grayedgesin Figurel (b)). Wethen
goon andapplythe usualKruskd’ s algarithm. This guaantee thatead resuling MST hasat mostone
graynode representng a previousdictionarysymbd; someMSTs mayhave no gray nodesif they consst
of new symbds from the currentstripe only. For anMST cortaining oneexisting dictionary symbd, this
symbolis usedasthetreeroot sinceits bitmapis already known to the decaler. For anMST containing

only symbolsfrom the currert stripe, its root is selectedrandomly asary node with degreebigge thanl
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asin thestaic desiqh. After thenew dictionaty is decided,thosepreviousdictionary symbolsthatarenot

usedin the new dictionary areconsderedobsdete andwill be excluded.

C. Encoding trade-offs in page striping

Pagestriping reduwcesmemoryusag andenading time but incurs a bit ratependty. In this paperwe
focus on two encaling tradeoffs in page striping: the trade-off betweenencodng time andbit rateand
the tradeoff betweenmemoryusageandbit rate. We compae severd dictionary constuction schenes
for pagestriping in termsof their performancesn bothtradeoffs.

Dependhg on the charateridics of thetext in theinput page, we shout usedifferent dictionary con-
strudion scremedor pagestriping. If thetext contanedin thefirst stripeis avery accuaterepresentéion
of the text in the entire page,thenwe candesgn the dictionary only oncefrom the first stripe and use
it throughou the entirepage We call this the static scheme. On the cortrary, if the text in the currert
stripe is completdy different from thatin the previous stripe (e.g.,the previousstripe contains regular
Englishtext andthe current stripe contans mathsymbolg, thenwe shoulddesgn a compldely isolated
dictionaryfor the current stripe usingonly text symbolsfrom the currert stripe We call this theisolated
scheme. The more gereral caseis that sometext symbds in the currert stripe are similar to thosein
previous stripes but thereare also nev symbds not seenbefore In this case,we shoul usethe pro-
posel dynamic updding procediresto reusecertan previous dictionary symbok, discardthose thatare
obsdete, andadd new symbds from the current stripe into the dictionary if necessary We canupdde
the dictionaly for every new stripe (we call it the dynamic scheme), or we canupdde the dictionary for
every othe stripe (we call it the dynamic-2 scheme). Comparedo the static or the isolated schemethe
dynamic schemeeduasthe bit rate penally incurred by page striping but alsotakeslonger to encale.
This is becawethe dynamic schane need to perfaom addtional patten matchingbetwea symbds in
the current stripeand symbds in the previous dictionary, anddecice which ones to reuse to discard, or
to add Comparel to the dynamicschemethe dynamic-2 schemereduce the encodingtime by updaing
thedictionaryhalf asfrequently. However, how oftenthedictionaryis updaed shoub ultimately depem
upontherateatwhich text symbolschargefrom stripeto stripe. Sincethis text changg rateis notknown
befarehandandis oftennot constantwithin a page we proposeanadapive dictionary updatingtechrique
thatautomatcally decicesif the existing dictionaryhasbecane out-of-dat (i.e., enowgh symbok in the
current stripe cannot be representedby the existing dictionary symbds) andupdaesthe dictionaryonly

whenit is out-of-date. We will call this the adaptive scheme.
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C.1 Adaptive dictionaryupdae

Onepropeaty thattheadaptive dictionaryupdding scrememusthaveis that thedecisbnabou whetter
the dictionary hasbecomeout-of-date mustbe madequickly. A complicateddecison will prolong the
encalingtime andnegatively affectthetimevs. bit ratetradeoff. We proposeasimple andfastprocedure
to autanatically decide if the dictionary is out-df-date The dictionary is updded at most every two
stripes. This meansdf the dictionary hasjust beenupdaed for the previous stripe, thenthe encaler will
useit directly to code the currert stripe. But duringthe coding of the current stripe, theencalercalcuates
two values the averagemismatchandthe percantageof unmatdiedsymbds for the currert stripe. These
two valuesshav how well the symbokin the currentstripe canberepresened by the existing dictionary
symbobk. The encalerthencompaesthesetwo valuesfor the curren stripe with thosefor the previous
stripe. If either value hasincreasedsignificantly, i.e., either thecurrentaverage mismatchis morethan1.5
timesasbig asthe previousaveragemismatd or the current unmatdiedpercentag is twice the previous
unmathedperentag, then theencalerdecidesthatthe existing dictionary hasbecaneout-of-dae. The
encalerthenswitches on the UPDATE_DICT flag andupdagsthe dictionary for the subgquen stripe.
Note thatthe calcuation of the average mismatchandunmattedpercentag is very fastsinceit canbe

carried out atthe sametime asthe currentstripeis beingenaded.

D. Experimental results

Unlessothemwise stated all expelimental resuts presered in this paperare obtainedfrom a set of
twelve testimagesfrom two sour@s.

1. Two CCITT imagesthatare mainly textud: f01.200andf04.200. Their resoltionis 200dpi, size
1728%x2339pixels;

2. Tenimages (IGOH, JOOO,NO3F, NO3H, NO3M, N046, NO4D, NO4H, NO57 and S012) selected
from the University of Washindon Documen ImageDatabael [21]. This datdbasecontans abaut 980
scamed docunentimages The 10 imageswe selected are mostly streakfree, not obviously skewed,
from varioussour@s,andcontain mainly text, little line artandno halftones All tenimageshave 300dpi
resoltion. Eight of theimageshave the samesize 2592x 3300 pixels, while NO3H hassize 2480x 3508
andS0122536x 3308.

All experimers are carriedout on a Pentiun Pro 200MHz, running RedHat Linux 6.0, with 64MB
physical memory We measue encaling time (in sec)usingthe function “clock()” and peakmemaory

usage (in MB) using theUnix commandtop”. We give resutsthatareaveregedover all testimages Our
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codewasnot speifically optimizedfor speed or memoryefficiency.

D.1 Themodified-classdictionary

Table | summarzesthe losdess and lossy coding efficienaes of all the five dictionaries(OPF, SE,
CLASS, TREE and MC). Detail on how lossy coding is perfomed will be preseted in Sectia V.
We shaw the average coddl file sizesandalsothe percetiagesof improvemern over theleas efficient OP
dictionary Comparel to the OP dictionary the compressionimprovementdrom the CLASS, TREEand
MC dictionariesare appraimately the same,about8% for losskesscoding and 16-18% for lossy cod-
ing. For losdesscompresion,the proposedMC desig is basicdly the sameasthe CLASS desgnwhile
slightly worsethanthe TREE desigh. However, for the TREE desgn, the numbes listed are the best
compressionachieed at the optimal dictionary sizes; the encaler hasto exhaugively seach for thee

optimd sizeg[19], [8]. For lossy compression the MC desgn achievesthe bestcompression

D.2 Encodng trade-offs in pagestriping

In this secton, we showthe savingsin encaling time andmemoryusag whenpage striping is applied.
Figure 2 plots encodng time, pe&k memoryusae, and coded file size as functions of the numberof
stripesinto which a pageis split. The dynamicschemeandtheisolatedschane usingthe SEdesgn and
theMC desgn arecompaed. Theresuts shavn arefor losskesscompression similar resuts areobtaned
for lossycompiession

Thesavingsin encodng time from pagestriping areshavn in Figure2 (a). By splitting a pageinto two
stripes,the isolatedschemeaedwcesencodng time by 45%for both dictionaries(closeto thetheoretical
savingsof 50%); the dynamicschemeaeduces enmdingtime by 32%for the MC dictionary and26%for
the SE dictionaly. The dynamicschemepraovideslesstime reducton becaise,instead of startirg from
scrathfor eachstripe, it nealsto consicerthose previousdictionary symbolsanddedde how to usethem.
Splitting theinput imageinto morestripesbringsmoresavingsin encodng time but thereturrs diminish.
Comparirg the four curveswith thecurve 1/n (dotted curwve) in Figure2 (a), we seethatthe four curves
deviate from the curve 1/n asthe numbe of stripesincreases.This is becasethe total encaling time
conssts of two parts patern matchng andother encodng actvities (e.g.,symbolextraction, arithmeitc
bitmap andinteger codng, etc.). While the patten matchng time is roughly inverselyproportional to
the numberof stripes, the time spent on the otheractivities doesnot go down asthe numberof stripes
increases.In the next secton, we will showtha, for a fixed input image,the time spert on theseother

encaling actvitiesis almostfixed.
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Figure 2 (b) shawvs the peakmemoryusageasa function of the numberof stripesusal. We seethat
the dynamic andisolatedschenesusing both SEandMC desigisrequre basicdly the sameamourt of
physical memory This is becawsealthough the dictionaries of the four curvesare of different sizes, the
memorynealedto buffer the dictionariesonly accownts for avery small percentag of the total memory
usage. Most of the memoryis for buffering a pageor pagestripe. By splitting a pageinto 2 stripes,we
save about40% of the peakmemoryconsumption. Using more stripesbrings moresavingsin memory
conaumptionbut with diminishingreturns. The curvesflattenout after 6 stripesaseachstripe becanes
smallenoudn thatthe memoryneedel to bufferit nolonger domindes.

While page striping redues encodng time and memory usaye, this comesat the price of reduced
compressionefficiengy. As shovnin Figure2 (c), thecompressedit ratesincreasestealily asthepageis
codal usingmorestripes. Usingdynamicdictionaries minimizesthis bit ratepenaty. For the MC desn,
the isolated schemewith 8 stripes has18% higher bit rate than with 1 stripe but the dynamicscheme
redwcesthis bit ratependty to 13%;for the SEdesgn, theisolated schemewith 8 stripeshas18% higher
bit ratethanwith 1 stripe but the dynamic schemeeduwcesthis bit rateperalty to 11%.

Figure 3 providesa corvenient way to evaluak the trade-off betweencodng time and bit rate by
showving whatbit rate canbe achieved at a given codng time usinga certaindictionary scheme Figure
3 compaesthefive dictionaryschanesaforanentiored. The numberof stripes usedvariesfrom 1 to 8.
Usingonly 1 stripe (i.e., whole page)encalesthe slowestbut prodwcesthe smallest coded file size (the
lower-rightcornerin Figure3); using 8 stripesrunsthefasestbut produceshebiggestcodedfile size(the
uppe-left correrin Figure3). Thedasedlinesin Figure3 arethelower corvex hull for all the operding
points. Pointsonthis lower corvex hull achieve the bestcompressia usingtheshatestencodng time. In
Figure3, this lower corvex hull is definal by the staticschemgsquae markers). The proposedadapive
schene (“+” markers) operaesvery close to the lower bourdary of corvex hull, achieving time vs. bit
ratetrade-off similar to that of the staticscheme.The dynamicschemeg“x” markerg is the leasttime
efficient dictionaty schemeasit operdesthe farthestfrom the lower corvex hull.

To compargheperformancean thememoryvs. bit ratetradeoff by thefive dictionaryschemeswe plot
codd file sizeasafunction of pe&k memoryconsumedin Figure4. Similarly, theinput imagesarecoded
as1 to 8 stripes. Thedashel lines shaw the lower corvex hull for all the operating points. The dynamic
schene (“x” markerg now definesthis lower corvex hull, meanirg thatit achHevesthe bes compresion
using the leastsystan memory The staticscheme(squaremarkers), which achievesthe besttime vs. bit

ratetradeoff, becanesthe leastefficient in resdving the memoryvs. bit ratetradeoff. The proposed
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adapive scheme(“+” markers) still operdesvery close to the lower corvex hull. Combinel with the
resuts shovn in Figure 3, we conclude that the adapive schemes a robust scremein resdving both
encaling tradeoffs well. Hencethe adapiive schane is a suitalde choice for mostappications, where

systen memoryandencaling time areboth very importantsystemparamegrs.

D.3 Multi- pagedocunentcompression

Multi-pagedoaumentimages area setof imagesscamedfrom the samesource preferably from con-
secuive pages Someissues of compresing multi-page docunentimagesare addressedin [22]. In
multi-pagedocumentcompresion,the samedictionaryupdatng processesisedin page striping canalso
be applied to take advantageof thetext correlationacrsspages.

Tablesll andlll comparethe coding efficiency on three multi-pagedocunentimagesetsusing three
dictionaryschemes(theisolatd, static, anddynamicscheme) combinal with the SEdesgnandthe MC
desiq, respetively. Among the three testsets,two are from the Universty of Washingon Documett
Image Databas |, one of 4 pages (NO4H, NO4I, NO4L and NO4M) and the other of 5 pages(NO1F,
NO1G, NO1H, NO1l andNO1J).They arefrom the samesoure, but not from consecutive pages. Their
scaming condtions areunknown. Thethird setis an 11-pagedocumentwe scanredin from [23], at 300
dpi. Thescamedpagesareconscutive andthe scaming condtions areconrsistert for all pages.

Tablesll andlll shav that compaedto theisolatedscheme, the dynamic schene canimprove com-
press$on by up to 8% for the MC desgn and10%for the SE desig1. Anotherinterestirg pheromenonis
thatthe staticschene usingthe SE desigh alsoachieves4-5% of improvemen over theisolatedscheme
(seeTablell). Whencodng a single-pag document,the SEdictionaryis usudly twice asbig asthe MC
dictionary contaning redurdantbitmapinformaiton; it is therdore lessefficient dueto highindex coding
cost[8]. Whencoding a multi-pagedoaument,however, it is advantageows to usea bigger andmorere-
dundantdictionaly throudhoutall the pages beauseit givesthe symbok from laterpagesabroaderrange
of choices. We hardy seeary improvemert from the static schemeusing the MC desgn becawse the
MC desinis too specfically desigredfor only thefirst page.Figure5 shavs the dictionary sizegrowth
curvesfrom pageto page For our 11-pagetestset,from the fourth pageon, the dictionarysizebecanes
stead, shaving thattheencalerhasgatheredmostusdul bitmapinformaion containedin thisdocumen
set. Theothe two testsetsdo not cortain enoudn pages to showthis trend

Figure6 shovsthetime vs. bit ratetradeoff for thefive dictionaty schremeswhentestdon multi-page
documentscombired with pagestriping. The resuts are averaged over the three multi-pagetestsets.

Five valuesfor the numberof stripesperpageareused 1, 2, 4, 8 and16. At thelower-right corne in the
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Figure,eachpageis encaledasawhole (the numbe of stripesis 1). At the uppe-left comer, eachpage
is processedas 16 stripes. The lower corvex hull (given asthe dasedlines) is still mostly definedby
the staic scheme.The adaptive anddynamic-2 schems opeiatevery closeto the lower bourdary, with
acouwle of points falling onit. For the memoryvs. bit ratetradeoff, we obseave the samerelationshp
betweerthefive schemeasshavn in Figure4.

Summary: Pagestriping redu@sencaling time and physial memoryusagewith reasmably low bit
rate penaty. In page striping, compaed to sendirg isolaed dictionaries for eachstripg dynamially
updding the dictionary can significantly reduce the bit rate peralty incurred. The proposedadapive
dictionaryupdatng schemas robust andcanresole boththetime vs. bit ratetradeoff andthe memory
vs. bit ratetradeoff favorably atthe sameime. The samedynamicdictionaryupdatingtechriguescanbe

appied to multi-pagedocumentimagecompresion andimprove the compresionratio by up to 8-10%.

I11. SPEEDUP TECHNIQUES FOR PATTERN MATCHING

In the previous secton, we propcsedictionary constuction schemesfor pagestriping thatcanredue
memoryusaye andencodng time with minimal sacrfice in coding efficiengy. In this sectbn, we propose
threespeedp techiques for pattern matchirg. Comparedo pagestriping, thesetechriquescan better

resole thetradeoff betwee coding time andbit rate.

A. Limited dictionary symbol search

To desgn the MC dictionary, we growp all symbok into clas®s, chaose classrepresenttivesto go
into the dictionary, andform MSTs for all the dictionary symbds. Suppog a symbd S belongsto a
certan class C, whoserepresentéive is symbd R, which, after theMST construcion procedure,landsin
MST T'. Therefae we know thatthe mismatchbetweernsymbol S andsymbd R mustbe small (though
not alwaysthe smalles}, andthat symbol R is similar (to differentdegree$ to all the othersymbds in
treeT. In additon, we know that all othertreesare sufficiently dissimilar to treeT" becaiseno edge
betweerthemhasweightlower thanthethredold. Therefae, to find the bestmatchfor symbolS in the
dictionary it is likely thatwe needto seachamongonly those symbokthatbelorgto MST T'. To dothis,
we maintah atree-1D valuefor eachsymbolonthe page which specifieshe MST to which this symbols
representaive belongs. To find the matchng dictionary symbolfor the current symbd, we only seart
amongthosedictionarysymbolsthat have the sametree-ID. This cansignficantly redue the numberof
dictionarysymbolsagains which the currert symbd is matched Whethe this limited seach algorithm

will suffer significant bit ratependty depandsonhow mary symbds actualy belorg to thesameMST as
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their bestdictionary matches Laterin this sedion, we showthat this limited seard algarithm cansave

encaling time at almostno coding loss.

B. Early jump-out based on previous best match

When matchingone symbd with anotter, we save the previous lowest mismatchscore the patten
matche compaeson-thefly the current accumulatedmismatchscae agairst the previous lowestone.
If the current mismatchis already above the previous lowest, then we terminate the current matchirg
process. Computingthe Hammingdistance betweentwo symbolsis fad becaseit only requres the
exclusive-OR (XOR) opemtion andincrementing the mismatchscoreaccordngly. Sincecompaing the
two mismatchscores alsotakes time, and we do not want this time to be compaable to the Hamming
distancecalcuation wherewe hope to save time, we do theinteger compaison of mismatt scoresonly
onceperline. At the endof eachline, the current accunulatedmismatchis cheded; if it excealsthe

previouslowest,the patten matching processterminates.

C. Enhanced prescreening

Beforematchirg apair of symbds, it is advantageusto presceenthemby certan featues. Thereis no
needto apply pattan matching to two symbolsthatare obviously disdmilar. For example symbok that
differ gredly in size(e.g. a capitd “D” andacomma®,”) areobviously disdmilar. Theencalerin [12]
presceensusingsymbolsizes only symbds with similar sizes(definedasnot morethan2 pixelsdifferent
in either dimengon) aregivento the patern matcker. Prescreningis intendedto redice the numberof
unnecessay patten matching calls thatwill not returna match. At the sametime, preseeening shoul
notrule out potentially goodmatche. Otherwiseit will incur a high bit ratependty. Therefoe, theideal
presceenng rulesout all “unmatdable” symbok and paseson all “matchale” symbds to the more
expersive paternmatching subrautine.

Otherfeaturescanbe usedin prescreeing besicessymbolsize Onesuchexampk is to usesymbd
areaandor perimete [13], [24]. However, these two featuresarenot particularly helgful for two rea®ns:
they arecorrdatedwith symbolsize,andthey areusudly sengtive to scaming noiseanddigitizationpa-
rametes suchascontrast[13]. A usefd featue for presreenngintroducedin [13] is called the quadant
centoid distance. It is calcdatedasfollows. We divide eachsymbolinto four quadrantsand calcuate
the centrad for eachquadant. To presreentwo symbds, we calculatethe distancebetweeneachpair of
correspondng quadrantcentrads, sumthe four distancesandcompae the total to a preset threstold. A

smalltota distancemeanghat the two symbok have similar massdistribution in all four quadrans; only
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suchsymbd pairsarepasgdonto patiernmatching to be furtherexamined

According to our experiments,in the Englishlanguage,using the Hammingdistance based matchirg
criterion, letter pairsthatareamongthe mosteasily confusedinclude“b” and“h,” “c” and“e,” and"i”
and“l.” In this paper, we proposetwo topdogicd featuesfor preseceening: numberof holesandnumkber
of conrectedcomporents. Prescrening by thes two featuescaneffectively prevent the abore symbd

pairsfrom beinghandel over to the patten matcher

D. Experimental results

In this sectbn, we shav experimental resuts on the three speedp technquespropced,the limited
dictionary searchalgorithm basea on treedD (TID), early jump-out (EJO),and enhancedpresceeniry
(PRES®RN). We consicertwo figuresof merit, the encodng time saved andthebit ratepenaty incurred.

We usethe sametwelve testimagesandthe samecompuer platform asin Sectionll-D. Resultsare
averaggedover all testimages TablelV givesthe total encodng time, time spenton pattern matching,
andcodedfile sizefor eachindividual techrique anddifferent combindions of them,for alosdessSPM
JBIG2encockr. TableV shows the correspondng resuts for alosskessPM&S JBIG2 encockr. We only
show losdesscodng resuts herebecausefor SPM,lossy coding takesextra time to preproces theinput
image,while lossyPM&S will encmdefasterbeausenoresidial coding (coding the original imageagain
basa on the lossy versian already sentusing refinemen codng) [2], [8] is needél. For both casgs,the
amountof extra time neeakd or saved is fixed for a given input image. Therefae, we only consder
losskesscodng now; lossy coding will be consideral in further detal in the next sedion. Thefirst rows
(NONE)in TableslV andV referto usingno speelupsandpresreenng only by size,using a sizeoffset
threshold of 2 pixels (sizedifferencecannot be biggerthan2 pixelsin either dimenson). Usingtighter
size offsetthredholds(i.e., 1 or 0 pixels) canfurther redue the encaling time but at the price of higher
codingloss.In SPM(seeTablelV), patten matchingaccaintsfor up to 90% of thetotal encaling time.
Therestof theencaling time is a fixedvalue of arourd 8.6 seconls. For the PM&S mode(seeTableV),
patten matchirg accounts for up to 45% of the total encaling time. Therestof the encodng time is a
biggerfixedvalueof around 13.3secomls. Usingthe NONE rows asthe basisfor compaison, we give the
percentages of time saved andcodng lossincurred from eachindividud speedp techriqgue andseveral
combirations of them. Thelimited dictionarysearchtechrique (TID) saves15% of the paternmatchirg
time, while caushg almostno coding loss NotethatTID is only applicableto the SPMmodeusing the
MC dictionarydesgn. Theearly jump-out techrique (EJO)sares16% and12% of the paternmatchirg
timein SPMandPM&S, respetively. EJOincursno bit ratepenaty. In SPM,we cancombineTID and
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EJOtogeherto achiese a pure 31%time gain with no codng loss Enhance preseeenirg is the most
efficientwayto save enadingtime. Adding thequadantcentoid distanceto thesizeprescreeing (S+Q)
savesalmost3/4 of the patten matchirg time, while incurring a bit ratependty of around 1%. Addingthe
numbes of holesand conneted compments(S+H+C) saves40% of the patiern matching time, which
is lessefficient thanthe Q featue. However, H+C incursonly a 0.5% bit rate peralty. Combinng all
thesespe@uptechnguestogehersares81% and76% of the patten matchirg time in SPMandPM&S,
respetively. In termsof total encaling time, thesenumbaes trandate into savings of 74% and 33%,
respetively. Thebit rateperalty incurredis relatively small,1.7%for SPMand1.3%for PM&S.

Without the TID techmique eachsymbd searclesamongall dictionary symbolsfor its bestmatch.
For our testimage set, this meansthe average seard rangeis 638 dictionary symbds. With the TID
limited seart methal, however, the average searchrange is reducedto only 34 dictionary symbols a
95%redudion. Conseqently, thetime spen onfinding dictionarymatchedor all symbds is reducedto
5.30secomiswith TID from 19.66secadswithout TID. Without the EJOtechrique, the patten matcter
will examinein full every pair of symbds pasedontoit, i.e., it will go over 100% of the bitmaparea
befare makinga decison. With EJO,however, expelimentsshav that on average only 44%of the bitmap
areawill be examinad. Furthemore, on average89% of all the pattern matchirg calls resut in early
termindion. Although EJOhasto sperd extra time comparng integer mismatchscores, it still reduce
the average numberof CPU clock cycles usedto matchtwo symbok from 68 to 60. An importart
advantageof the TID and EJOtechriquesis that they save encaling time almog “for free”, meaniry
without bit ratepenaty (seeTableslV andV). To seehow enhamedpresceenirg helpseffectively rule
out unlikely matcheswe list the perceriagesof presceenirg pasedin TableVI. Usingthe symbolsize
(S) feature aloneis not efficient enowgh; around 20% of the symbolpairs will still be givento the patten
matchirg process.Adding the numberof holesandnumberof connestedcomporents(S+H+C)reduce
the pass rateto 12%; adding the quadrantcentioid distance(S+Q)only 5% of the symbolpairscanpass
preseceenng. Notethatadding the Q feature alsoresutsin a bit rate peralty twice asbig asadding H+C
(seeTableslV andV). By combiing all three featurestogeherwith symbd size (S+Q+H+C),we can
further redwcethe presceenirg passrate

Figure7 compaestheimpad on the time vs. bit ratetrade-off from the propcsedspeelup techiques
andfrom pagestriping. Resultsfrom the dynamicscreme(‘'x’ markers andthe static scheme (squae
markers) areshownbecaisein pagestriping thesetwo schanesboundtheperformancecurves(seeFigure

3). The MC dictionaryresuts areshavn asan example Thelower corvex hull (dashedlines) is defined
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by thestaic schemausingthe spe@uptecmiques (black squae markers). For thedynamic schene,abig
perfomancegap betwee using the speeduptechiques (bladk ‘X’ markers) and not using the speelup
techriques(gray ‘x’ markers) is obseved. The sameperfamancegapfor the staic schemeis far less
significant. This is beausethe dynamic scheméanvolves more pattern matchirg thanthe staic schane;
the propasespeeluptechnquesall aim atredudng the paternmatchngtime. Notethatwith thespeelup
techriques the dynamic schemenow operaesvery closdy to thelower corvex hull. Sincethe dynamic
dictionaryachievesa giventradeoff point usingmorestripes,it is morememoryefficient.

Finally, in Figure 8 we compae losdess SPM (black markerg and PM&S (gray markers) with and
without the propcsedspeeduptechrniquesbeing apgdied (“NONE” and“ALL” markers). We shaw resuts
using threesizeoffsetthresdolds 2, 1, or 0 pixels. Clearly SPMcompltelydefineshelower corvex hull
(dasledlines) in Figure8. In [8] we shaved that SPMachieesbette losslesscompressionat the price
of longerenmdingtime. SPMis moretime consiming mostly becaiseit requiresmoreextengve patten
matchirg. However, with the propcsed spe@up techriguesfor patten matching the SPM encaling
time canbe significantly reducel; sincethesetechriquesonly incur very smallbit rate pendties, SPM’s
higher coding efficiency is still mostly retaned. If achieving high coding efficiency is of the utmost
importancefor anapplication, thenit shoud useSPMwith aloose presreenig criterion (e.g.,setsize
offsetthrestold to 2 pixels). If theapplicationis willing to toleratea smallcodng lossin orderto encoat
faste, thenit shoud use SPMwith all speedp techiques and usevery tight presceenirg thresholds
(e.g.,setsizeoffsetthrestold to 0). NotethatEJOandTID shauld alwaysbe useal whenapplicable For
othe apgdicationswith intermediaterequrements differentcombirations of the spe@uptechriquesand
pagestriping offer differenttrade-offs.

Summary: The threepropcsed speealup techiques can reduceencaling time by as much as 75%
while only suffering asmallcodinglossof atmost1.7%. Theseaechriquesoffer bettertrade offs betwea
coding time andbit ratethan pagestriping. By applying thesetechnguesto the SPM mode,we obtan

text imagecoding systanstha encod bothefficiently andfast

V. RECONSTRUCTED IMAGE QUALITY CONTROL IN LOSSY COMPRESSION

All theresuls givenin the previous sectio arefor losslesscoding. In this secton, we concentrde on
lossy coding by taking into accaint one morefigure of merit, the numbe of subditution errors in the
recorstrudedimages. We proposeto effectively sugpresssubditution errorsin lossyPM&S andSPMby

using the featuesintroducedin Sectionlll- C.
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A. Lossy PM&S. enhanced prescreening

In PM&S, whenamatchng dictionary symbd is found, theencalersubstitutesit for theactual currert
symbol Therefoe, PM&S is inherently lossy. Whenlosslesscoding is requred, after transmiting the
lossyimage,the encocer usesaresidwal coder to refinethe lossy imageto its original versian [2]. Using
the Hammingdistarce matchirg criterion andamismatchthresold of 20%,lossy PM&S resulsin mary
subditution errorsbetweae letterpairssuchas"i” and“l,” “b” and“h,” “u” and“n,” andsoon. To redue
subditution errors atighter mismatchthrestold (e.g.,10%) canbe apgied; however, this increasesthe
encaling time andthe coded file size Alternatively, a more sophisticated matchirg criterion (e.g.,the
CTM techngue propasedin [27]) can be apdied, but such criteria are uswally very compuationally
intersive. A simpleandeffective way to suppesssubsitution errorsis to usethe enhamedpresceenirg
as proposedin Sectionlll-C. For example, presreenng with the featue numberof holescan easily
prevert “b” and“h” from being confused;usingthe numberof comectal comporentseasilydistinguishes

[T}

betweerti” and“l;” andquadrantcentoid distancecanoftentell “u” and“n” apart.

B. Lossy SPM: feature-monitored shape unifying

To achieve lossycompressionwith SPM, the encaler preprocesesthe inputimageto introduceinfor-
mationloss. In [12] three processimy technguesare proposed: speck elimination, edge smoothing and
shape unifying. Speckelimination wipesout very tiny symbds (symbds no bigger than2x2). Edge
smoothng fixesjagged edgesby flipping protruding sinde bladk pixels or inderted single white pixels
along text edges Shapeunifying tries to malke the current symbd bitmap as similar as possble to its
referencebitmap,without introducingtoo muchvisual charge. Thisis achevedby flipping pixelsin the
current bitmapif they areisolatedareasof differencewith the refererce bitmap We usethe term“iso-
lated’ to meana 1x1, 1x2, or 2x 1 block of pixels. The modifiedbitmapis thenlosslessly codedwith
refinemem coding.

The advantageof permitting only isolated errars in shge unifying is that visual informationlossin
the recorstruded imageis almostimpereptible. However, sucha restiction also puts a limit on the
lossycodng efficiency. To improve the codng efficiency, shae unifying shoul allow not just isolated
errors, but someclusteed onesaswell, aslong astherisk of chamlactersubgitution is keptlow. To limit
this risk, we propaseto monitar the shape unifying procedureusing two featues,the numbe of holes
andthe numberof conrectedcomporents. For eachcluster of differencesbetweenthe current bitmap

andits match,if eliminating it will not caus the featuresto charge, we go on with shapeunifying and

April 22,2003 DRAFT



EDICS:IP 1.1 (IMAGE PROCESSING:CODING) 18

eliminate this differencecluger; othemwise, we preseve it to prevent a likely subsitution error from
occuring. As anexample,Figure9 shavsthe“b” and“h” pairandthe®” and”l” pairandthedifference
mapsbetweenthem. In Figure9 (a), we canchangethe“b” bitmapnot only at the isolated singe-pixel
location, but at all the gray pixel locations, asthey will not caus the intemal holein “b” to disgopear
But, thebladk 10-pxel cluste of differencesdowvn at the bottommustbe preserved. Otherwise a reacker
would pereeive an“h” insteal of a“b.” Similarly, in Figure9 (b), we canchange the“i” bitmapatall the
gray locations but not at the black ones becase changing the bladk locations will cau® the “i” bitmap
to be comectedinto onewhole piece, resuting in a subgitution errar. Thoudh not shawvn in Figure 9,
feature monitaring can also help prevent subgitutions betweencertan letter pairs that have the same
featues,e.g.,"n” and“u” or“e” and“o.” In compaing the bitmapsof “n” and“u,” there are basially
two areaswherea sulstantal numberof clusteredpixels differ: the cener top andthe centerbottom.
Modifying theuppe cluste of pixelsin the*n” bitmapto matchthe“u” bitmapwill causethen” to split
into two separge conrectedcomporents. Monitoring basedon the numberof conrectedcomporents
will preventthis. Likewise, modifying the lower cluster of pixels in the “n” bitmap to matchthe “u”
will caus the lower opering in the“n” to close geneating oneinternal hole. Monitoring basedon the
numberof holes will preventthis. If we wereto considermodifying the upper andlower pixel clusters
simultaneoudy, the“n” bitmapcoud becanea“u” bitmap andthetopological featuresremainthe same.
But we do not do that. By considerng eachdifference cluster sepaately, the topologicd featuesblock
the bitmap alterdion, thereby preverting a subsitution errar. Modifyi ng the current symbds at more
locatons improves refinemen coding efficiency by making symbobk more similar to their references.
At the sametime, ensuing certain featue valuesare maintaired allows us to suppessmary case of

charater subsitutions.

C. Experimental results

Wefirst look atlossyPM&S andshav how enhancedpresreenng effectively supresgssubsitution
errors in addtion to redwing encodng time. Table VIl shows the encaling time, codel file size,and
percentageof subditution errors for lossyPM&S usingdifferent mismatchthresholds and preseeeniry
featues. A tight mismatchthreshold of 10% resuts in very rare substtution errors (abou 1 in every
1,000symbds). With alooserthreshold of 20%, whenpresceenng just by size the sysemsuffersex-
cessie subditution errars of around 3%, andthe recanstructed imageslook confusing and sometmes
objectionable. With enharcedpreseceenng, the subditution risk is madel 2 timeslower at 0.25%.More-

over, encaling is made28%faser. Although the average codd file sizeis 33% bigger (13,434bytesas
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oppacsedto 10,105bytes) at 13,434 bytes/imagethereconsructed imageshave satifying quality; atonly

10,1® bytes/image someimportanttext informationfrom theoriginal imagess lost, whichis expressed
in the form of mary substtution errors that we see. Although not shownherg our expelimentsalso
shaved that without enharted prexreenig, the bit rate goes down stealily asthe mismatchthresold

goesup. With enhamredpresreenng, however, further loosenirg the mismatchthresholdwill not resut

in furtherredwction in bit rate;insteal the bit ratehits afloor. This againshavs thatenhancedpresceen-
ing canguad agairst exces$ve lossof importart text informationin theimages Comparel to usingthe
tight 10% mismatchthrestold, the substtution risk from enhared presreenng is only 2 timeshigher,

while theencodng is 20% moreefficientand66%faster

Forlossy SPM,welist in TableVIll thecodedfile size,encodng time, andperentag of substtution
errors for shage unifying with andwithout feature monitoring. We usethreeerror size thresholds, 2%,
4% and6% of the symbd size We restrid the sizeof a pemissibleerrar cluster becaisebig error clus-
ters(evenif they do not chang the featues) cawse significant visud informationloss As aresult the
recorstruded imagewill contan a large numberof distortedtext charaters. Suchdistorted “garbage”
charaters,if they exist, are also counted as subgitutionsandincludedin the numbersshovn in Table
VIII. A bigger symbol cantolerate a bigger error cluster. Therefae, we setthe error sizethresholdto
be proportional to the symbd sizeg i.e., differenceclustas smalle thana certan percenageof the sym-
bol sizearedeemedgnorable. Comparedo the unmonibredversim, featue monitored shae unifying
suffers 55-66% fewer subditution errars at all three error size thresholds, meanirgy thatit canmore ef-
fectively avoid losing visually importart text information However, feature monitored shage unifying is
more computaiondly demarmling becaiseevery cluste of differences with sizebelowthe thresold has
to be checledto seeif ignoring it will resut in chang of featues. The feature monitared version takes
abou 40%longer to encodk thanits unmonibredcourterpat.

To compaelossy PM&S using enhancedpreseeenirg with featuremonitoredlossySPM,we compae
thetwo shaledentiiesin TablesVIl andVIIl. At similar bit rates (13,024and 13,434), monitored lossy
SPMsuffers 6 timesfewer substtution errors(0.04%compare to 0.25%)but alsotakes 15 timeslonger
to encale (156 seccomparel to 10 sec).Furthemore,compaedto using atight 10% mismatchthresold
in PM&S (lastrow in Table VII), monitored SPM using a 2% threslold (shadad entry in Table VIII)
is 20% more efficient (13,024 compaed to 16,687 and 2/3 lesssubject to sulstitution errars (0.04%
compaedto 0.12%)but takes5 timeslonger to encoc. For an apgication that doesnot require real-

time communi@tiors, lossy SPMis a betterchoice becawseit offers betterrecorstruded imagequality
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atlower or compagblebit rates.A real-ime application, however, shauld chosethe PM&S modewith
enhancedpresceening becauseit is muchfaste andoffers satigactay quality.

Finally, Fig. 10 showsa portion of the original imageNO3H (Fig. 10 (a)) anda setof recanstriwcted
imagesfrom lossy PM&S and SPM using different systan setips. For lossy PM&S (Fig. 10 (b)-(d)),
enhancedpresceenirg effectively supresss the subsitutions between*b” and“h” and“c” and“e,
achievingqudity similar to thetighter 10%threshold For lossy SPM, at all threeerrar sizethreslolds,
feature monitoring (Fig. 10 (e)-(g) sucessfily retairs the interral hole in “b” that is important for
correct letter identification.

Summary: Whenusedin lossy PM&S, in addtion to redwing 30% of encodng time, enhanced
presceenng can also effectively suppess11 out of every 12 sutstitution errars. For lossy SPM, the
proposedfeature monitored shapeunifying cansucaessfuly suppessmorethanhalf of all subsitution
errors. In compaing lossy PM&S with SPM,wefoundthatSPMoffersbeterrecanstructedimagequality
(significantly fewer substitution errorg at similar or lower bit rates,but at the price of longe encaling

time.

V. CONCLUSION

In this pape, we propcse seseral waysto reducethe encaling time, memoryconsumptian, and sub-
stitution errorsfor text imagecodng with JBIG2. We first look at pagestriping andproposedictionary
updaing proceduresfor the singeton exclusion and modified classdictionaties. With thesedynamic
updaing techngues, pagestriping using 2 stripes gives 30% of savzingsin encaling time and 40% of
savingsin memoryconsumption,while suffering only 1.5%of bit ratepenaty. More savzingsin time and
memorycanbe obtainedby usingmoresstripes but with diminishing retums. We invedigatetwo encod
ing tradeoffs in pagestriping: the time vs. bit ratetradeoff andthe memoryvs. bit ratetradeoff. We
proposean adayive dictionary updatng schemethat canachieve robust perforomancein both tradeoffs
whencompaedwith othe non-adapive dictionaryconstuction schremes Wethenpropcsethree spe@up
techriquesfor patten matchirg. Whencombiredtogeher, thes techngguescanreduce coding time by
upto 75%while incurring at most1.7%coding loss. Comparedvith pagestriping, the proposedspe&up
techriquescanbetterresdve thetime vs. bit ratetrade-off. However, pagestriping is still necesaryfor
memory-imited applications. For lossy compression in addtion to bit rate,codng time, and memory
usage, we also conster the numbe of sulstitution errars as the measue for the recongructed image
quaity. ForlossyPM&S, we useenhancedpreseeenirg to redice charater subditutions by 12 times

andsave encaling time by 30% at the sametime. For lossy SPM, we propcse feature monitored shape
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unifying to suppess1/2 to 2/3 of the total substitution errors. Comparedo lossy PM&S, losyy SPM
using feature monitoredshape unifying achievesbetterrecanstructedimagequality at similar or lower bit

rate,but atthe price of longer encaling time.
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