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Abstract

In this paper, we investigate waysto reduceencoding time, memory consumption andsubstitutionerrors for

text imagecompressionwith JBIG2. We first look at pagestripingwheretheencoder splits the input imageinto

horizontal stripesandprocessesonestripeat a time. We proposedynamicdictionaryupdating procedures for page

stripingto reduce thebit ratepenaltyit incurs. Experimentsshow thatsplitting theimageinto two stripescansave

30%of encoding time and40%of physicalmemory with a small coding lossof about1.5%. Usingmorestripes

brings furthersavings in time andmemory but thereturn diminishes.We alsoproposeanadaptive way to update

thedictionary only whenit hasbecomeout-of-date.Theadaptiveupdatingschemecanresolve thetimevs.bit rate

trade-off andthememory vs.bit ratetrade-off well simultaneously. We thenproposethreespeedup techniquesfor

patternmatching, themosttime-consumingencoding activity in JBIG2. Whencombinedtogether, thesespeedup

techniquescansave up to 75%of the total encoding time with at most1.7%of bit ratepenalty. Finally, we look

at improving reconstructedimagequality for lossycompression. We proposeenhancedprescreening andfeature

monitoredshapeunifying to significantlyreducesubstitutionerrors in thereconstructedimages.
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I . INTRODUCTION

TheJBIG2standard[1], [2] is thenew international standardfor bi-level imagecompression.Bi-level

imageshave only one bit-plane, whereeachpixel takes one of two possible colors. Prior to JBIG2,

facsimile standardssuchas ITU-T recommendations T.4, T.6, and T.82 (JBIG1) [3], [4], [5], [6], [7]

provide only for losslesscompressionof bi-level images. JBIG2 is the first one that alsoprovides for

lossycompression. A properly designedJBIG2 encoder not only achieveshigher losslesscompression

ratios than the other existing standards, but also enables very efficient lossy compressionwith almost

unnoticeable informationloss[8].

A typical JBIG2 encoder first segments an imageinto different regions [9] and then usesdifferent

coding mechanisms for text and for halftones. In this paper, we areconcernedwith compressingtext

images. We definetext images asbi-level imageswhich consist mainly of repeatedtext charactersand

possibly somegeneral graphic data(e.g.,line art) but no halftones.In JBIG2,thecoding of text is based

on pattern matching techniques[1]. JBIG2 definestwo modesfor text compression: pattern matching

and substitution (PM&S) [10], [11] andsoft pattern matching (SPM)[12]. For general graphic datanot

identified astext, theencoder usesa basicbitmapcoder suchasspecified by JBIG1or T.6. This is called

cleanup coding.

Onatypical pageof text, therearemany repeatedcharacters. Wecall thebitmapof acharacterinstance

a“symbol.” Wecanextract symbols from theinput imageusing astandardconnectedcomponentanalysis

algorithm [13]. In English andmany other languages,mostcharactersarerepresented by oneconnected

pieceandhence areextracted asonesymbol. For charactersthat contain separated parts, e.g.,English

letter “i” or “j”, we usea postprocessing stepto identify a dot (a small symbol)andput it backonto its

stemto form onesymbol.

Ratherthancoding all thepixels of eachsymbolon thepage,we code thebitmaps of a representative

subset andput theminto the symbol dictionary. Then,eachsymbolon the pageis codedby giving its

position on the pageandthe index of its bestmatching symbol in the dictionary. In the PM&S mode,

the bitmap of the bestmatchdictionarysymbolgetsdirectly substituted for the current symbolon the

reconstructed page. In the SPM mode,we transmit a losslesscoding of the current symbol’s actual

bitmapbasedonthatof its matchingdictionarysymbol. This losslesscoding, calledrefinementcoding, is

doneby context-basedarithmeticcoding usingacontext drawn from boththebestmatchbitmap,andthe

already codedpartof thecurrent bitmap [1]. In our work, we usetheHammingdistancebasedmatching

criterion which measures thepercentage of differentpixelsbetween two symbols.
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The idea of text imagecompressionbasedon pattern matching appeared several decades ago [10],

[11]. However, the main obstacle to its practical implementation was its high cost. From the point of

view of physical memoryconsumption, buffering the entireinput page(or a big portion of it asin page

striping) is muchmoreexpensive thanbuffering only a few lines of the input page,asneededin T.4, T.6

or T.82 (JBIG1). From the point of view of encoding time, pattern matching is computationally very

intensive. Recentadvancesin the CPU andmemorytechnologieshave madeit possible to practically

implement pattern matching basedtext imagecoding systems. However, it is still of great importance

for many applications to limit physical memoryconsumption and/or to encode faster. In this paper, we

investigateseveral techniques to lower memoryconsumptionandto reduceencoding time in JBIG2. To

save physical memory, JBIG2allowspage striping wheretheencodersplits apage imageinto horizontal

stripesof approximately equal sizes andprocessesonestripe at a time. Becausethe encoderdeals with

fewer symbols at a time, pagestriping alsoreducesencoding time. Thedisadvantageof pagestriping is

that it offers lower compressionefficiency comparedto coding thepageasa whole. However, sincetext

symbols on thesamepageareusually very similar, whencoding thecurrent stripe,someof theexisting

dictionarysymbols canbe re-used to reducethe compressionloss. In JBIG2, this is doneby sending a

1-bit flag for eachdictionarysymbol to signal to thedecoderwhetherthecurrent symbolis to beretained

or discardedafter the current stripe is decoded. In this paper, we proposedynamicdictionary updating

proceduresto retain useful dictionary symbolsanddiscard obsolete ones[15]. We alsoinvestigatetwo

encoding trade-offs in page striping: the coding time vs. bit rate trade-off and the memoryusage vs.

bit rate trade-off. We proposean adaptive dictionary updating scheme that canresolve both trade-offs

favorably at thesametime.

A JBIG2 coding system for text imagesconsistsof several components: symbol extraction, pattern

matching, arithmetic/Huffman integer/bitmapcoding, andsoon. To speed up arithmeticbitmapcoding,

JBIG2allowstypical prediction (TP) asspecifiedin JBIG1[5] andtypical prediction for residue(TPR)

as proposedin [14]. In this paper, we focus instead on reducing the encoding time spenton pattern

matching. In losslessSPMmode,our experimentsshow that,evenusing the simpleHammingdistance

matching criterion, pattern matching cantake asmuchas90%of the total encoding time. In this paper,

weproposethreespeedup techniquesthatsignificantly reducetheamountof pattern matching timewhile

losing little in coding efficiency. Thesespeedup techniques aremoreefficient thanpage striping in terms

of trading off compressionandcoding time. Nevertheless,pagestriping is still necessaryfor applications

with limited physical memory.
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In lossycompression,we consideronemorefigureof merit, the reconstructedimagequality. Criteria

suchasPeakSignalto NoiseRatio(PSNR)commonlyusedin measuring gray-scaleimagequality arenot

suitable for bi-level images. For bi-level text images,it is very important to beableto correctly recognize

asmany text charactersaspossible at the receiver. If a pair of corresponding charactersin the original

andthereconstructedimagesareperceivedto bedifferentby a humanobserver, thena substitution error

hasoccurred. In this paper, we usethe numberof substitution errors asa quantitative measure for the

reconstructedimagequality, andwe proposetechniquesfor suppressing substitution errors.

This paperis organizedasfollows. In SectionII, we elaborateon pagestriping andproposeto update

the current dictionary from dictionariesfor previous stripes. We give results on the savings in time and

memoryusageand the bit ratepenalty incurred. We also compare the performanceof five dictionary

construction schemeswhenused in page striping. In SectionIII, we proposethreespeedup techniques

for pattern matching. In SectionIV we proposewaysto suppresssubstitution errorsin thereconstructed

imagesfor lossyPM&S andlossySPM.We concludeour paper in SectionV.

I I . DYNAMIC DICTIONARY CONSTRUCTION FOR PAGE STRIPING

In this section, we quickly review four previousdictionarydesigns,theone-pass,singletonexclusion,

class-based andtree-baseddictionaries,andproposea new staticdictionary design calledthe modified-

classdesign. To reduce the bit ratepenalty incurred by pagestriping, we proposedynamic dictionary

updating techniquesfor thesingletonexclusion dictionary andthe modified-classdictionary. We inves-

tigatethe encoding trade-offs between memoryandbit rateandbetween coding time andbit ratewhen

using differentdynamic dictionaryconstruction schemes.In particular, weproposeanadaptivedictionary

updating schemethatcanresolve bothtrade-offs favorably at thesametime.

A. Static symbol dictionary design

In this section, we take losslesscompressionasan example. We will addresslossy compression in

further detail in SectionIV. The one-pass(OP) dictionary [12] is formed in a sequential way. The

encodermatcheseachnewly extractedsymbolwith thecurrent dictionary. If the lowestmismatchfound

is below a preset threshold, the new symbol is encodedwith refinementcoding using the bestmatchas

its reference.Otherwise,thenew symbolis encodeddirectly usinga JBIG1typeof arithmeticcoder; this

is called direct coding. Either way, the new symbol is addedto the dictionary. The main disadvantage

of theOPdictionaryis that it containsmany singletonswhich aresymbols never referencedby any other

symbols [17]. Singletons aredetrimental to coding efficiency becausethey do not provide any useful
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referenceinformation yet dictionary indicesareassignedto themanyway, thus increasing the average

length of all indices.By excluding singletonsfrom theOPdictionary, we obtain thesingletonexclusion

(SE)dictionary.

Previously we have proposedthe class-based(CLASS)[18] andtree-based(TREE) [19] symboldic-

tionary designsfor SPM-basedJBIG2. Comparedwith thesimpler OPandSEdictionaries, theCLASS

andTREE dictionariescanimprovecompressionby up to 8%for losslessand17%for lossy compression

[8]. In this paper, we proposea new dictionarydesign called themodified-class(MC) design [15] which

combinesthe ideasof the CLASSandTREEdesigns. Designof the MC dictionary foll ows two steps.

At the first step,asin the CLASSdesign, we groupall extractedsymbolsinto classesby pointing them

to their closest match.For eachclass,wechooseits representative asthesymbolwith thelowestaverage

mismatchwithin theclass.Weputall representativesinto thedictionary. Thesecondstepfollows theidea

of theTREEdesign. Weconnecteachpair of symbols with aweighted edgewheretheweightis themis-

matchscorebetweenthetwo symbols; if themismatchscoreis biggerthanthethreshold, thenthereis no

edgeconnecting thesymbolpair. Thiswayweobtain matching graphsamongall dictionarysymbols(i.e.,

classrepresentatives). We thenconstruct minimum spanning trees(MSTs) from thesematching graphs

using Kruskal’s algorithm [20]. For eachMST, we choose its root randomly asany nodewith degree

bigger than1 [19], [8]. TheMC designimprovesover theCLASS design becausethereferencerelation-

ships amongall dictionary symbols asgiven by the MSTs have the lowest total mismatch(the CLASS

design usestheconcept of super-classeswhich aresuboptimal). TheMC design is alsocomputationally

lesscomplex thantheTREE design.

B. Dynamic dictionary update

Pagestriping is an encoding modedefinedin the JBIG2 standard[1] that allows the encoder to split

the input pageinto horizontalstripes of approximatelyequal sizesandencodeonestripe at a time. Page

striping lowers memoryrequirements for both the encoder and the decoder. Another benefitof page

striping is that it reducesthe encoding time by reducing the time spent on pattern matching. To decide

which symbolsfrom the input pagewill go into the dictionary, the encoder needsto perform pattern

matching on all extracted symbols. Therefore, if the input pagecontains � symbolsin total, andpage

striping is notused,thetimeneeded for patternmatching is proportional to ��� . By splitting theimageinto

two stripes,thepattern matching timecanbeapproximately cut in half ( ���
	��
����� ��� ������� ). However,

pagestripinglowerscompressionefficiency if theencodersendscompletelyseparatedictionariesfor each

stripe. To reducethis coding loss,rather thancoding eachstripecompletely separately, wereusesomeof
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thedictionarysymbols from previousstripesto codethecurrentstripe. This is basedon theobservation

that the fonts andsizes of the text characters in onepageareusually very similar. We proposeseparate

updating processesfor theSEdictionary andtheMC dictionary.

Updating anSEdictionary is straightforward. For eachnew symbol in thecurrent stripe, theencoder

matches it with not only all theprevioussymbols in thecurrent stripe, but alsoall thesymbolsfrom the

dictionaryusedfor the previous stripe. Theencoder thenusesits closest matchasits referencesymbol

andadds the new symbol to the dictionary. After the current stripe is processed,the encoderexamines

the new dictionary andexcludesall singletons from it. Thosepreviousdictionarysymbols that arenot

usedby any symbol in thecurrent stripearealsoexpunged.This way, new symbolsuseful for thecurrent

stripe get includedin thenew dictionary, andold dictionarysymbols thatareobsoletearediscarded.

Thedesign of anMC dictionaryconsists of two steps, thefirst of which is to form classesandchoose

representatives. In the dictionary updating procedure,we perform this stepon the combined setof all

previousdictionarysymbols andall new symbolsfrom thecurrent stripe. If apreviousdictionary symbol

hasthelowestaveragein-classmismatch, it will benaturally selectedastherepresentative,which means

the encoder candirectly reuseits bitmap without sending it to the decoder again. In the casethat the

symbolwith thelowestin-classmismatchis not anexisting dictionary symbol, if thereis anexisting dic-

tionary symbol whoseaveragein-classmismatchis slightly higher thanthelowestonebut thedifference

betweenthemis below a preset threshold, we still choosetheexisting dictionary symbolastherepresen-

tative. Thisallowsusto makeuseof many previousdictionarysymbols; weonly chooseanew symbolas

therepresentative if all theexisting onesaretoo inaccurate. Thesecond design stepis to form MSTsfor

thedictionarysymbols. In Figure1, weshow pre-existing dictionary symbols in grayandnew onesfrom

thecurrentstripein black. Numbersalongtheedges indicatethemismatchscores between thesymbols.

With thesemismatchvalues (Figure1 (a)), Kruskal’salgorithm will produceanMST thatincludesedges

connecting the four gray nodes. However, the mismatchscoresandreferencerelationships amongthe

pre-existing symbols aremeaninglessbecausethedecoderalreadyhastheir bitmaps. Therefore, we can

connectall existingsymbolswith zero-weightedges(thedash-dotted grayedgesin Figure1 (b)). Wethen

go on andapplytheusualKruskal’s algorithm. This guarantees thateach resulting MST hasat mostone

graynoderepresentingapreviousdictionarysymbol; someMSTsmayhavenogray nodes if they consist

of new symbols from thecurrentstripeonly. For anMST containing oneexisting dictionary symbol, this

symbolis usedasthetreeroot sinceits bitmapis alreadyknown to thedecoder. For anMST containing

only symbolsfrom thecurrent stripe, its root is selectedrandomly asany node with degreebigger than1
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asin thestatic design. After thenew dictionary is decided,thosepreviousdictionarysymbolsthatarenot

usedin thenew dictionaryareconsideredobsoleteandwill beexcluded.

C. Encoding trade-offs in page striping

Pagestriping reducesmemoryusage andencodingtime but incurs a bit ratepenalty. In this paper, we

focus on two encoding trade-offs in page striping: the trade-off betweenencoding time andbit rateand

the trade-off betweenmemoryusageandbit rate. We compare several dictionaryconstruction schemes

for pagestriping in termsof their performancesin bothtrade-offs.

Depending on thecharacteristics of the text in the input page,we should usedifferent dictionarycon-

struction schemesfor pagestriping. If thetext containedin thefirst stripeis averyaccuraterepresentation

of the text in the entire page,thenwe candesign the dictionaryonly oncefrom the first stripe anduse

it throughout the entirepage. We call this the static scheme. On the contrary, if the text in the current

stripe is completely different from that in the previous stripe (e.g., the previousstripe containsregular

Englishtext andthecurrent stripecontains mathsymbols), thenwe shoulddesign a completely isolated

dictionaryfor thecurrent stripe usingonly text symbolsfrom thecurrent stripe. We call this the isolated

scheme. The moregeneral caseis that sometext symbols in the current stripe aresimilar to thosein

previous stripes but therearealso new symbols not seenbefore. In this case,we should usethe pro-

posed dynamicupdating proceduresto reusecertain previousdictionarysymbols, discard those that are

obsolete, andaddnew symbols from the current stripe into the dictionary if necessary. We canupdate

thedictionary for every new stripe (we call it thedynamic scheme), or we canupdate thedictionary for

every other stripe (we call it thedynamic-2 scheme). Comparedto thestatic or the isolatedscheme,the

dynamic schemereducesthe bit ratepenalty incurred by page striping but alsotakeslonger to encode.

This is becausethe dynamic scheme needs to perform additional pattern matchingbetween symbols in

thecurrentstripeandsymbols in thepreviousdictionary, anddecide which ones to reuse, to discard,or

to add. Compared to thedynamicscheme,thedynamic-2 schemereduces theencodingtime by updating

thedictionaryhalf asfrequently. However, how oftenthedictionaryis updatedshould ultimately depend

upontherateat which text symbolschangefrom stripeto stripe. Sincethis text change rateis not known

beforehandandis oftennotconstantwithin apage, weproposeanadaptivedictionaryupdatingtechnique

thatautomatically decidesif theexisting dictionaryhasbecomeout-of-date (i.e., enough symbols in the

current stripecannot berepresentedby theexisting dictionarysymbols) andupdatesthedictionaryonly

whenit is out-of-date. We will call this theadaptive scheme.
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C.1 Adaptive dictionaryupdate

Oneproperty thattheadaptivedictionaryupdating schememusthaveis that thedecisionabout whether

the dictionary hasbecomeout-of-date mustbe madequickly. A complicateddecision will prolong the

encodingtimeandnegatively affect thetimevs.bit ratetrade-off. Weproposeasimpleandfastprocedure

to automatically decide if the dictionary is out-of-date. The dictionary is updated at most every two

stripes. This meansif thedictionaryhasjust beenupdated for thepreviousstripe, thentheencoderwill

useit directly to codethecurrent stripe. But duringthecodingof thecurrent stripe,theencodercalculates

two values, theaveragemismatchandthepercentageof unmatchedsymbols for thecurrent stripe. These

two valuesshow how well thesymbols in thecurrentstripe canberepresentedby theexisting dictionary

symbols. Theencoder thencomparesthesetwo valuesfor the current stripe with thosefor theprevious

stripe. If either valuehasincreasedsignificantly, i.e.,either thecurrentaveragemismatchis morethan1.5

timesasbig asthepreviousaveragemismatch or thecurrent unmatchedpercentage is twice theprevious

unmatchedpercentage,then theencoderdecidesthattheexisting dictionaryhasbecomeout-of-date. The

encoder thenswitches on the UPDATE DICT flag andupdatesthe dictionary for the subsequent stripe.

Note that thecalculation of theaverage mismatchandunmatchedpercentage is very fastsinceit canbe

carriedout at thesametime asthecurrentstripeis beingencoded.

D. Experimental results

Unlessotherwise stated, all experimental results presented in this paperare obtainedfrom a set of

twelve testimagesfrom two sources.

1. Two CCITT imagesthataremainly textual: f01 200andf04 200. Their resolution is 200dpi, size

1728� 2339pixels;

2. Ten images (IG0H, J00O,N03F, N03H, N03M, N046, N04D, N04H, N057 and S012)selected

from theUniversity of Washington Document ImageDatabaseI [21]. This databasecontains about 980

scanneddocument images. The 10 imageswe selected aremostly streak-free, not obviously skewed,

from varioussources,andcontainmainly text, little line artandnohalftones. All tenimageshave300dpi

resolution. Eight of theimageshave thesamesize2592� 3300pixels,while N03H hassize2480� 3508

andS0122536� 3308.

All experiments arecarriedout on a Pentium Pro 200MHz, running RedHat Linux 6.0, with 64MB

physical memory. We measure encoding time (in sec)using the function “clock()” andpeakmemory

usage(in MB) using theUnix command“top” . Wegiveresults thatareaveragedoverall testimages. Our
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codewasnot specifically optimizedfor speedor memoryefficiency.

D.1 Themodified-classdictionary

Table I summarizes the lossless and lossy coding efficiencies of all the five dictionaries(OP, SE,

CLASS, TREE and MC). Detail on how lossy coding is performed will be presented in Section IV.

Weshow theaveragecoded file sizesandalsothepercentagesof improvement over theleast efficient OP

dictionary. Compared to theOPdictionary, thecompressionimprovementsfrom theCLASS,TREEand

MC dictionariesareapproximately the same,about8% for losslesscoding and16-18% for lossycod-

ing. For losslesscompression,theproposedMC design is basically thesameastheCLASSdesign while

slightly worsethan the TREE design. However, for the TREE design, the numbers listed are the best

compressionachieved at the optimal dictionary sizes; the encoder hasto exhaustively search for these

optimal sizes[19], [8]. For lossy compression, theMC design achievesthebestcompression.

D.2 Encoding trade-offs in pagestriping

In thissection, weshowthesavingsin encoding timeandmemoryusagewhenpagestriping is applied.

Figure 2 plots encoding time, peak memoryusage, and coded file size as functions of the numberof

stripesinto which a pageis split. ThedynamicschemeandtheisolatedschemeusingtheSEdesign and

theMC design arecompared.Theresultsshown arefor losslesscompression; similar resultsareobtained

for lossycompression.

Thesavingsin encoding timefrom pagestriping areshown in Figure2 (a). By splitting apageinto two

stripes,the isolatedschemereducesencoding time by 45%for bothdictionaries(closeto thetheoretical

savingsof 50%);thedynamicschemereducesencodingtime by 32%for theMC dictionaryand26%for

the SE dictionary. The dynamicschemeprovideslesstime reduction because,instead of starting from

scratchfor eachstripe,it needsto considerthosepreviousdictionary symbolsanddecidehow to usethem.

Splitting theinput imageinto morestripesbringsmoresavingsin encoding timebut thereturnsdiminish.

Comparing thefour curveswith thecurve ����� (dottedcurve) in Figure2 (a),we seethat thefour curves

deviate from the curve ����� asthe number of stripesincreases.This is becausethe total encoding time

consistsof two parts, patternmatching andother encoding activities (e.g.,symbolextraction, arithmetic

bitmapandinteger coding, etc.). While the pattern matching time is roughly inverselyproportional to

the numberof stripes, the time spent on the otheractivities doesnot go down asthe numberof stripes

increases.In the next section, we will showthat, for a fixed input image,the time spent on theseother

encoding activitiesis almostfixed.
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Figure2 (b) shows the peakmemoryusageasa function of the numberof stripesused. We seethat

thedynamicandisolatedschemesusing both SEandMC designs require basically thesameamount of

physical memory. This is becausealthough the dictionaries of the four curvesareof differentsizes, the

memoryneededto buffer thedictionariesonly accountsfor a very smallpercentage of thetotal memory

usage. Most of thememoryis for bufferinga pageor pagestripe. By splitting a pageinto 2 stripes,we

save about40% of the peakmemoryconsumption. Using morestripesbrings moresavings in memory

consumptionbut with diminishingreturns. Thecurvesflattenout after 6 stripesaseachstripe becomes

smallenough thatthememoryneeded to buffer it no longer dominates.

While page striping reduces encoding time and memoryusage, this comesat the price of reduced

compressionefficiency. As shown in Figure2 (c), thecompressedbit ratesincreasesteadily asthepageis

coded usingmorestripes. Usingdynamicdictionariesminimizesthisbit ratepenalty. For theMC design,

the isolated schemewith 8 stripeshas18% higher bit rate than with 1 stripe, but the dynamicscheme

reducesthis bit ratepenalty to 13%;for theSEdesign, theisolatedschemewith 8 stripeshas18%higher

bit ratethanwith 1 stripe, but thedynamic schemereducesthis bit ratepenalty to 11%.

Figure 3 providesa convenient way to evaluate the trade-off betweencoding time and bit rate by

showing whatbit ratecanbeachievedat a givencoding time usinga certaindictionaryscheme. Figure

3 comparesthefive dictionaryschemesaforementioned. Thenumberof stripes usedvariesfrom 1 to 8.

Usingonly 1 stripe (i.e., whole page)encodestheslowestbut producesthesmallest codedfile size(the

lower-rightcornerin Figure3); using 8 stripesrunsthefastestbut producesthebiggestcodedfile size(the

upper-left corner in Figure3). Thedashedlines in Figure3 arethelowerconvex hull for all theoperating

points. Pointsonthis lowerconvex hull achievethebestcompression usingtheshortestencoding time. In

Figure3, this lower convex hull is defined by thestaticscheme(square markers). Theproposedadaptive

scheme (“+” markers)operatesvery close to the lower boundary of convex hull, achieving time vs. bit

ratetrade-off similar to that of the staticscheme.The dynamicscheme(“x” markers) is the leasttime

efficient dictionary schemeasit operatesthefarthestfrom thelower convex hull.

To comparetheperformancein thememoryvs. bit ratetrade-off by thefivedictionaryschemes,weplot

coded file sizeasafunction of peak memoryconsumedin Figure4. Similarly, theinput imagesarecoded

as1 to 8 stripes. Thedashed linesshow the lower convex hull for all theoperatingpoints. Thedynamic

scheme(“x ” markers) now definesthis lower convex hull, meaning that it achievesthebest compression

using theleastsystem memory. Thestaticscheme(squaremarkers), which achievesthebesttime vs. bit

ratetrade-off, becomesthe leastefficient in resolving the memoryvs. bit rate trade-off. The proposed
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adaptive scheme(“+” markers) still operatesvery close to the lower convex hull. Combined with the

results shown in Figure3, we conclude that the adaptive schemeis a robust schemein resolving both

encoding trade-offs well. Hencethe adaptive scheme is a suitable choice for mostapplications, where

system memoryandencoding time arebothvery importantsystemparameters.

D.3 Multi- pagedocumentcompression

Multi-pagedocumentimages area setof imagesscannedfrom thesamesource, preferably from con-

secutive pages. Someissues of compressing multi-page document imagesare addressedin [22]. In

multi-pagedocumentcompression,thesamedictionaryupdating processesusedin pagestriping canalso

beapplied to take advantageof thetext correlationacrosspages.

TablesII andIII comparethe coding efficiency on three multi-pagedocumentimagesetsusing three

dictionaryschemes(theisolated,static, anddynamicschemes)combined with theSEdesignandtheMC

design, respectively. Among the three testsets,two are from the University of Washington Document

ImageDatabase I, one of 4 pages (N04H, N04I, N04L and N04M) and the other of 5 pages(N01F,

N01G,N01H, N01I andN01J).They arefrom the samesource, but not from consecutive pages. Their

scanning conditions areunknown. Thethird setis an11-pagedocumentwe scannedin from [23], at 300

dpi. Thescannedpagesareconsecutiveandthescanning conditions areconsistent for all pages.

TablesII andIII show that, comparedto the isolatedscheme,thedynamicschemecanimprove com-

pression by up to 8% for theMC design and10%for theSEdesign. Anotherinteresting phenomenonis

that thestaticschemeusingtheSEdesign alsoachieves4-5%of improvement over the isolatedscheme

(seeTableII). Whencoding a single-page document,theSEdictionaryis usually twice asbig astheMC

dictionary, containing redundantbitmapinformation; it is therefore lessefficient dueto high index coding

cost[8]. Whencoding a multi-pagedocument,however, it is advantageous to usea bigger andmorere-

dundantdictionary throughoutall thepagesbecauseit givesthesymbols from laterpagesabroaderrange

of choices. We hardly seeany improvement from the static schemeusing the MC design becausethe

MC design is too specifically designedfor only thefirst page.Figure5 shows thedictionary sizegrowth

curvesfrom pageto page. For our 11-pagetestset,from thefourth pageon, thedictionarysizebecomes

steady, showing thattheencoderhasgatheredmostuseful bitmapinformation containedin thisdocument

set.Theother two testsetsdo not contain enough pages to showthis trend.

Figure6 shows thetimevs. bit ratetrade-off for thefivedictionary schemeswhentestedonmulti-page

documentscombined with pagestriping. The results areaveraged over the three multi-pagetest sets.

Five valuesfor thenumberof stripesperpageareused, 1, 2, 4, 8 and16. At thelower-right corner in the
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Figure,eachpageis encodedasa whole(thenumber of stripes is 1). At theupper-left corner, eachpage

is processedas16 stripes. The lower convex hull (given asthe dashedlines) is still mostly definedby

thestatic scheme.Theadaptive anddynamic-2 schemes operatevery closeto the lower boundary, with

a couple of points falling on it. For the memoryvs. bit ratetrade-off, we observe the samerelationship

betweenthefive schemes asshown in Figure4.

Summary: Pagestriping reducesencoding time andphysical memoryusagewith reasonably low bit

rate penalty. In page striping, compared to sending isolated dictionaries for eachstripe, dynamically

updating the dictionary can significantly reduce the bit rate penalty incurred. The proposedadaptive

dictionaryupdating schemeis robust andcanresolve both thetime vs.bit ratetrade-off andthememory

vs.bit ratetrade-off favorablyat thesametime. Thesamedynamicdictionaryupdatingtechniquescanbe

applied to multi-pagedocumentimagecompressionandimprove thecompressionratio by up to 8-10%.

II I . SPEEDUP TECHNIQUES FOR PATTERN MATCHING

In theprevioussection, we proposedictionaryconstruction schemesfor pagestriping thatcanreduce

memoryusageandencoding timewith minimalsacrifice in coding efficiency. In this section,wepropose

threespeedup techniques for pattern matching. Comparedto pagestriping, thesetechniquescanbetter

resolve thetrade-off between coding time andbit rate.

A. Limited dictionary symbol search

To design the MC dictionary, we group all symbols into classes,chooseclassrepresentatives to go

into the dictionary, and form MSTs for all the dictionary symbols. Suppose a symbol � belongs to a

certain class � , whoserepresentative is symbol � , which,after theMST construction procedure,landsin

MST � . Therefore we know that themismatchbetweensymbol � andsymbol � mustbesmall (though

not alwaysthe smallest), andthat symbol � is similar (to different degrees) to all the othersymbols in

tree � . In addition, we know that all other treesaresufficiently dissimilar to tree � becauseno edge

betweenthemhasweight lower thanthethreshold. Therefore, to find thebestmatchfor symbol � in the

dictionary, it is likely thatweneedto searchamongonly thosesymbolsthatbelong to MST � . To dothis,

wemaintain a tree-ID valuefor eachsymbolonthepage,whichspecifiestheMST to which thissymbol’s

representative belongs. To find the matching dictionary symbolfor the current symbol, we only search

amongthosedictionarysymbolsthathave thesametree-ID. This cansignificantly reduce thenumberof

dictionarysymbolsagainst which thecurrent symbol is matched. Whether this limited search algorithm

will suffer significant bit ratepenalty dependsonhow many symbols actually belong to thesameMST as
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their bestdictionary matches. Later in this section, we showthat this limited search algorithm cansave

encoding time at almostno coding loss.

B. Early jump-out based on previous best match

Whenmatchingonesymbol with another, we save the previous lowest mismatchscore; the pattern

matcher compareson-the-fly the current accumulatedmismatchscore against the previous lowestone.

If the current mismatchis already above the previous lowest, then we terminate the current matching

process. Computingthe Hammingdistance betweentwo symbolsis fast because it only requires the

exclusive-OR(XOR) operation andincrementing themismatchscoreaccordingly. Sincecomparing the

two mismatchscores also takes time, andwe do not want this time to be comparable to the Hamming

distancecalculation wherewe hope to save time,we do theinteger comparisonof mismatch scoresonly

onceper line. At the endof eachline, the current accumulatedmismatchis checked; if it exceeds the

previouslowest,thepattern matching processterminates.

C. Enhanced prescreening

Beforematching apairof symbols, it is advantageousto prescreenthemby certain features.Thereis no

needto apply pattern matching to two symbolsthatareobviously dissimilar. For example, symbols that

differ greatly in size(e.g. a capital “D” anda comma“,”) areobviouslydissimilar. Theencoder in [12]

prescreensusingsymbolsizes; only symbols with similar sizes(definedasnotmorethan2 pixelsdifferent

in either dimension) aregiven to the patternmatcher. Prescreeningis intendedto reduce the numberof

unnecessary pattern matching calls that will not returna match. At the sametime, prescreening should

not rule out potentially goodmatches. Otherwiseit will incur a high bit ratepenalty. Therefore, theideal

prescreening rulesout all “unmatchable” symbols andpasseson all “matchable” symbols to the more

expensive patternmatching subroutine.

Otherfeaturescanbe usedin prescreening besidessymbolsize. Onesuchexample is to usesymbol

areaand/or perimeter [13], [24]. However, thesetwo featuresarenotparticularly helpful for two reasons:

they arecorrelatedwith symbolsize,andthey areusually sensitive to scanning noiseanddigitizationpa-

rameterssuchascontrast[13]. A useful feature for prescreening introducedin [13] is called thequadrant

centroid distance. It is calculatedasfollows. We divide eachsymbol into four quadrantsandcalculate

thecentroid for eachquadrant.To prescreentwo symbols, wecalculatethedistancebetweeneachpair of

corresponding quadrantcentroids, sumthe four distancesandcompare thetotal to a preset threshold. A

smalltotal distancemeansthat thetwo symbolshave similar massdistribution in all four quadrants; only
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suchsymbol pairsarepassedon to patternmatching to befurtherexamined.

According to our experiments,in the Englishlanguage,using the Hammingdistancebasedmatching

criterion, letter pairsthat areamongthe mosteasily confusedinclude“b” and“h,” “c” and“e,” and“i”

and“l.” In thispaper, weproposetwo topological featuresfor prescreening: numberof holesandnumber

of connectedcomponents.Prescreeningby these two featurescaneffectively prevent the above symbol

pairsfrom beinghanded over to thepattern matcher.

D. Experimental results

In this section, we show experimental results on the three speedup techniquesproposed,the limited

dictionarysearchalgorithm based on tree-ID (TID), early jump-out (EJO),andenhancedprescreening

(PRESCRN). Weconsider two figuresof merit, theencoding timesavedandthebit ratepenalty incurred.

We usethe sametwelve test imagesandthe samecomputer platform asin SectionII-D. Resultsare

averagedover all test images. TableIV givesthe total encoding time, time spenton pattern matching,

andcodedfile sizefor eachindividual techniqueanddifferent combinationsof them,for a losslessSPM

JBIG2encoder. TableV shows thecorresponding results for a losslessPM&S JBIG2encoder. We only

show losslesscoding results herebecausefor SPM,lossy coding takesextra time to preprocess theinput

image,while lossyPM&S will encodefasterbecausenoresidual coding (coding theoriginal imageagain

based on the lossy version already sentusing refinement coding) [2], [8] is needed. For both cases,the

amountof extra time needed or saved is fixed for a given input image. Therefore, we only consider

losslesscoding now; lossy coding will beconsidered in further detail in thenext section. Thefirst rows

(NONE) in TablesIV andV referto usingno speedupsandprescreening only by size,using a sizeoffset

threshold of 2 pixels (sizedifferencecannot bebigger than2 pixels in either dimension). Using tighter

sizeoffset thresholds(i.e., 1 or 0 pixels) canfurther reduce theencoding time but at theprice of higher

coding loss. In SPM(seeTableIV), pattern matchingaccountsfor up to 90%of thetotal encoding time.

Therestof theencoding time is a fixedvalue of around 8.6seconds.For thePM&S mode(seeTableV),

pattern matching accounts for up to 45% of the total encoding time. The restof the encoding time is a

biggerfixedvalueof around13.3seconds.UsingtheNONErowsasthebasisfor comparison, wegivethe

percentages of time savedandcoding lossincurred from eachindividual speedup techniqueandseveral

combinations of them.Thelimited dictionarysearchtechnique(TID) saves15%of thepatternmatching

time, while causing almostno coding loss. Note thatTID is only applicableto theSPMmodeusing the

MC dictionarydesign. Theearly jump-out technique(EJO)saves16%and12%of thepatternmatching

time in SPMandPM&S, respectively. EJOincursno bit ratepenalty. In SPM,we cancombineTID and
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EJOtogether to achieve a pure31% time gain with no coding loss. Enhanced prescreening is the most

efficientwayto saveencodingtime. Adding thequadrantcentroid distanceto thesizeprescreening (S+Q)

savesalmost3/4of thepattern matching time,while incurring abit ratepenalty of around1%. Addingthe

numbers of holesandconnectedcomponents(S+H+C)saves40% of the pattern matching time, which

is lessefficient thanthe Q feature. However, H+C incursonly a 0.5%bit ratepenalty. Combining all

thesespeeduptechniquestogethersaves81%and76%of thepattern matching time in SPMandPM&S,

respectively. In termsof total encoding time, thesenumbers translate into savings of 74% and 33%,

respectively. Thebit ratepenalty incurredis relatively small,1.7%for SPMand1.3%for PM&S.

Without the TID technique, eachsymbol searchesamongall dictionary symbolsfor its bestmatch.

For our test imageset, this meansthe average search rangeis 638 dictionary symbols. With the TID

limited search method, however, the average searchrange is reducedto only 34 dictionary symbols, a

95%reduction. Consequently, thetime spent on finding dictionarymatchesfor all symbols is reducedto

5.30secondswith TID from 19.66secondswithout TID. Without theEJOtechnique,thepattern matcher

will examinein full every pair of symbols passed on to it, i.e., it will go over 100%of the bitmaparea

beforemakingadecision. With EJO,however, experimentsshow that onaverageonly 44%of thebitmap

areawill be examined. Furthermore,on average89% of all the pattern matching calls result in early

termination. Although EJOhasto spend extra time comparing integer mismatchscores, it still reduces

the average numberof CPU clock cycles usedto match two symbols from 68 to 60. An important

advantageof the TID andEJOtechniquesis that they save encoding time almost “for free”, meaning

without bit ratepenalty (seeTablesIV andV). To seehow enhancedprescreening helpseffectively rule

out unlikely matches,we list thepercentagesof prescreening passedin TableVI. Using thesymbolsize

(S) feature aloneis not efficient enough; around20%of thesymbolpairs will still begivento thepattern

matching process.Adding thenumberof holesandnumberof connectedcomponents(S+H+C)reduces

thepass rateto 12%;adding thequadrantcentroid distance(S+Q)only 5% of thesymbolpairscanpass

prescreening. Notethatadding theQ feature alsoresults in a bit ratepenalty twice asbig asadding H+C

(seeTablesIV andV). By combining all three featurestogether with symbol size(S+Q+H+C),we can

further reducetheprescreening passrate.

Figure7 comparesthe impact on the time vs. bit ratetrade-off from theproposedspeeduptechniques

andfrom pagestriping. Resultsfrom the dynamicscheme(‘x’ markers) andthe staticscheme (square

markers)areshownbecausein pagestriping thesetwo schemesboundtheperformancecurves(seeFigure

3). TheMC dictionaryresults areshown asanexample. Thelower convex hull (dashedlines) is defined
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by thestatic schemeusing thespeeduptechniques(black squaremarkers). For thedynamic scheme,abig

performancegapbetween using the speeduptechniques (black ‘x’ markers) andnot using the speedup

techniques(gray ‘x’ markers) is observed. The sameperformancegapfor the static schemeis far less

significant. This is becausethedynamic schemeinvolvesmorepatternmatching thanthestatic scheme;

theproposespeeduptechniquesall aimat reducing thepatternmatching time. Notethatwith thespeedup

techniques, thedynamicschemenow operatesvery closely to the lower convex hull. Sincethedynamic

dictionaryachievesa giventrade-off point usingmorestripes,it is morememoryefficient.

Finally, in Figure8 we compare losslessSPM (black markers) andPM&S (gray markers) with and

without theproposedspeeduptechniquesbeing applied (“NONE” and“ALL” markers). We show results

using threesizeoffset thresholds, 2, 1, or 0 pixels. ClearlySPMcompletelydefinesthelowerconvex hull

(dashed lines) in Figure8. In [8] we showed thatSPMachievesbetter losslesscompressionat theprice

of longerencodingtime. SPMis moretimeconsumingmostlybecauseit requiresmoreextensivepattern

matching. However, with the proposedspeedup techniques for pattern matching, the SPM encoding

time canbesignificantly reduced; sincethesetechniquesonly incur very smallbit ratepenalties, SPM’s

higher coding efficiency is still mostly retained. If achieving high coding efficiency is of the utmost

importancefor an application, thenit should useSPMwith a looseprescreening criterion (e.g.,setsize

offsetthreshold to 2 pixels). If theapplicationis willing to toleratea smallcoding lossin order to encode

faster, then it should useSPM with all speedup techniques andusevery tight prescreening thresholds

(e.g.,setsizeoffset threshold to 0). NotethatEJOandTID should alwaysbeused whenapplicable. For

other applicationswith intermediaterequirements, differentcombinations of thespeeduptechniquesand

pagestriping offer differenttrade-offs.

Summary: The threeproposedspeedup techniques can reduceencoding time by as much as 75%

while only suffering asmallcodinglossof atmost1.7%.Thesetechniquesoffer bettertrade-offs between

coding time andbit ratethanpagestriping. By applying thesetechniquesto the SPMmode,we obtain

text imagecoding systemsthat encode bothefficiently andfast.

IV. RECONSTRUCTED IMAGE QUALITY CONTROL IN LOSSY COMPRESSION

All theresults given in theprevioussection arefor losslesscoding. In this section, we concentrate on

lossy coding by taking into account onemorefigure of merit, the number of substitution errors in the

reconstructedimages. Weproposeto effectively suppresssubstitution errors in lossyPM&S andSPMby

using thefeaturesintroducedin SectionIII- C.
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A. Lossy PM&S: enhanced prescreening

In PM&S,whenamatching dictionarysymbol is found, theencodersubstitutesit for theactual current

symbol. Therefore, PM&S is inherently lossy. Whenlosslesscoding is required,after transmitting the

lossyimage,theencoder usesa residual coder to refinethelossy imageto its original version [2]. Using

theHammingdistancematching criterion andamismatchthresholdof 20%,lossy PM&S results in many

substitution errorsbetween letterpairssuchas“i” and“l,” “b” and“h,” “u” and“n,” andsoon. To reduce

substitution errors, a tighter mismatchthreshold (e.g.,10%) canbe applied; however, this increasesthe

encoding time andthe coded file size. Alternatively, a moresophisticated matching criterion (e.g.,the

CTM technique proposed in [27]) can be applied, but such criteria are usually very computationally

intensive. A simpleandeffective way to suppresssubstitution errorsis to usetheenhancedprescreening

as proposedin SectionIII-C. For example,prescreening with the feature numberof holescan easily

prevent “b” and“h” from beingconfused;usingthenumberof connected componentseasilydistinguishes

between“i” and“l;” andquadrantcentroid distancecanoften tell “u” and“n” apart.

B. Lossy SPM: feature-monitored shape unifying

To achieve lossycompressionwith SPM,theencoderpreprocessestheinput imageto introduceinfor-

mation loss. In [12] three processing techniquesareproposed: speck elimination, edge smoothing and

shape unifying. Speckelimination wipes out very tiny symbols (symbols no bigger than2 � 2). Edge

smoothing fixesjagged edgesby flipping protruding single black pixels or indented single white pixels

along text edges. Shapeunifying tries to make the current symbol bitmapassimilar aspossible to its

referencebitmap,without introducingtoo muchvisual change. This is achievedby flipping pixels in the

current bitmapif they areisolatedareasof differencewith the reference bitmap. We usethe term “iso-

lated” to meana 1 � 1, 1 � 2, or 2 � 1 block of pixels. Themodifiedbitmapis thenlosslessly codedwith

refinement coding.

The advantageof permitting only isolatederrors in shape unifying is that visual information loss in

the reconstructed imageis almost imperceptible. However, sucha restriction also puts a limit on the

lossycoding efficiency. To improve thecoding efficiency, shapeunifying should allow not just isolated

errors,but someclusteredonesaswell, aslong astherisk of charactersubstitution is kept low. To limit

this risk, we proposeto monitor the shape unifying procedureusingtwo features,the number of holes

andthe numberof connectedcomponents. For eachcluster of differencesbetweenthe current bitmap

andits match,if eliminating it will not cause the featuresto change,we go on with shapeunifying and
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eliminate this differencecluster; otherwise, we preserve it to prevent a likely substitution error from

occurring. As anexample,Figure9 shows the“b” and“h” pair andthe“i” and“l” pair andthedifference

mapsbetweenthem. In Figure9 (a), we canchangethe “b” bitmapnot only at the isolatedsingle-pixel

location, but at all the gray pixel locations, asthey will not cause the internal hole in “b” to disappear.

But, theblack 10-pixel cluster of differencesdown at thebottommustbepreserved. Otherwise a reader

would perceive an“h” instead of a “b.” Similarly, in Figure9 (b), we canchange the“i” bitmapat all the

gray locations but not at the black ones becausechanging the black locations will cause the “i” bitmap

to be connectedinto onewhole piece, resulting in a substitution error. Though not shown in Figure9,

feature monitoring can also help prevent substitutions betweencertain letter pairs that have the same

features,e.g.,“n” and“u” or “e” and“o.” In comparing the bitmapsof “n” and“u,” there arebasically

two areaswherea substantial numberof clusteredpixels differ: the center top and the centerbottom.

Modifying theupper cluster of pixelsin the“n” bitmapto matchthe“u” bitmapwill causethe“n” to split

into two separate connectedcomponents. Monitoring basedon the numberof connectedcomponents

will prevent this. Likewise, modifying the lower cluster of pixels in the “n” bitmap to matchthe “u”

will cause the lower opening in the “n” to close, generating oneinternal hole. Monitoring basedon the

numberof holes will prevent this. If we wereto considermodifying the upper andlower pixel clusters

simultaneously, the“n” bitmapcould becomea“u” bitmap andthetopological featuresremainthesame.

But we do not do that. By considering eachdifferencecluster separately, the topological featuresblock

the bitmap alteration, thereby preventing a substitution error. Modifyi ng the current symbols at more

locations improves refinement coding efficiency by making symbols more similar to their references.

At the sametime, ensuring certain feature valuesaremaintained allows us to suppressmany cases of

charactersubstitutions.

C. Experimental results

We first look at lossyPM&S andshow how enhancedprescreening effectively suppressessubstitution

errors in addition to reducing encoding time. TableVII shows the encoding time, coded file size,and

percentageof substitution errors for lossyPM&S usingdifferent mismatchthresholds andprescreening

features. A tight mismatchthreshold of 10% results in very raresubstitution errors (about 1 in every

1,000symbols). With a looserthresholdof 20%,whenprescreening just by size, thesystemsuffersex-

cessive substitution errors of around 3%, and the reconstructed imageslook confusing andsometimes

objectionable. With enhancedprescreening, thesubstitution risk is made12 timeslowerat0.25%.More-

over, encoding is made28%faster. Although theaverage coded file sizeis 33%bigger (13,434bytesas
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opposedto 10,105bytes), at13,434 bytes/imagethereconstructed imageshavesatisfying quality; atonly

10,105 bytes/image, someimportanttext informationfrom theoriginal imagesis lost,which is expressed

in the form of many substitution errors that we see. Although not shownhere, our experimentsalso

showed that without enhancedprescreening, the bit rategoes down steadily asthe mismatchthreshold

goesup. With enhancedprescreening, however, further loosening themismatchthresholdwill not result

in further reduction in bit rate;instead thebit ratehits a floor. This againshows thatenhancedprescreen-

ing canguard against excessive lossof important text informationin theimages. Compared to usingthe

tight 10% mismatchthreshold, the substitution risk from enhancedprescreening is only 2 timeshigher,

while theencoding is 20%moreefficient and66%faster.

For lossy SPM,we list in TableVIII thecodedfile size,encoding time,andpercentage of substitution

errors for shape unifying with andwithout feature monitoring. We usethreeerror sizethresholds, 2%,

4% and6% of thesymbol size. We restrict thesizeof a permissibleerror cluster becausebig error clus-

ters(even if they do not change the features)causesignificant visual informationloss. As a result, the

reconstructed imagewill contain a large numberof distortedtext characters. Suchdistorted “garbage”

characters,if they exist, arealsocounted assubstitutionsand included in the numbersshown in Table

VIII. A bigger symbolcantoleratea bigger error cluster. Therefore, we set the error sizethreshold to

beproportional to thesymbol size, i.e., differenceclusters smaller thana certain percentageof thesym-

bol sizearedeemedignorable.Comparedto theunmonitoredversion, feature monitoredshapeunifying

suffers 55-65% fewer substitution errors at all three error sizethresholds, meaning that it canmoreef-

fectively avoid losing visually important text information. However, feature monitoredshape unifying is

morecomputationally demanding becauseevery cluster of differences with sizebelowthethreshold has

to becheckedto seeif ignoring it will result in change of features. Thefeature monitoredversion takes

about 40%longer to encode thanits unmonitoredcounterpart.

To comparelossy PM&S using enhancedprescreening with featuremonitoredlossySPM,wecompare

the two shadedentries in TablesVII andVIII. At similar bit rates (13,024and13,434), monitored lossy

SPMsuffers 6 timesfewer substitution errors(0.04%compared to 0.25%)but alsotakes 15 timeslonger

to encode(156seccompared to 10sec).Furthermore,comparedto usingatight 10%mismatchthreshold

in PM&S (last row in TableVII), monitored SPM using a 2% threshold (shaded entry in TableVIII)

is 20% more efficient (13,024 compared to 16,687) and 2/3 lesssubject to substitution errors (0.04%

compared to 0.12%)but takes5 times longer to encode. For an application that doesnot require real-

time communications, lossy SPMis a betterchoice becauseit offers betterreconstructed imagequality
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at lower or comparablebit rates.A real-time application, however, should choosethePM&S modewith

enhancedprescreening becauseit is muchfaster andofferssatisfactory quality.

Finally, Fig. 10 showsa portion of the original imageN03H (Fig. 10 (a)) anda setof reconstructed

imagesfrom lossyPM&S andSPM using different system setups. For lossyPM&S (Fig. 10 (b)-(d)),

enhancedprescreening effectively suppresses the substitutions between“b” and “h” and “c” and “e,”

achievingquality similar to the tighter 10%threshold. For lossySPM,at all threeerror sizethresholds,

feature monitoring (Fig. 10 (e)-(g)) successfully retains the internal hole in “b” that is important for

correct letter identification.

Summary: When usedin lossy PM&S, in addition to reducing 30% of encoding time, enhanced

prescreening can also effectively suppress11 out of every 12 substitution errors. For lossy SPM, the

proposedfeature monitoredshapeunifying cansuccessfully suppressmorethanhalf of all substitution

errors. In comparing lossy PM&Swith SPM,wefoundthatSPMoffersbetterreconstructedimagequality

(significantly fewer substitution errors) at similar or lower bit rates,but at the price of longer encoding

time.

V. CONCLUSION

In this paper, we proposeseveral waysto reducethe encoding time, memoryconsumption, andsub-

stitution errorsfor text imagecoding with JBIG2. We first look at pagestriping andproposedictionary

updating proceduresfor the singleton exclusion and modified classdictionaries. With thesedynamic

updating techniques,pagestriping using 2 stripes gives 30% of savings in encoding time and40% of

savingsin memoryconsumption,while suffering only 1.5%of bit ratepenalty. More savingsin time and

memorycanbeobtainedby usingmorestripes but with diminishing returns. We investigatetwo encod-

ing trade-offs in pagestriping: the time vs. bit ratetrade-off andthe memoryvs. bit ratetrade-off. We

proposean adaptive dictionary updating schemethat canachieve robust performancein both trade-offs

whencomparedwith other non-adaptivedictionaryconstruction schemes.Wethenproposethreespeedup

techniquesfor pattern matching. Whencombined together, these techniquescanreducecoding time by

up to 75%while incurring atmost1.7%coding loss.Comparedwith pagestriping, theproposedspeedup

techniquescanbetterresolve thetime vs. bit ratetrade-off. However, pagestriping is still necessaryfor

memory-limited applications. For lossycompression, in addition to bit rate,coding time, andmemory

usage, we also consider the number of substitution errors as the measure for the reconstructed image

quality. For lossyPM&S, we useenhancedprescreening to reduce character substitutions by 12 times

andsave encoding time by 30%at thesametime. For lossySPM,we proposefeature monitoredshape
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unifying to suppress1/2 to 2/3 of the total substitution errors. Comparedto lossy PM&S, lossy SPM

using featuremonitoredshapeunifying achievesbetterreconstructedimagequality atsimilaror lowerbit

rate,but at thepriceof longer encoding time.
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