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ABSTRACT
Joint attention is an essential part of the development process of
children, and impairments in joint attention are considered as one
of the first symptoms of autism. In this paper, we develop a novel
technique to characterize joint attention in real time, by studying
the interaction of two human subjects with each other and with
multiple objects present in the room. This is done by capturing
the subjects’ gaze through eye-tracking glasses and detecting their
looks on predefined indicator objects. A deep learning network is
trained and deployed to detect the objects in the field of vision of
the subject by processing the video feed of the world view camera
mounted on the eye-tracking glasses. The looking patterns of the
subjects are determined and a real-time audio response is provided
when a joint attention is detected, i.e., when their looks coincide.
Our findings suggest a trade-off between the accuracy measure
(Look Positive Predictive Value) and the latency of joint look detec-
tion for various system parameters. For more accurate joint look
detection, the system has higher latency, and for faster detection,
the detection accuracy goes down.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction;
Laboratory experiments; Sound-based input / output; Auditory feed-
back; • Applied computing→Consumer health.
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1 INTRODUCTION
Joint attention is a crucial skill that most children learn in their
first year of life. By sharing gaze on an object with a caregiver,
and looking between the object and the caregiver, children learn
names of items, rules about object use, and motor behaviors, all
of which are important for scaffolding later developmental skills.
Unfortunately, joint attention skill does not come easily to some
children, including children with autism spectrum disorders (ASD)
[Kasari et al. 1990] who also show deficits in orienting attention
more generally [Miller et al. 2014; Townsend et al. 1996; Zwaigen-
baum et al. 2005]. Clinical psychologists have created intensive
behavioral interventions for improving joint attention, involving
many hours per week of therapy from a professional with training
in this specific behavioral intervention (see for example the JASPER
[Goods et al. 2013] intervention from Kasari and colleagues, and a
review of a range of joint attention interventions from [Paparella
and Freeman 2015]). These individuals are rare and their limited
time also limits the availability of these important interventions. To
continue the valuable intervention in the absence of professionals,
parents must be independently trained to deliver the therapy which
can be difficult especially in children who frequently show a greater
interest in orienting to objects than to people.
Nature provides a wide array of cues and experiences that are
enough to help most children develop along a relatively predictable,
albeit complex path. For children with neurological differences,
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however, these cues may not be adequate and their experiences
may be atypical enough that the child does not experience the
learning benefits enjoyed by their typical peers. By harnessing the
power of technology, we can provide a different kind of feedback
for a child to learn where and when to look. Here, we seek to deliver
a tool that is relatively low cost and can be used by parents and
caregivers in their homes as often as is convenient. This approach
removes the barriers of time and place that are often created by the
standard nature of clinical care. Moreover, a child is more likely to
engage in an intervention that is fun, rewarding and that creates
a sense of mastery. Incorporating these game-based elements into
the intervention tool will help to deliver a therapeutic device that
young children will actually want to use.
The recent development of affordable mobile eye trackers has fa-
cilitated the examination of real-world gaze behavior involving
dynamic social interactions. In this paper, we use these glasses
to develop an easy-to-use system that can detect joint attention
between two people in real-time.

2 RELATEDWORK
Several others have developed methods that have expanded our
understanding of dynamic coordinated gaze interaction of young
children and caregivers [Franchak et al. 2014; Slone et al. 2018;
Yu and Smith 2016]. These systems and methods developed for
research with young children are providing new insights into the
real-world interactions of children and their caregivers. In most of
these methods, the looking patterns of the subjects are obtained
offline by manually analyzing their gaze stream with the help of a
software, which makes the process tedious and inefficient. These
methods of analysis can benefit from automating the system, as we
explain in this paper. Systems and methods for near real-time detec-
tion of a range of joint attention behaviors have been advanced by
researchers seeking ways to mimic human-like social gaze behavior
in robotic agents [Rabbitt et al. 2015]. Kajapoulos et al. in [2015]
reported using a social robot to train children to make an orienting
head movement in response to the robot’s head movement that
initiates gaze toward an object. However, this training effort did
not involve the eye component of gaze behavior.

3 METHOD
We have developed a real-time joint attention detection system
that efficiently coordinates data from two eye-tracking glasses and
provides a feedback when a joint look is detected between the wear-
ers. Two subjects (potentially the child and the therapist) wearing
eye-tracking glasses interact with each other and with multiple
predefined indicator objects present in the room. The data from
the world cameras on the glasses is fed to our system that has been
trained to detect the objects present in the wearers’ field of vision.
The looking pattern for each subject across time is obtained using
the detection bounding boxes around the objects and the gaze infor-
mation. An audio response is provided in real-time when the looks
of both subjects fall on the same object object simultaneously.

We first provide an overview of our implementation and then
in later sections describe the individual processes in detail. The

necessary code for implementing the system can be found at https:
//github.com/tushardobhal/pupil.

3.1 System Overview
3.1.1 Hardware. We gave higher priority to mobility and portabil-
ity than sheer computing power while selecting our hardware and
therefore used MSI GT62VR-7RE notebook (Intel Core i7-7700k,
16GB RAM and 8GB Nvidia GTX 1070 graphics card) for running
our custom software, while Pupil Labs [Kassner et al. 2014] glasses
were used for eye tracking. The glasses consist of a world-view RGB
camera capable of producing 720 x 1280 frames at 30 fps located
above the eyebrows on the glass frame, and two infrared cameras
capable of 120 fps pupil tracking positioned below each eye on the
glasses. This binocular eye setup outputs the gaze location data and
a confidence score which is a measure of the accuracy of the gaze
location in the world-view frame.

3.1.2 Software. Figure 1 details the individual look detection pro-
cess for each subject. The data produced by the glasses are con-
sumed by the three asynchronous message listeners running on our
system. These consumers receive the gaze positions and confidence
scores for each eye from the eye cameras and the world-view frames
from the world-view camera. The gaze position data from each eye
is smoothed using a Kalman filter, and their confidence scores are
used to obtain a single rectified gaze stream. An object detector, as
defined in Section 3.2, inputs the world-view frames and outputs
the bounding boxes describing the location of the objects present
in the frames. These bounding boxes are then adjusted using the
obtained gaze confidence score to account for inaccuracies in the
position of the gaze dot. Because the frame rate of the eye cameras
is four times that of the world-view camera, the data is processed
at this point only when a new world-view frame is received. This
allowed us to reduce the number of computations for real-time
usage without impacting the overall detection accuracy. For each
bounding box obtained, we check if the gaze dot is inside, to obtain
a Boolean decision. The series of decision outputs is then filtered
using a Runlength algorithm which defines and detects "looks" on
each object as discussed in Section 3.4. This "look" data from both
the glasses is then passed to the Joint-Attention detector which
provides an audio feedback when a "joint look" is successfully de-
tected.
Occasionally, the gaze location data stream was observed to provide
measurements with less than acceptable confidence scores, and also,
at times to contain jitters either due to eye movement or sensor
errors. As gaze tracking forms an integral part of our system, we
formulated techniques discussed in Section 3.3 to overcome the
above issues.

3.2 Object Detection
To detect objects in the world-view of the subjects, we use a compact
version of the YOLOv3 network [Redmon and Farhadi 2018] named
YOLOv3-tiny. While there are other Convolutional Neural Network-
based approaches for object detection which give better detection
accuracy such as Faster R-CNN [Ren et al. 2015] and R-FCNNs
[Dai et al. 2016], YOLOv3-tiny performs detection in real-time with
reasonably good accuracy. The algorithm uses Tiny Darknet, a small
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Figure 1: Block diagram of look detection for each subject

Darknet model [Redmon 2016] which has 23 layers as opposed to
other conventional networks which have more than 100 layers.

Our object detector was trained on a custom dataset which in-
cluded five objects chosen for the experiment: dice, key, taboo card,
green spiky ball and map. Of these, the dice, key and map were
placed on the wall approximately eight feet away from the subjects,
while the ball and card were kept on the table in front. Training
images were collected from the world-view camera with eight differ-
ent subjects wearing the glasses. In total, there were approximately
100,000 training images. Table 1 shows the split of instances of the
objects in the training images. A minimum enclosing rectangle was
manually placed around each object, as shown in Figure 2, to serve
as the ground truth (GT) during training with the help of Computer
Vision Annotation Tool (CVAT) [Manovich et al. 2019]. We drew
a bounding box around an object if and only if at least 50% of the
object is present in the world frame according to visual inspec-
tion. The CVAT tool has an interpolation feature, which it uses to
generate bounding boxes across adjacent frames, that significantly
reduced the time required to ground truth the videos.

For training our object detector, we used pre-trained weights
from YOLOv3-tiny model trained on the COCO dataset [Lin et al.
2014]. The COCO dataset is a large-scale object detection, segmen-
tation, and captioning dataset with 80 classes corresponding to
various common objects found in daily life. We trained our model

Figure 2: Minimum enclosing rectangles for annotation

for 150,000 iterations with a learning rate of 0.001 and momentum
of 0.9. We evaluated the performance by computing the following
metrics:

(1) Intersection over Union (IoU): The IoU for an object in a
frame is defined as the area of intersection divided by the area
of union of the bounding boxes obtained from the network
and manually for the object in the frame. For each object, we
compute the mean IoU of every detected occurrence of the
object in the test frames. The definition of IoU is illustrated
in Figure 3.

Figure 3: Illustration of IoU

(2) True Positive Rate (TPR) : TPR is defined as the fraction
of the objects which were manually annotated in the test
dataset which are detected by the network with a non-zero
overlap between the detected and the ground truth bounding
boxes.

(3) Precision : The precision for an object is defined as the per-
centage of correct detections of the object with respect to the
total number of detections of the object in the test dataset.

Precision =
No. o f Correct detections o f the object

Total number o f detections o f the object

3.3 Smoothing and Corrections
3.3.1 Kalman Filtering and Gaze Rectification. The Kalman Filter
[Thrun et al. 2005] is an efficient recursive algorithm for estimating
the state of a system. Here, we use Kalman filtering to correct for
jitter in the gaze stream. The Kalman filter in our implementation is
initialized with a 8-dimensional state vector with a two dimensional
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Table 1: Number of instances of each object in the training
set

Ball Dice Key Map Cards

Number of Frames 51798 39835 42102 30195 30248
Approx. Time (min) 14 11 11 8 8

measurement update. Gaze dot coordinates from the Pupil Labs’
glasses received at a rate of 120 fps serve as themeasurement update.
We use a variable velocity and acceleration model for our Kalman
filter. In order to select the initial noise and delta time estimates, we
conducted multiple experiments with a range of values for noise
and delta time and selected the estimates which provided the best
results empirically. In particular, we found that using noise estimate,
η = 0.2 and delta time, dt=2.0 worked best under our experimental
settings.
Along with Kalman Filtering, we also implemented an algorithm for
removing the noise introduced due to blinking, as the glasses report
a rapid change in the gaze location during blinking. With a proper
threshold, noisy measurements due to blinking can be identified
and removed from the data stream before being sent to the Kalman
filter. For these noisy measurements, an estimated position of the
gaze location predicted by the Kalman filter for that frame was
used. Figures 4 and 5 show the effect of Kalman filtering and Blink
removal in smoothing the initial gaze data stream.
We further utilized the gaze confidence score to rectify the gaze
stream and ensure better tracking results. If both the pupil-tracking
cameras detected the person’s gaze with a confidence greater than
a threshold of 0.8, their mean was computed, otherwise, the data of
the one with a higher gaze confidence was used.

3.3.2 Bounding Box Correction. When the subject looks at the des-
ignated object, sometimes their gaze dot is just outside the bounding
box for that object, possibly due to poor calibration, poor sensor
data or gaze drift. To correct for this, bounding boxes around the

Figure 4: Initial unfiltered raw gaze data stream

Figure 5: Impact of Kalman Filtering and Blink Removal on
the initial gaze data stream

various objects used in the experiment were expanded based on
the depth of the object in the world view and based inversely on
the confidence of the gaze dot location. Let w, h respectively be
the width and height of the bounding box as provided by the ob-
ject detection system, c (c ∈ [0, 1]) be the confidence provided by
the system regarding gaze dot position, and α(x) be the correction
based on depth x of the object, then the corrected width and height
of the object i are given as:

w = w + {(1 − c) ∗ α(xi )} (1)

h = h + {(1 − c) ∗ α(xi )} (2)
For the objects in this paper, we consider only two depths: Approx-
imately 8 feet for the objects which are on the wall (key, dice, map)
and 1.5 feet for the objects which are on the table (ball, card). The
corresponding values of α(x) are 30 pixels for x=8ft and 15 pixels
for x=1.5ft. The intent of this adjustment is to expand the bounding
box when the glasses provide low confidence on the gaze location,
and the expansion is larger for objects that are farther away.

3.4 Determination of a "look"
Chukoskie et al. 2018 provide the definition of a look as an inspec-
tion typically involving an aggregated series of fixations and small
reorienting saccades or microsaccades. A saccade is a reorienting
movement which is interposed in steady intervals of fixations which
characterize human gaze behavior. A typical look examining an
object can last from 100-200 ms to a number of seconds. For joint
attention, we are interested in the onset of a look and the earliest
we can declare with reasonable certainty that both subjects are
looking at the same object.

3.4.1 Runlength Filtering. The object detection system provides
bounding boxes for the objects detected in a particular frame for the
world view of both the subjects. For each subject, if the gaze dot is
within the bounding box of an object, we call it a ’hit’ for the object,
else we call it a ’miss’. Runlength filtering with parameters W and
O is applied to this data stream of hits and misses to determine
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a subject’s look on a particular object. W specifies the window
size or the number of frames that should be considered together
and O specifies the minimum number of hits in that window to
declare it to be a look. For instance, a runlength filter RL(4, 3) with
parametersW = 4 and O = 3 would require at least 3 hits in any 4
consecutive frames for it to be declared as the beginning of look.
At any time instant, if the look for both subjects fall on the same
object, then a joint look is detected and a beep sound is provided
to the experimenter as a feedback for detecting joint attention.

3.4.2 Latency. Going by the above definition of runlength filtering,
we can see that a filter with RL(1,1) provides an earlier positive
indication of a joint look than would RL(4,3). We define our first
metric ’Latency’ to be the time it takes from the instruction to look
at a particular object to the detection of a joint look at that ob-
ject. Hence, we can say that RL(1,1) will have a lower latency than
RL(4,3). Since the orienting behavior of the two subjects can be
somewhat variable, we estimate that the ’Latency’ metric accounts
for approximately 500ms of reaction time for the two subjects. Con-
sidering that saccadic reaction time of healthy young adults in a
tightly controlled experimental setting with a visually-cued sudden-
onset target is approximately 250ms (estimate from [Kenward et al.
2017]), 500ms is a conservative estimate for an orienting move-
ment that may include a small head movement and/or a corrective
saccade.

3.4.3 Estimated Detection Time. We define the metric ’Estimated
Detection Time’, as the time elapsed between the estimated onset of a
joint look and the instant when the system detects the joint look. As
per the discussion above, Estimated Detection time can be expressed
as Latency minus Estimated joint reaction time, which is 500ms.
For future developments in this system, we will manually examine
the gaze trace to estimate saccade reaction time for individual
subjects. This will be important as we seek to trade off the speed of
algorithmic detection of a joint look with the cost of the computer
needed to run the system.

3.4.4 Look Positive Predictive Value (LPPV). Another point to ob-
serve is that that RL(1,1) would be particularly vulnerable to false
positive detection of a joint look as it could declare a single frame
glance passing across an object to be a look. False positives are pe-
nalized by the metric ’Look Positive Predictive Value (LPPV)’ which
is defined as follows:

LPPV =
Number of T rue Joint Looks Detected
Total Number of Joint Looks Detected

To determine this metric, we need to be able to define the ground
truth (GT) on looks and joint looks. That could be done with a
time-consuming manual process. However, in our case, since the
algorithms under study are attempting to respond (with a feedback
signal) in real-time to the onset of a joint look, the GT can be
defined using a non-real-time process with a longer time window
than is used by the algorithms under study. Here, the GT on looks
is defined first and the GT on a joint look is obtained when the
GT of looks for both subjects gives a hit. In this approach, the GT
algorithm for looks begins by finding a series of 4 consecutive hit
frames, which are considered to be the core part of a look. The data
stream is then examined both forwards and backwards in time from
that core, to bridge small gaps (up to an including gaps of length 3),

to find the total extent of the look. For example, if the sequence of
hits (X) and misses (0) is as given in the first row below:

0X000XXXX00XX000000XX00
0XXXXXXXXXXXX000000XX00

then the GT look is determined to have a total extent of 12 frames
with an onset in position 2 as shown in the second row above.
Here, the onset of the look would be correctly found by an RL(1,1)
algorithm. The runlength algorithms RL(2,2) up through RL(4,4)
will detect the look in the case above, but will have some latency
for the detected onset. On the other hand, a sequence like:

0X0000XXX000000XX000000

does not have a true look at all, and any of the RL(W,O) algorithms
with W<4 and O≤W would detect a false positive. Hence, we
expect to have a clear trade-off between latency and LPPV.

It is apparent from the above definition of true look that the
RL(4,4) will never have a false positive. All the other algorithms,
such as RL(1,1), RL(2,2), RL(3,2), RL(4,3), RL(3,3) will have lower
latency than RL(4,4) but will have some false look detections. Also,
note that for LPPV calculation, we first obtain the LPPV for each
pair of subjects and then calculate the mean and standard deviation
of those values to obtain the final LPPV measures.

In general, a metric of positive predictive value (PPV) which
penalizes false positives is used in conjunction with true positive
rate (TPR) which penalizes false negatives. In our case, for all the
runlength algorithms under study, TPR for joint looks is 1 because
all true looks are eventually detected by all algorithms. (Note that
TPR at the frame level for object detection is not generally equal to
unity, but TPR at the level of joint-look detection is.) So the relevant
quantities are LPPV and latency, where the latency metric penalizes
the delay in declaring a look.

4 EXPERIMENTS
4.1 Calibration Routine
Calibration of the glasses is the first step in our experiment and
is used to map the pupil gaze location captured by the binocular
eye-facing infrared cameras to the real-world frames captured by
the world-view camera. We select the manual calibration mode in
the Pupil Labs software and use a manual marker with a bullseye
pattern. The participants were asked to keep their head still and
only move their eyes to look around. This method of calibration,
where the wearer keeps the head still during calibration, was ob-
served to give better accuracy of the gaze position than when the
head is moving around.

During calibration, we first adjust the eye cameras of the subjects to
ensure that the pupil is being detected and tracked. Pupil Capture
software gives the flexibility to adjust the intensity, and minimum
and maximum pupil size parameters. Next, they are instructed to
look at the center of the marker as it is moved across the wall from
one extreme location to another. The bullseye pattern is detected
by the software in the world-view camera, which is then correlated
with the gaze position captured at that time instant, assuming that
the subject was looking at the center of the pattern. A total of at
least nine points are collected and a non-linear transformation is
used by the software to map the gaze positions to the incoming
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video frames. We selected a confidence threshold of 0.5; the system
will reject points which it deems to have lower accuracy than this
threshold. This routine is done separately for each of the glasses
as the extrema of the field of view depend greatly on the position
and orientation of the volunteer. After the calibration is completed,
both volunteers are allowed to move their heads normally and are
asked to look at the individual objects to perform a quick verbal
check of the calibration routine.

4.2 Experiment Design
A total of eight volunteers, all current graduate students, were used
to gather data for our experiments. The average age of the volun-
teers was 23, and half of them wore glasses. For each sitting, we
randomly selected two students for the joint attention experiment.
The volunteers were asked to switch places during the experiment.
As explained in Section 3.2, we have a total of five objects, with
three placed on the wall and two on the table in front of them. Our
experiments involve one person who conducts the experiment and
two participants who wear the glasses for the joint attention detec-
tion. We ask the volunteers to look at the individual objects and we
record the time taken by the pair to jointly fixate their gaze at that
object. To accurately capture the time when the instruction is given
to look at a particular object, we developed a simple Android app
which the experimenter uses to signal the participants. It consists of
buttons of individual objects, which when pressed send a message
to the receiver running on the server. A "cancel" button is provided
to discard the current reading in case of accidental clicks. The server
records the timestamp when the message is received and produces
a beep, which acts as a cue for the volunteers to look at the specified
object. Our system provides an audio feedback in real-time when
the joint look on the specified object is detected. To minimize any
phase difference between the recorded timestamps of the instruc-
tion to look at an object and the actual looks of the two subjects, the
same hardware is used for running our message receiver and our
custom software. A total of five rounds are conducted, with each
round constituting all the five objects. Then participants are asked
to switch places for another five rounds, after which the procedure
is repeated with a new pair of volunteers. A total of 500 joint looks
were obtained using different combinations of the volunteers. A
sample world-view frame as recorded by the glasses with the gaze
dot is shown in Figure 6.

5 RESULTS AND DISCUSSIONS
5.1 Object Detection
We ran the object detector on 80,000 annotated test images. As
mentioned in Section 3.2, the performance of the detector was
evaluated by computing the IoU, TPR and Precision. The average
results for each object are summarized in Table 2.

The object detector gives an average True Positive Rate of 95.9%.
The missed cases (False negatives) are observed to be mostly the
edge cases where only a part of the object is visible in the world-
view frame and it has been annotated in the GT image. This will
cause an error in joint attention detection only if: (1) the object
is visible partially, and (2) the wearer looks at the object out of
the corner of his eyes. Since the wearer moves his head around
normally, this edge case is anticipated to occur rarely and hence it

Figure 6: Sample world-view frame recorded by the glasses
with the gaze dot and detection bounding boxes

Table 2: Performance of the object detector

Ball Dice Key Map Cards

Mean IoU 92.3% 92.9% 82.1% 86.2% 87.5%
TPR 98.9% 99.1% 96.8% 94.5% 90.3%

Precision 97.0% 97.7% 98.2% 96.3% 99.3%

is not expected to affect the overall performance of the system. The
network gives a relatively lower detection rate for the cards since
the portion of the cards captured by the world-view camera was
heavily dependent on its orientation with respect to the subject.

5.2 Experiment
On running our software with both the glasses, the system gives a
frame rate of 16 fps. The lower frame rate is mainly due to the two
object detection networks running in parallel on the GPU. There
were a few readings that were discarded either because the exper-
imenter pressed the button twice or the participants missed the
audio cue provided. Apart from these scenarios, no other procedure
was used for pre-processing of data points.

5.3 Latency and Estimated Detection Time
The results for the Latency of the system with various runlength
parameters for different objects are illustrated in Table 3. Estimated
Detection Time can be obtained from latency by deducting the
average reaction time of 500 ms from the latency measurement. We
observe in general that the latency for each runlength parameter
follows the order Map < Key < Dice < Ball < Cards. The high latency
for Cards can be explained by the relatively low detection rate
for cards. For the other objects, the latency for a given runlength
filter generally follows the order of decreasing object sizes. This
is because our system is designed to detect the start of a look as
soon as the gaze dot falls within the object bounding boxes, which
is easier if the box size is larger.

For the same object across different runlength parameters, the la-
tency increases as expected from RL(1,1) to RL(4,4). This is apparent
from our definition of the filter in Section 3.4.1.
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Table 3: Performance of the Joint look detector : Latency (ms): Mean (Std. Dev.)

RL(1,1) RL(2,2) RL(3,2) RL(3,3) RL(4,3) RL(4,4)

Ball 873.0 (169.6) 924.5 (181.8) 965.1 (187.9) 978.6 (190.2) 1017.6 (193.3) 1025.6 (197.5)
Cards 1008.6 (171.5) 1071.2 (184.5) 1111.0 (184.5) 1159.9 (253.2) 1196.8 (256.1) 1214.4 (268.2)
Dice 833.9 (233.2) 911.6 (263.5) 946.7 (264.4) 974.0 (290.8) 1007.8 (290.2) 1011.1 (290.3)
Key 826.3 (226.8) 887.0 (242.8) 926.2 (243.6) 965.5 (301.0) 1005.0 (302.0) 1008.4 (300.7)
Map 795.1 (137.8) 849.2 (155.1) 889.0 (164.0) 903.7 (167.7) 945.5 (168.5) 951.1 (168.9)

Table 4: Performance of the Joint look detector : LPPV%: Mean (Std. Dev.)

RL(1,1) RL(2,2) RL(3,3) RL(3,3) RL(4,3) RL(4,4)

Ball 88.2 (8.55) 90.4 (5.03) 90.4 (5.03) 97.8 (2.67) 97.8 (2.67) 100.0 (0.0)
Cards 82.9 (10.30) 85.1 (6.97) 85.1 (6.97) 95.7 (10.67) 95.7 (10.67) 100.0 (0.0)
Dice 85.1 (7.20) 93.6 (10.80) 93.6 (10.80) 100.0 (0.0) 98.9 (1.54) 100.0 (0.0)
Key 85.1 (11.64) 90.4 (8.96) 90.4 (8.96) 98.9 (1.33) 98.9 (1.33) 100.0 (0.0)
Map 91.4 (18.79) 93.6 (16.25) 93.6 (16.25) 97.8 (5.96) 97.8 (5.96) 100.0 (0.0)

5.4 Look Positive Predictive Value (LPPV)
The results for the LPPV of the system with various runlength
parameters for different objects are illustrated in Table 4. The defi-
nition of a true joint look involves having a core of 4 consecutive
hit frames and hence RL(4,4) has LPPV=100%. In general, as the
window size parameter W increases, the LPPV also increases. This
is expected as increasing window size makes the runlength filter
reach closer to the size of the core-look part of the GT look and
hence increases the possibility of detecting a true joint look.

Across objects, we observe that LPPV generally increases with in-
creasing bounding-box size for smaller runlength parameters. This
is due to the inherent jitter in the gaze position calculation caused
by the pupil detection algorithm. As we increase our runlength
filter parameters, our system becomes more robust and hence we
observe that the change in LPPV across objects is almost negligible.

As expected, we observe a trade-off between Latency and LPPV
measurements across runlength parameters. For lower values of
W and O, we obtain a faster detection but with a lower accuracy
measure. Hence for latency sensitive applications such as interactive
AR and VR gaming, smaller runlength parameters are suitable,
whereas for use in therapeutic applications, which require higher
detection accuracy, larger parameters might be preferred.

6 LIMITATIONS AND FUTUREWORK
We have designed an inexpensive system running on a standard
gaming laptop to detect joint looks to particular objects in real
time. To our knowledge, this is the first such demonstration. Going
forward, we would like to augment this system with other abilities.
For example, we would like to detect what is called a gaze triad, that
is, the look to a face before and after a look to an object.We also hope
to detect shared eye gaze. Currently, we obtain the ground truths
for joint look detection using an algorithm. To make our latency
and LPPV calculations more accurate, we would like to compare the
system detections to ground truths of joint looks labeled manually
by an expert. Also, we would like to track the movement of gaze

dot relative to the object bounding boxes across frames to speed up
the look detection process.

As discussed in Section 1, children typically learn joint attention
skills beginning in the first year of life through sharing gaze with a
caregiver. However, when they do not develop this skill typically, as
often happens for children on the autism spectrum, interventions
to correct this important skill for early learning are costly and time
consuming. Our goal is to develop a low-cost and easy to use system
for rewarding joint attention behaviors in young children who need
this support. The first step in implementing gaze triad detection
would be to add a face detection network to our system. As this is
a highly GPU-intensive task, it will require a more powerful GPU.
We would also like to extend our system to include more objects
from the real world. In the next step, we want to analyze the joint
attention behavior of children as compared to adults by having child
subjects for the experiment. Finally, as we develop these capabilities,
we would like to detect and analyze gaze patterns of children with
ASD. We will need to include adaptive rewards to broaden what
constitutes a close-enough look spatially and temporally early in
the training process. This will help scaffold the child’s behavior and
allow the system to narrow the reward specificity with training.

7 CONCLUSION
This project brings together different techniques to build a system
that characterizes joint attention. This can help us broaden our
understanding of human gaze behavior in real-world situations.
The system described here allows us to detect joint looks in real time,
and can be used as a tool in social therapies to analyze the response
of a subject to a joint attention cue. Given the wide prevalence
of ASD and the role of joint attention as a relevant social skill
associated with it, our tool can be helpful in conducting social
therapies and analyzing their progress over time.
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