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CHAPTER 6 

Vector quantization: clustering and 
classification trees , 

PAMFiLA C. COSMAN1, ROBERT M. GRAY1 & RICHARD A. OLSHENZ, 
'Department of Electrical Engineering, Stanford University, and 'Department of 
Health Research and Policy, Stanford University School of Medicine 

SUMMARY A n  image that is mapped into a bit stream suitable for communication over 
or storage in a digital medium is said to have been compressed. Using tree-structured 
vector quantizers ( T S V Q s )  is an approach to image compression in  which clustering 
algorithms are combined with ideas from tree-structured classz$cation to  provide code 
books that can be searched quickly and simply. The overall goal is to optimize the 
quality of the compressed image subject to a constraint on the communication or storage 
capacity, i.e. on the allowed bit rate. General goals of image compression and vector 
quantization are summarized in this paper. There is discussion of methods for code book 
design, particularly the generalized Lloyd algorithm for clustering, and methods for 
splitting and pruning that have been extended from the design of classification trees to 
T S V Q s .  The resulting codes, called pruned T S V Q s ,  are of variable rate, and yield 
lower distortion than fixed-rate, full-search vector quantizers for a given average bit 
rate. They have simple encoders and a natural successive approximation (progressive) 
property. Applications of pruned T S V Q s  are discussed, particularly compressing 
computerized tomography images. In  this work, the key issue is not merely the subjective 
attractiveness of the compressed image but rather whether the diagnostic accuracy is 
adversely aflected by compression. I n  recent work, T S V Q s  have been combined with 
other types of image processing, including segmentation and enhancement. The relation- 
ship between vector quantizer performance and the size of the training sequence used to 
design the code and other asymptotic properties of the codes are discussed. 

1 Introduction 

Image comp~ession maps an original image into a bit stream suitable for communi- 
cation over or storage in a digital medium. The number of bits required to represent 
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the coded image should be smaller than that required for the original image, so that 
one can use less storage space or communication time. There are two basic types of 
compression. 'Lossless' compression-also called noiseless coding, data compac- 
tion, entropy coding or invertible coding-refers to algorithms which allow the 
original image to be perfectly recovered from the digital representation. Lossless 
compression is only applicable for already-digital images. For example, if the 
original image is an analog photograph, then it is impossible to recreate it exactly 
from a digital representation, regardless of how many bits are used. Lossless 
compression requires variable-rate coding techniques: a varying number of bits are 
needed for different pixels or pixel patterns. The basic idea of such codes is to use 
long code words for unlikely inputs and short code words for likely inputs. The 
codes are explicitly designed so that the average number of bits per input pixel is as 
small as possible. The most popular lossless coding techniques are Huffman, 
adaptive Huffman, run-length, Ziv-Lempel and arithmetic codes. Typical com- 
pression ratios for lossless codes on still-frame eight-bit grey scale images run from 
expansion (poor) to 4 : 1 compression (unusually good). 

'Lossy' compression algorithms do not allow the original pixel intensities to be 
perfectly recovered from the compressed representation. Simple quantization or 
analogldigital (AID) conversion (the mapping of a number from a continuous range 
of possible values into a finite set of approximating values) are examples of lossy 
compression. A possible goal is to minimize an average distortion, such as the 
average squared error for a given bit rate. Typical compression ratios range from 
4:l to 32:l for still-frame eight-bit grey scale images using common techniques, 
and much better compression is reported for some more recent techniques. Lossy 
compression systems can be clustered into several basic overlapping types, includ- 
ing scalar quantization (PCM) with entropy coding, predictive coding with scalar 
quantizers (predictive DPCM), transform and subband coding (including the 
popular discrete cosine transform), 'second generation' codes based on image 
segmentation and contour extraction, multi-resolution codes, such as those based 
on Bert-Adelson pyramids and wavelet decomposition, and vector quantization. 

Since lossy compression algorithms do not reproduce an image exactly, the issue 
of the quality of a compressed image becomes paramount. As one might expect, 
using enough bits in a digital representation should result in a coded image that is 
perceptually indistinguishable from the original. 'Enough bits', however, can be too 
many to fit into the available storage or to communicate over an available link in 
reasonable time. Furthermore, the term 'perceptually indistinguishable' may 
depend on the viewer. An untrained eye might detect no difference where an 
expert's eye perceives flaws. Furthermore, one image may be aesthetically less 
attractive than another, though at least as useful for the task for which the image was 
taken. Thus, the definition of quality is strongly dependent on the application. 

The development of compression systems optimized for a particular application 
has proceeded along a variety of parallel paths. Early systems were based on 
engineering intuition, suggesting that predicting or transforming a signal would 
'remove redundancy' and lead to more efficient simple quantization on the resulting 
linearly transformed signal compdnents. High rate or asymptotic quantization 
theory provided an approximate theory for analyzing such systems when the bit rate 
was high. Shannon showed how digital information, such as quantized images (or 
inherently digital images), could be compressed in an invertible fashion, provided 
enough bits were available. Initially, the 'lossy' compression techniques typified by 
quantization were combined with the 'lossless' techniques introduced by Shannon 



Vector quantization 95 

by simply cascading them to provide an overall compression system. Such a system 
typically consisted of linear operations, such as transforms or prediction, followed 
by scalar quantization of the transformed or predicted data using several quantizers 
with differing bit rates, followed by an invertible code. This basic approach has 
worked well and still dominates in practice. 

Along with invertible coding, Shannon also introduced what he called 'source 
coding with a fidelity criterion'. This referred to the mapping of blocks or vectors 
produced by a signal into binary code words, so as to form a coded representation 
that was optimum in the sense of minimizing the average of some mathematically 
well-defined distortion measure between the original signal and the digital repro- 
duction. Such coding schemes for vectors have become known as block quantizers 
or vector quantizers. The Shannon theory and geometric arguments indicate that 
one can achieve better performance by operating directly on vectors rather than 
using scalar operations on linearly transformed vectors; however, the classical 
theory does not provide design techniques for codes. 

One approach to code design is to use clustering algorithms to form code books 
combined with tree-structured classification algorithms to provide low complexity 
code book searches with useful structure. The overall goal is to optimize the quality 
subject to a constraint on the communication or storage capacity (the allowed bit 
rate). Some of the basic ideas for such vector quantizer (VQ) design algorithms are 
sketched here. 

Details of the fundamentals can be found in Gersho and Gray (1992). This 
provides the basic theory of vector quantization, along with a wide variety of code 
design algorithms and applications. Extensive citations to the literature are pro- 
vided, especially for speech compression and image compression. Also, see Breiman 
et al. (1984) for details relating to some aspects of the algorithms. This includes 
algorithms, applications and mathematics related to CART (classification and 
regression trees) algorithms for binary tree-structured recursive partitioning 
approaches to classification, probability class estimation and regression; algorithms 
for pruning CART trees are closely related to those of the lossy data compression 
algorithms termed pruned, tree-structured vector quantizers (PTSVQs). 

Riskin et al. (1990) described the first application of pruned tree-structured VQs 
to the lossy compression of medical images. Cosman et al. (1991a) in turn described 
an early example of how compression can be combined with enhancement by using 
dual code books for reconstruction. Here code books were subjected to off-line 
histogram equalization, a technique for improving the dynamic range of images. 
The user can then see the unprocessed, reconstructed image, or an equalized 
reconstruction, by simply selecting the appropriate code book, without any addi- 
tional computation. 

Cosman et al. (1991 b)  showed how input-weighted quadratic distortion measures 
are used to assign larger distortion to visually important inputs, thereby improving 
the perceived quality of minimum average distortion code books. Here, the 
emphasis was on weightings that depended on intensity and texture. Similarly, 
Oehler et al. (1991) considered input-weighted distortion measures; however, here, 
the weighting was determined by the classification error to force the quantizer to 
classify implicitly and then highlight man-made objects. 

Gray et al. (1992) gave an expanded survey of the topics treated briefly here. Also, 
Gray et al. (1993) surveys methods for incorporating visual factors into the design 
of VQs, wi* an emphasis on the use of input-weighted distortion measures such as 
those considered by Cosman et al. (1991b) and Oehler et al. (1991). 
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Cosman et al. (1991~) reported on the performance of VQs as a function of 
learning sequence size for both tree-structured and full-search VQs. The results 
suggest that distortion decreases algebraically to an asymptote (as a function of the 
number of training images that are used in generating the code book). 

2 Vector quantization 

Our VQs for image data parse the image into blocks of typically 2 x 2 or 4 x 4 
sub-blocks of pixels. The encoder views an input vector Xn at time n and produces a 
channel code word i, which is a binary R-tuple if the code has R bits per vector and 
the system is of fixed rate. We will consider later the situation where the indices i 
can be of variable dimension. The decoder is a table look-up: on receiving a channel 
code word i, the decoder puts out a stored code word or template Pi, i.e. a word in 
memory indexed by the channel code word. The decoder is completely described 
by a code book containing all 2R of the possible code words. The basic Shannon 
source code model provides a means of operation that is optimal for a given code 
book if the goal is to minimize an average distortion. If we assume d(X, %)>O 
measures the distortion or cost of reproducing an input vector X as a reproduction 
%, and if we further assume that the overall distortion (or lack of fidelity) of the 
system is measured by an average distortion, then the optimal encoder for a given 
code book selects the vector Yi if 

In other words, the encoder operates in a nearest neighbor or minimum distortion 
fashion. For the moment, the code is not assumed to have any structure. A VQ for 
image compression is depicted in Fig. 1, with the vectors being pictured as 2 x 2 
square pixel blocks. 

If the code book of reproductions is fixed for all input vectors, then the vector 
quantization operates in a memoryless fashion on each input vector; i.e. each vector 
is encoded independently of previous inputs and outputs of the encoder. In general, 
an encoder can have memory by varying the code book according to past actions. 
Predictive and finite-state VQs are examples of vector quantization with memory. 

The choice of distortion measure permits us to quantify the performance of a VQ 
in a manner that can be computed, used in analysis and used in design optimization. 
The theory focuses on average distortion in the sense of a probabilistic average or 
expectation. Practice emphasizes the time average or sample average distortion 

for large L. This is frequently normalized and a logarithm taken to form a 
signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR). With well- 
defined stationary ergodic random process models instead of real signals, the 
sample average and expectation are effectively equal. 

Here, we restrict our interest to the class of input-weighted squared-error 
distortion measures of the form 

where B, is a positive-definite symmetric matrix. Weightings alternative to the 
identity matrix often yield perceptually superior reproductions, since the weighting 
allows one to count the distortion weighted according to the behaviour of the input 
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FIG. 1. Vector quantizer. 

vector. For example, Bx can be used to adjust the distortion with the input X being 
classified in some fashion (e.g. active, textured, bright, dim, important, unimpor- 
tant (Cosman et al., 1991; Oehler et al., 1991; Gray et al., forthcoming). All the 
basic vector quantization design methods work for such input-weighted quadratic 
distortion measures. 

Although a tractable distortion measure is needed for optimizing the design, 
other explicit or implicit measures of distortion may be required to validate the 
worth of a compression system. For example, in medical imaging, it may be far 
more important to verify that diagnostic accuracy remains as good or better with 
compressed images than it is to compare SNRs (Cosman et al., 1993b, 1994). 

3 Code design 

There are many approaches to VQ design, including linear transformation of the 
input vector followed by scalar quantization; random code book population; lattice 
codes and lattice-based codes; clustering techniques, such as Lloyd, Forgey, 
Isodata, k-means and pairwise nearest neighbor algorithms; simulated annealing; 
deterministic' annealing; and stochastic relaxation techniques. 

Here, we emphasize the generalized Lloyd algorith (GLA), which is a simple 
clustering technique that is the vectorial extension of Lloyd's (1957) algorithm for 
finding optimal scalar quantizers based on a distribution. The idea is essentially the 
same as the later k-means and basic Isodata algorithms. One iteratively improves a 
code book V= (8,; i= 1,. . ., N) of vectors by alternately optimizing the encoder for 
the decoder and vice versa. Given a decoder or code book V, the optimum encoder 
B is a minimum distortion or nearest neighbor mapping: B(X) = i if 

Given an encoder mapping B mapping vector space into an index set (0,1,. . . , N), 
one can optimize the code book %' (decoder) for the encoder by choosing the code 
words to be the generalized centroids of all inputs mapping into a given index: 
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fti = min - ' E(d(X, y) I b(X) = i )  
Y 

For the input-weighted squared-error distortion measure, we have 

fti= E[B~II(X)= ~] - 'E[B,x(~(x)=~]  

where the expectation is with respect to a sample distribution, because code design 
is usually based on a training set of typical data, not on mathematical models of the 
data. For example, in applications to medical imaging, we have trained on several 
images of the modality and organ scanned for a particular application. This avoids 
the necessity of modeling the data and bases the design on an empirical distribution. 
The Lloyd iteration begins with an initial code book and iterates until convergence 
or some error threshold is achieved; a variety of techniques are available for 
designing the initial code book. 

4 Tree-structured vector quantization 

The Shannon theory states that VQs can perform arbitrarily close to the theoretical 
optimal performance for a given rate if the vectors have a s@ciently large 
dimension; unfortunately, however, the complexity of the codes grows exponen- 
tially with the vector dimension. The practical solution to this 'curse of dimen- 
sionality' is to constrain the structure of codes. A wide variety of constrained code 
structures have been proposed and used, as was surveyed by Gersho and Gray 
(1 992). We focus here on one particular code structure that has a natural progressive 
or successive approximation form and provides a good balance between perfor- 
mance and complexity: tree-structured VQ (TSVQ). 

The key idea in TSVQs is to perform a tree search on a code book designed for 
such a search, rather than perform a full search of an unstructured code book. The 
code word is selected by a sequence of binary decisions. The code book can be 
thought of as a tree where each node is labeled by a reproduction. The search begins 
at the root node, where the encoder compares the input vector with two possible 
candidate reproductions and picks the one with the minimum distortion. This is a 
full search of a simple binary code book. The encoder advances to the selected node 
and produces a binary symbol to represent its decision. For example, '0' indicates 
the left-hand child is selected and '1' indicates the right-hand child. If the node is 
not a terminal node or leaf of the tree, the encoder continues and chooses the best 
available node of the new pair presented, putting out another binary symbol, and so 
on. When the encoder reaches a leaf, the sequence of binary decisions (the binary 
code word) is then a path map through the tree to the terminal node, which is 
labeled by the final reproduction vector or code word. The tree can be balanced or 
unbalanced. In the balanced case, every binary sequence has the same length, 
resulting in a fixed-rate tree. The unbalanced case permits the use of more bits for 
describing complicated vectors and fewer for simple vectors. 

Potentially a great advantage of the general code structure is that, if properly 
designed, each successive decision should further refine the reproduction. Such a 
code will have a built-in successive approximation or progressive character. As 
more bits describing a given vector arrive, the quality of the reproduction improves. 
This progressive structure also means that the rate can be adjusted according to the 
available communication capacity. If the available rate is cut, one codes less deeply 
into the tree, and vice versa. The same tree is used, regardless of the allowed rate, 
and the quality is as good as possible for the allowed rate. How is a tree-structured 
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code designed so as to have these properties? This is accomplished by combining 
clustering with ideas from classification and regression tree design. 

4.1 Growing trees 

The first problem in designing a tree is to use the training set to determine the 
binary splits of the data set into smaller and smaller pieces. The fundamental idea is 
to select each split of a subset so that the data in each of the descendant subsets are 
'purer' than the data in the parent subset (Breiman et al., 1984). If p(jJt) is the 
proportion of the cases in node t that belong to class j, then one defines an 'impurity' 
measure i(t) that is a non-negative function of p(jl t). The impurity measure should 
have the property that it is largest when all classes are equally mixed together in the 
node, and is smallest when the node contains only one class. For any node t, let us 
suppose that there is a candidate split s of the node which divides it into t ,  and t,, 
such that a proportion p, of the cases in t go to t, and a proportion p, go to t,. Then 
the 'goodness' of the split is defined to be the decrease in impurity: 

How is this paradigm useful for vector quantization? If is the set of all training 
vectors x, mapping into node t, then (by analogy with CART regression (Breiman 
et al., 1984)), we can take our node impurity function to be the distortion measured 
at node t: 

where 1) ,9'JJ is the number of vectors in ,q .  The goodness of a node split is defined as 
the decrease in node impurity, i.e. 

where, in the vector quantization context, the binary test s is a nearest neighbor 
selection (hyper-plane test) designed by the GLA. 

In growing a VQ tree, one begins with the root node, which can be considered to 
be labeled by the optimum rate '0' code word which is the centroid of the learning 
set or distribution. One splits the node into two new 'child' nodes. The split can 
involve simply perturbing the root node label slightly and using the root node label 
and its perturbation as the two new child labels; alternatively, it can be more clever, 
such as forming two new labels along the axis produced by a principal components 
analysis. One then runs the GLA (or some other clustering algorithm) on the pair to 
produce a good one-bit code book as level '1' of the tree. 

There are now two quite different options. A standard approach is to grow a 
'balanced' tree by splitting all the terminal nodes and clustering. This results in a 
fixed-rate code. For each current terminal node, all the learning set (or the 
conditional probability) which survives to that node will be used in the clustering 
algorithm to design a good one-bit code which forms the given node's children. 
When the clustering algorithm converges for all the split nodes, one will have a new 
tree with twice as many nodes. One can continue in this fashion until one obtains a 
very large tree, although the nodes can become quite sparse in training vectors. 

A different option is to split nodes one at a time rather than an entire level at a 
time. This method is a natural extension of the fundamental design technique 
discussed above for classification and regression tree design, as exemplified in 
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CART algorithms (Breiman et al., 1984). After the level 1 code book has converged, 
we choose one of the two nodes to split, and run a clustering algorithm on that node 
alone to obtain a new, unbalanced tree. We then repeat this, splitting one node at a 
time until the tree reaches the desired average rate. How do we choose which node 
to split? We choose the node that provides the best goodness of split, as defined in 
equation (4). 

Given a tree T, let T denote its leaves (or terminal nodes). Let us assume that we 
split ~ E T  into two new leaves tL and t,. Let D and R stand for the distortion and 
rate, respectively, measured by T, and let D' and R' denote the distortion and rate of 
the tree after t is split. Let AD= D'- D and AR =Rr-R be the change in the 
distortion and rate, respectively, resulting from splitting t, and let l(t) be the depth 
of node t .  Then, we have 

and the ratio of the change in distortion to the change in rate resulting from splitting 
leaf t is 

which is simply the goodness of split for leaf t. Therefore, we choose to split the 
node that maximizes the magnitude slope IADIARI, so obtaining the largest 
possible decrease in average distortion per increase in average bit rate. This is 
optimal in an incremental or greedy fashion, and it is simple and effective. As we 
can see, for vector quantization, the object is to trade off the average distortion and 
average rate as measured by the length of the binary paths through the tree. 

4.2 Pruning trees 

Whether balanced or unbalanced, the growing algorithm greedily optimizes for the 
current split only, not looking forward to the impact which the current split can 
have on future splits. Furthermore, even the unbalanced tree can result in sparsely 
populated or improbable nodes that cannot be fully trusted to typify the long-term 
behavior. A solution to both these problems is to take a grown tree and prune it back 
using a similar strategy. Pruning achieves some of the advantage of looking ahead 
without the enormous additional computation. Pruning by removing a node and all 
its descendants will reduce the average bit rate, but it will increase the average 
distortion. The idea is to minimize the increase in average distortion per decrease in 
bit rate, i.e. to minimize the magnitude slope IADlARI. Now, however, we can 
consider the effect of removing entire branches rather than individual nodes. This 
permits one to find the optimal subtrees of an initial tree, in the sense of providing 
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the best rate~distortion wade-off. The key property that makes such pruning work 
is that the optimal subwees of decreasing rate are nested (Breiman et al., 1984), i.e. 
the optimal TSVQs formed by pruning an initial tree form embedded codes. This 
means, in particular, that these codes indeed have the successive approximation 
character: the distortion decreases on average as the bit rate increases. 

A TSVQ designed by growing and pruning is called a pruned TSVQ or PTSVQ. 
An unbalanced tree is well matched to variable-rate environments, such as storage 
or packet communications. PTSVQs tend to yield lower distortion than fixed-rate 
full-search VQs for a given average rate. Furthermore, as we have seen, it has a 
simple encoder (a sequence of binary decisions) and a natural successive approxi- 
mation (progressive) property. 

5 Diagnostic accuracy of compressed medical images 

Variations on the basic vector quantization techniques have been applied to a 
variety of image compression examples, including still-frame photographs, medical 
images and video. Typical results show that high quality reproductions of eight-bit 
monochrome still-frame photographs can be achieved at 0.5 bpp and less for 
moderate complexity. However, the definition of 'high quality' is often dependent 
on the application, and we have been particularly interested in questions of the 
diagnostic accuracy of compressed medical images. 

Recently, we conducted an experiment in which the diagnostic accuracy of 
predictive PTSVQs was assessed for C T  chest scans with 11-bit originals. The 
radiologic tasks involved two important medical problems: detection of mediastinal 
adenopathy and of lung nodules (see Cosman et al. (1993a,b, 1994) for more 
details). In this experiment, each pixel intensity was predicted from three nearby 
values and the residuals were coded in 2 x 2  blocks. Each of three Stanford 
radiologists studied a total of 360 C T  images, 180 of each problem type. Some 30 
were originals that were not compressed; the other 150 were compressed at levels 
that ranged from 0.5 bpp to 2.75 bpp. The three judging sessions were weeks apart. 
Viewing was from hard-copy on a images lightbox in an environment designed to 
match that of clinical practice. The presentation of the images was randomized but 
the randomization was subject to many constraints in an effort to reduce learning 
effects. An example of an original lung image is shown in Fig. 2. I t  contains three 
lung nodules, according to the gold standard, and these are marked by black arrows. 
Figure 3 shows a compressed version of this image at 1.21 bpp, in which there is a 
slight degradation in image quality; however, all three judges were still able to 
locate all three tumors. 

The analyses began by determining a gold standard, which was the consensus of 
the three judges on the original images. For 20% of the images, the judges could not 
arrive at a consensus, so those images were discarded from the study. After a gold 
standard was determined, we could calculate the sensitivity (the chance something 
is correctly detected, given that it is there) and predictive value positive (the chance 
something is correctly detected, given that it was detected). Determining the 
specificity (the chance something is not detected, given that it is not there) was 
regarded as inapplicable for our study, because it is not possible to say how many 
abnormalities are absent for these non-binary diagnostic tasks. Without a sensible 
way of assigning specificity values, it was not possible to use receiver-operating 
characteristic curves. Therefore, our principal analyses focused on spline fits to the 
sensitivity and predictive value positive data. An example is shown in Fig. 4, which 
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FIG. 2. Original lung image at 12 bpp. The black arrows mark the three tumors, as determined by the 
gold standard. 

shows the sensitivity for the lung nodule detection task. The curve is a least-squares 
quadratic spline fit to the data with a single knot at 1.5 bpp (Powell, 1981), together 
with the two-sided 95% confidence regions. In view of the highly non-Gaussian 
nature of the data, Scheffk simultaneous confidence regions were obtained by a 
bootstrapping procedure, using an algorithm adapted from Miller (1981) and Efron 
(1982). 

FIG. 3. Compressed lung image at 1.21 bpp. 
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bit rate (bpp) 

FIG. 4. Lung sensitivity: r.m.s.=0.177. 

From the graphs it appears that the sensitivity for the lung seems to be nearly as 
good at the low rates of compression (0.57 bpp) as at higher rates. At bit rates in 
excess of about 1.7, there is no perceptible difference in sensitivity for the lung 
tasks. The sensitivity for the mediastinum is roughly constant for all but the lowest 
bit rate, and that is driven by the results for one judge. The predictive value positive 
(PVP) for the lung is roughly constant across the bit rates, and the same is true for 
the mediastinurn. The judges were of somewhat different opinions for the mediasti- 
nal images but not for the lung images. The images themselves were quite different 
in terms of difficulty for the lung, as was the case for two of the three judges for the 
mediastinum images. 

We note that these conclusions are conservative, because the study is biased in 
favor of the original images. Since the consensus that determined the gold standard 
was clearly more likely to be attained for those original images where the judges 
were in perfect agreement initially, and thus where the original images would have 
perfect sensitivity and PVP relative to that gold standard, the original images have 
an advantage when compared with the other images. I t  is not far-fetched to suppose 
that, were the gold standard to be based on consensus on the most compressed 
images, a different subset of the 30 images would have been retained, and the most 
compressed images would perform well relative to the gold standard based on them. 

In addition to the spline fits, the compression levels were also compared in a 
pairwise fashion, using the permutation distribution of McNemar's (1947) statistic. 
In this test, each image seen by a given judge at a given rate was paired with the 
same image seen by the same judge at another rate. For purposes of comparison, 
each image in the pair was assigned a value of 'perfect' (sensitivity= 1, PVP= 1) or 
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not perfect. Examining the data according to this formulation with all judges pooled 
revealed that the most compressed level (0.56 bpp) is unacceptable, because it 
differs from uncompressed images and other compression levels with highly 
significant p values. The next most compressed levels (1.18 and 1.33bpp) are 
marginal, and a determination of the accuracy of these levels would require more 
testing with a larger number of images and a reformulation of the protocol so as to 
remove the bias favoring the originals. However, we have no difficulty concluding 
@at the three least compressed levels (1.80, 2.20 and 2.64 bpp) are certainly 
acceptable, because no differences between these and the originals were found, 
despite this bias. We believe that, if our work is validated by subsequent studies, 
including some that we will undertake ourselves, then it can have serious implica- 
tions for how digital radiologic data are archived and transmitted. 

6 Vector quantization and other image processing 

When considering segmentation it should be noted that many classes of images 
possess a strong degree of spatial stationarity, such that certain features of the image 
reliably appear in certain regions of the image. This spatial information can be used 
to improve compression. Perlmutter et al. (1992) used the CART regression tree 
algorithm to segment the images of the training sequence, using the x, y pixel 
location as a predictor for the intensity. For magnetic resonance brain scans, this 
segmentation tended to separate out the background areas from the medically 
significant areas such as the cortex and cerebellum. This segmentation could then 
be used to partition the training data by region, and generate separate code books 
for each region, or to allocate differing numbers of bits to the regions; both the SNR 
and the perceptual quality of the images were enhanced. 

By changing decoder code books without any changes to the encoder, other signal 
processing can be performed off-line to improve the reproduced images. A survey 
of such algorithms was presented by Cosman et al. (1993a). For example, the 
decoder code book can have its terminal nodes undergo a grey scale transformation, 
such as histogram equalization (empirical probability integral transformation), 
using the histogram of the training sequences images. When the decoder uses these 
equalized leaves to decode a test image, the resulting reproduction has an improved 
dynamic range and contrast. This could also be accomplished by decoding using an 
ordinary TSVQ, and following that by equalization using the histogram of the test 
image itself. However, by equalizing the code book in advance, these two operations 
can be accomplished simultaneously by the decoder (Cosman et al., 1991a; Gray 
et al., 1992). 
input-weighted distortion measures, the distortion can be counted more heavily for 
important classes of input vectors. Weighting according to intensity-, texture- and 
human-labeled important classes have been considered (Cosman et al., 1991b; 
Oehler et al., 1991; Gray et al., 1993). This can take advantage of perceptual 
masking effects in which the human visual system is less sensitive to certain types of 
noise than others. Alternatively, it can take advantage of the fact that, in certain 
classes of images, some features are more important than others. 

7 Training sequence size and VQ performance 

An interesting question involves quantifying how large a training set is needed for a 
specific application, and an approach that borrows from non-parametric function 
estimation in statistics may be informative. (Cosman et al., 1991~). Typically, one 



Vector quantization 105 

has a set of predictors X and outcome Y being predicted. Let us write f = f(X) for 
E(Y IX). We are given X but not Y, so we might guess Y by f if we could learn what 
it is. To that end, we have a learning sample 9= {(X,, Y,), . . . (X,, Y,)), indepen- 
dent of (X,Y), but with each pair (Xi,Yi) distributed as (X,Y). The exact 
functional form off is unknown, though it is presumed to lie in some function space 
F. A variety of difficult results have been obtained. Many require that the learning 
sample be independent and are of the form 

where f is a (measurable) function of the learning sample and the norm indicates 
some notion of distance. All but the most recent results are inappropriate for our 
applications to imaging, since, for these results, the function space 9 was taken to 
be Sobolev-like, so consisting of inappropriately smooth functions. Furthermore, 
functions F that achieve the 'minimax' rates of convergence of equation (10) for 
some such 9 are not adaptive. This precludes algorithms such as CART from 
achieving minimax rates. More recent research-for example, the results of 
Donoho (1992) and Donoho and I. Johnstone (1992) which give examples of 
function spaces and statistical estimation problems for which adaptive estimators 
are minimax-suggest that, for some other 9 that includes certain discontinuous 
functions, non-linear adaptive procedures such as CART can be minimax; and rates 
of convergence will be of the form given by equation (10). 

With PT~VQ, X = Y  is a vector of pixel intensities, and f has a bit rate constraint 
of the form E(depth f )<D;  therefore, it will not be the case that 
~ l l f ( ~ ) -  f ( ~ )  11 '--+O. Instead, that norm will tend to some asymptote A, which 
might be computed (in some cases) in theory from information-theoretic consider- 
ations. In addition, we do not know exactly the 'correct' F that would render 
PTSVQ minimax in any sense. Even so, we conjecture that, with suitable 
assumptions,.there is a result for it of the form 

E ( I  f (x)  - f (x) 11 = A  + Bn -', for some r > 0 (1 1) 

although the functional form may have a change-point that depends on n and D. An 
example of the empirical result is shown in Fig. 5, in which the average mean- 
squared error is plotted against training sequence size. 

One interesting feature of this study involves its cross-validatory approach which 
we hope to see become standard practice for evaluating compression performance. 
Unlike most studies which use a large set of images for training and then report 
results on one or two test images, Cosman et al. (1991~) used the images repeatedly 
as rraining images in different combinations, and used them as test images 
whenever they were not part of the corresponding training sequence. Evidence for 
the conjectured algebraic form was shown by Cosman et al. (1991~) but much more 
work remains to be done before anything can be said with certainty. 

8 Termination and continuity 

While our kqowledge of the rates of convergence of expected distortion rests on 
empirical evidence and conjecture, we do know that, for greedy, binary tree- 
structured algorithms like those we have described, their consistency in a strong 
sense has been established. The conclusions require that the learning sample of 
pixel vectors is stationary and ergodic. For a summary, see Nobel and Olshen 
(1993a, b). 
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training sequence size 

FIG. 5. Distortion versus training sequence size for 2bpp TSVQ. The ' x ' symbols denote the case 
where the cross-validation scheme sampled entire images; the fitted curve has equation 
y=31.1 +43.7n-0.366. The '0' symbols denote the case where the sampling units were the training 

vectors; the fitted curve is y = 45.3 +37.2 n-'."'. 

To describe the conclusions, it is useful to denote the quantizer of a binary tree T 
by Q,. Here Q,(X) is the centroid of the terminal node to which the 'test' pixel 
vector X belongs. F, the marginal distribution of X and the learning sample vectors, 
is assumed to be absolutely continuous, and to have bounded support. I t  is helpful 
to study the greedy growing algorithm first as it applies to F itself. Of course, there 
might be ties between and within nodes in the choice of the optimal split. We break 
them arbitrarily and recognize that there may be infinitely many possible trees T 
optimally grown on F. Let d ( F ,  R) be the collection of binary trees produced by 
the greedy algorithm acting on F, with a bit rate of at most R. From the bit rate 
constraints, we know that each tree in d ( F ,  R) has a bounded expected depth. 
Nobel and Olshen proved also that every such tree is itself finite with depth not 
more than K= K(R, F )  < co; note that K does not depend on T. There are simple 
examples for which F lacks bounded support and d ( F ,  R) has infinite trees. 

Let En be the empirical distribution based on the learning sample 9 that has 
n-pixel vector members. Also, let d($,, R) be the corresponding collection of 
possible trees produced by the greedy growing algorithm with bit rate constraint R. 
Fix E > 0. Then, for almost every learning sequence, if for every n T, E d($, , R), 
then there is a T , E ~ ( F ,  R) for which P{II QT,(X)-Qs,(X) 11 >E)+O. In other 
words, with probability tending to 1, the code word assigned to test pixel vector X 
by tree T, E d(f in ,  R) will be within a pre-assigned distance of the code word 
assigned to X by some tree T, E d ( F ,  R). 
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9 Concluding remarks 

We have provided a brief survey of the basic ideas behind vector quantization and 
their application to image compression. Compression can be considered as a form of 
classification, where the classes are not predetermined and the quality is measured 
by an average distortion, such as the squared error, rather than by the Bayes risk. 
From this viewpoint, it is natural that two approaches to statistical classification- 

. clustering and classification trees-are well suited to the design of VQs. Together, 
clustering and classification trees provide a good balance between average distor- 
tion, bit rate and algorithmic complexity. The quality of any compression system 
must be judged by its usefulness in a particular application, something which SNRs 
and bit rates may not reveal. In the medical image application, we argued that the 
quality is measured by the degree to which diagnoses based on compressed images 
are consistent with those based on uncompressed images. Spline fits to sensitivity 
and PVP and statistical tests of difference were used to demonstrate such consis- 
tency at several levels of compression. The design of such validation experiments is 
itself an interesting statistical exercise, and it is necessary if lossy compressed 
images are to be accepted by the medical policy makers. 

We closed with recent results on the convergence of code performance with the 
size of the learning set. This issue is of extreme practical importance, because only 
rules of thumb existed previously as a guide for selecting a training set size (or, if the 
size is fixed, as a guide for knowing how much confidence to have in the resulting 

, code). These preliminary results show promise for quantifying these convergence 
rates for realistic code design techniques. 

Vector quantizati6n is not so much a single compression technique as a collection 
of tools based on clustering and classification that can be applied to traditional 
compression algorithms as well as towards new algorithms. By explicitly optimizing 
the distortion-rate trade-off within the constraint of a low complexity tree struc- 
ture, vector quantization provides a conceptually simple method that can be easily 
simulated and used as a benchmark against other compression algorithms. Its 
incorporation of statistical methods makes it amenable to combination with other 
statistical signal processing techniques such as enhancement. Its experimentally 
demonstrated convergence properties have raised a variety of interesting theoretical 
questions that are only now beginning to yield results. 
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