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ABSTRACT

A greedy tree-growing algorithm is used in conjunction with an input-dependent weighted distortion measure
to develop a tree-structured vector quantizer. Vectors in the training set are classified, and weights are assigned to the
classes. The resulting weighted distortion measure forces the tree to develop better representations for those classes
that are considered important. Results on medical images and USC database images are presented. A tree-structured
vector quantizer grown in a similar manner can be used for preliminary classification as well as compression.

1. INTRODUCTION

Tree-structured vector quantization (TSVQ) is an image compression technique that is rapid for both the
encoder and the decoder. A variable rate code can be implemented by an unbalanced tree, obtained either by growing
a balanced tree and then pruning it back so that it becomes unbalanced, or by "greedily" growing an unbalanced tree
directly"2. In this paper we describe work in which this greedy growing algorithm is used in conjunction with an
input-dependent, weighted distortion measure. Weights are assigned to the vectors in the training set according to a
classification scheme; in our examples, the classification is based on brightness, texture, or on hand-labeled features
in the training set. The weighted distortion causes the tree to have "growth spurts" for certain types of inputs that
have been declared a priori to be important, and to become "stunted" for inputs that are less important.

A binary TSVQ consists of a tree with nodes labeled by candidate reproduction vectors. An input vector is
compared to the labels of the two child nodes available at the root node, and the node with the minimum distortion
label (the nearest neighbor) is selected. The encoder then performs a similar test for the new node's children and
continues in this manner until a terminal node is reached. The label of the terminal node is the final reproduction,
and the binary vector describing the sequence of encoder decisions is the codeword stored or sent to the decoder.
The decoder then performs a table lookup to produce a local reproduction. A TSVQ is thus described by a tree
(nodes and labels) and a distortion measure used to select the nodes in a nearest neighbor fashion (see, e.g., Gersho
and Gray3).

2. THE GREEDY TREE GROWING ALGORITHM

A balanced TSVQ is grown one level at a time using, for example, the splitting method of the generalized
Lloyd algorithm; this results in a fixed rate code4. To implement a pruned TSVQ (PTSVQ), a large fixed rate tree
is grown and then pruned back to form a variable rate tree. Growing a fixed rate tree is unnecessarily constrained if
the final code is to be variable rate. Instead of growing the tree one level at a time, we grow the tree one node at a
time1'2. The algorithm is an extension of a common decision tree design technique5 to VQ. An "impurity function"
which measures the quality or penalty of a particular node in a tree is chosen. In our case, the impurity function is
taken to be an average distortion,

d(j) = E[dlj} E{d(x,x,)j], (1)
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where d(., .) is a distortion measure and * is the reproduction vector associated with node j. Typically,

d(x,y) = (x — y)(x — y), (2)

the squared error; but we will consider variations on this theme. The distortion measure d(., .)used to measure node
impurity has been traditionally assumed to be the same as that used in the encoder nearest neighbor decisions. We
will here consider codes where this need not be the case. This apparently unnatural decoupling of different uses of a
distortion measure will be seen to provide additional freedom in code design allowing the code to better emphasize
important features while maintaining a simple encoding rule.

The conditional expectation is computed as a sample average based on a training set, e.g., if 7 is the set of
all training vectors xk mapping into node j, then

d(j) = 4- E d(xk,*) (3)
.1 k:ZkET,

where II2 II is the number of vectors in . The "goodness" of a node split is defined as the decrease in node impurity:

Ld(s,j) = d(j) — pLd(jL)— pRd(jR). (4)

Here, s is a binary test (a nearest neighbor selection in a TSVQ) ,d(j) is the impurity (distortion) measured at node
j of the tree, PL 5 the proportion of the samples in node j that go to the left child, and PR 'S the proportion that go
to the right child. If p(j), p(jL), and P(iR) are the probabilities (as estimated by relative frequency on the training
sequence) of nodes j, JL , and jR respectively, then PL and PR

Given a tree T, let T stand for its leaves (or terminal nodes). Assume that we split j l into two new leaves
.)L and R• Lt D and R stand for the distortion and rate, respectively, measured by T, and let D' and R' stand
for the distortion and rate of the tree after j is split. Let i.D = D' — D and LR = R' — R be the change in the
distortion and rate, respectively, due to splitting j, and let 1(j) be the depth of node j. Then"2:

D = p(i)d(i) + p(j)d(j) (5)

I? = p(i)l(i)+ p(j)l(j) (6)

D' = p(i)d(i) + P(jL )d(jL ) + p(jR)d(jR) (7)

R' = >p(i)l(i)+p(jL)l(jL)+p(jR)l(jR), (8)

and the ratio of the change in distortion to the change in rate due to splitting leaf j is

A = _ = d(j) - pLd(jL) - pRd(jR) = zd(s,j), (9)

which is the goodness of split for leaf j.
As in decision tree design, we can design a TSVQ one node at a time, always splitting the node with the

largest ). For our purposes, the binary test s will be a nearest neighbor selection of node labels designed by the
generalized Lloyd algorithm6, although other tests could be used. The algorithm is "greedy" in the sense that each
node is split without considering its later effect on the tree. This method results in an unbalanced tree, because the
node that is split can be at any depth. There will be more codewords available to code high distortion events; this
is where the tree will have been split the most.

SPIE Vol. 1605 Visual Communications and Image Processing '91: Visual Communication / 163

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The growing method optimally trades off rate and distortion for each new node in a greedy fashion. The
resulting tree can then be pruned with the generalized Breiman, Friedman, Olshen, and Stone (BFOS) algorithm5,
an extension of an idea from classification tree design to coding. One can achieve a lower distortion for a given
average rate by optimally pruning the tree with the generalized BFOS algorithm rather than by removing the nodes
in the reverse order in which they were added. This is because the growing algorithm is greedy, whereas the BFOS
pruning algorithm removes nodes optimally. Unbalanced trees are also able to code high distortion events at a higher
resolution than can balanced trees which are limited by their initial depth.

3. USING A WEIGHTED DISTORTION MEASURE

In the original work on the greedy growing algorithm"2, the distortion measure was the usual squared error.
If k indexes the training vectors that map into node j, then the sample average distortion measured at node j using
the d(x,y) ofsquared error is

d(j) = —.- E (xk - y)2, (10)
.7 k:ZkET

where y is the centroid (with respect to d) of all the training vectors that map into node j. We propose to use
instead an input-weighted distortion measure of the form

p(x,y) = (x — y)'W(x — y), (11)

where W is a strictly positive definite weighting matrix that depends on the input x. This type of distortion
measure is discussed by Gray and Karnin7. In our examples, W, will equal wI, where I is the identity matrix, and
W; is a weight assigned to each training vector x according to its classification. Training vectors which are more
important according to some criterion will be assigned higher weights. In general, an input-weighted squared error
can be substituted for the usual squared error in any or all of three aspects of the code and code design:

1. The weighted squared error can be used for the encoder nearest neighbor rule. This, however, can
increase encoder complexity and requires the encoder to be able to classify the input vectors.

2. The weighted squared error can be used to compute the centroids giving the node labels: the centroid
of a set S will be given by7

cent(S) = {: w} {> Wx} . (12)
rES xES

Thus the centroid at each node will reflect the relative importance of the different types of vectors
mapping into that node, i.e., the centroid will be located closer to the more important training
vectors. If only one class of vectors is present at a node, then the weighted centroid will be equivalent
to the usual unweighted centroid. The centroid computation is performed off-line during code design
and does not affect encoder complexity.

3. The weighted error criterion can be used to define the impurity criterion implying which node to
split during tree growth. The criterion to split the node yielding the largest value of

,\=- (13)

will be altered compared to an unweighted distortion measure. Nodes having high concentrations of
training vectors from important classes will have an inflated zD and therefore will split earlier and
more often than they would in the unweighted case.

When using a weighting matrix of the form wI, there is no difference between using the weighted squared
error or the unweighted squared error for the encoder nearest neighbor rule. Every time the encoder calculates a
distortion for the left child and one for the right child in order to choose its descent path, multiplying both such
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Figure 1 : Original Test Image

distortions by the same weight will not affect the comparison. In this paper, the encoder rule is therefore always
the unweighted squared error. If a more general weighting matrix were used or if the internal nodes of the tree
themselves were associated with a class weight, then it might be useful to weight the encoder's distortion rule.

The choice of classes and their associated weights is clearly the key to making this approach useful. We
present three different types of classificatiotis: a brightness classification applied to magnetic resonance (MR) scans,
a texture-based classification applied to images from the USC database, and a classification of man-made objects in
satellite photos based on a hand-labeled training set.

4. CLASSIFICATION BASED ON INTENSITY

A classification based on intensity, in which bright training vectors are weighted more heavily than dark ones,
is appropriate for MR brain scans because the bright parts of the image correspond typically to what is medically
most important in the image. Certainly the dark background of the image is of no importance, and a high distortion
can be tolerated there. The training sequence consisting of 8 MR brain scans was blocked into 2x2 pixel blocks, and
each vector was assigned a weight proportional to its energy:

wx = , x2 . (14)

The images were 8-bit, and thus the range of possible weights was from 1 to 26. A tree was grown using the weighted
distortion measure for centroid computation and for splitting. Use of the weighted distortion measure for both these
purposes (2 and 3) was found to give no improvement perceptually over using it for splitting alone. The tree was
grown to 2 bits per pixel (bpp) and pruned back to 0.75 bpp. The tree was evaluated on images not in the training
sequence. The same training sequence without weights assigned was used to grow an unweighted unbalanced tree
according to the original greedy growing algorithm. The original test image is shown in Figure 1. An example of the
compressed images at 0.75 bpp produced by the two different trees is given in Figure 2. The image made from the
weighted tree looks better in the bright regions (e.g., the cortex and cerebellum) which generally correspond to the
diagnostically important part of these images. According to the usual unweighted squared error distortion measure,
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the image made from the classified tree has less distortion in the regions of the cortex and cerebellum, but more in
other parts, resulting in a higher distortion overall.

5. CLASSIFICATION BASED ON TEXTURE

Due to pattern masking, the human visual system is generally less sensitive to noise in highly active or textured
regions of an image. The greedy growing algorithm can be used to accomplish such a redistribution of quantization
noise into regions of more texture by using a texture-based classification scheme. It is not appropriate to use MR
scans for this purpose, because the most highly textured part of the image is the cortex, which is often the most
important medically. Hence noise should not be placed in textured regions of MR scans. Instead we considered the
USC database images for this application. The training sequence consisted of six USC database images, blocked
into 4x4 vectors. The weights were assigned to the training vectors as follows: for each 4x4 block, 24 possible pairs
of adjacent pixels were examined to see if the difference between them exceeded some threshold. The 24 pairs are
shown in Figure 3 with curved lines. If the vector had k of the pairs exceeding the threshold, it is assigned weight
25 — k. Thus highly textured vectors, which have many pairs exceeding the threshold, are assigned low weights.
highly homogeneous vectors are assigned large weights.

The original test image (not contained in the training sequence) is shown in figure 4. A tree was grown to 2
bpp using the weighted distortion for the splitting criterion, and then the tree was pruned back to 0.54 bpp. The
compressed images at 0.54 bpp produced by a normal unweighted tree and by the weighted tree are shown in figures
5a and 5b. The compressed image from the weighted tree has less distortion in the cloud regions, where distortion
is most noticeable, and it has more in the areas of trees, where the high texture masks the noise.

In another experiment, we examined whether this weighting could extend to predictive PTSVQ. Linear pre-
diction coefficients were calculated from the training sequence using the blocks to the left, above, and diagonally
to the left and above of a given block. Weights were assigned to the training sequence as before. Residual vectors
were calculated from the prediction coefficients, and the weights that had been assigned to each training vector were
transferred to the corresponding residual vector. A tree was grown on the residual vectors and pruned. The resulting
encoded image quality was slightly better than that produced by unweighted predictive PTSVQ.
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Figure 3: Differences between 24 pairs of adjacent pixels determine the texture class

6. HAND-LABELED CLASSIFICATION

In this section the emphasis is on classification rather than compression. The classification of the training set
is done by hand labeling those features that are to be recognized in subsequent images. The VQ encoder described
here classifies image subblocks while compressing the image. In our example aerial photographs are hand-labeled
as regions of man-made and natural objects and are used to construct a VQ. Class information generated from the
encoding process is used to highlight the reconstructed image to aid image analysis by human observers.

The new idea is that the classification is done simultaneously as the image is encoded. Hence, one tree-
structured search is sufficient to both encode a particular subblock and to classify it into one of the previously
determined categories. Stored with each codeword in the codebook is a class label representing the best class
prediction for image subblocks that will be represented by that particular codeword. Thus, once the encoder selects
the most appropriate codeword, the preliminary classification of the subblock at hand is simply a matter of memory
lookup; no other computations are required. In effect, we are getting this classification knowledge "for free."

Images in the training sequence are divided into blocks, and each block is classified as man-made or natural
by a human observer. This a priori knowledge is used when designing the codebook so that both small average
distortion and accurate implicit classification are achieved. Several codebook design methods are possible with
differing compression and classification abilities on the test images. The splitting criterion selection allows tradeoffs
among compression rate, distortion, and misclassification rate.

The training set consisted of 5 images provided by ESL, Inc. The images were 512x512 pixels of 8 bit grayscale
consisting of aerial photography of the San Francisco Bay area. Each 16x16 pixel subblock in the training set was
assigned to be either man-made or natural based on the perceptions of a human observer. While the codebook
construction and image encoding were carried out using 4x4 pixel subblocks as vectors, the training vectors were
classified in 16x16 subblocks to simplify the task of the human classifier (even using the 16x16 subblocks, over 5000
decisions had to be made.) Using a training set classified with finer resolution might improve classification ability.

The best predictive class for a given codeword in a VQ codebook was determined by a majority vote of the
a priori class assignments of the training vectors represented by that codeword. This makes sense if the costs of
misclassifying the image subblocks of the various classes are equal. However, if the error costs are unbalanced, then
a more sophisticated assignment function would be appropriate.

Codebooks were generated using three different splitting criteria:

Criterion 1 Ignore the classification information and split the node with the largest goodness of split as
defined in Equation 4 where the distortion measure is mean-squared error (see Equation 10.) This
design yields an ordinary VQ for comparison.

Criterion 2 Split the node that has the greatest percentage of misclassified training vectors, i.e. split
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Figure 4: Original Test Image

Figure 5: Compressed images at 0.56 bpp: a) regular and b) weighted distortion measure
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the node with the largest value of

(Number of misclassified vectors in node)
15

(Total number of vectors in node)

This corresponds to measuring impurity by the Hamming distance between the node class, cj, and
the hand-labeled class, c(x). Thus, if dH(x, y) = 0 if x = y and dH(x, y) = 1 if x y, then the
impurity of node j is given by

d(j) = dH(j) E —f--- i: dH(c(xk),cj) (16)
.7 k:ZkET,

as in Equation 3, and the node with the highest such impurity is split. Thus the encoder nearest
neighbor mapping and the centroid reproduction levels are chosen to minimize squared error, but
the tree is grown to reduce classification error.

Criterion 3 Split the node that has the greatest number of misclassified training vectors. This is equiv-
alent to splitting the node with the largest impurity defined by the partial Hamming distortion
d(j) = II7IIdH(i).

Sets of codebooks having either the same rate or same number of nodes were constructed to allow for corn-
parison. In general, the first splitting criterion provided the lowest mean squared error in the encoded image at the
expense of relatively poor classification ability. The latter two splitting methods provided poorer encoded images
(much more blocky in appearance) but better classification ability. Criterion 3 classified more vectors as man-made
than criterion 2. For a given number of nodes, criterion 2 produced a higher rate code than 1, and 3 higher than 2.
Likewise, for a given rate the tree structure produced by criterion 1 has substantially more nodes than criterion 2,
and 2 more nodes than 3. Choosing the splitting criterion involves a tradeoff between compression and classification
quality; some splits serve one purpose better than the other.

Images outside the training sequence were encoded with the resulting codebooks. The compressed images
are best viewed on a color monitor so that classification information can be indicated by color superimposed on the
grayscale compressed image. For example, the classification information can be viewed by highlighting subblocks
that were deemed man-made by the encoder with a red tint and subblocks deemed natural with a green tint. Such
a contrast can make the natural and man-made features of the image easier for a human viewer to differentiate.
Although this information is not as amenable to grayscale display, the images shown here reflect the accuracy of
the classification encoder. The classification ability was modest; at 0.5 bpp the best classification encoder still had
25% misclassification error on the training sequence. However, this large error was partly due to the quality of the
training sequence. The hand-labeling was affected by the human observer's resolution and consistency limitations.

Experimental data is shown for images encoded and classified with a codebook grown using criterion 2. Figure
6 shows the original test image (not in the training set) that was used to evaluate the different codebooks. Figure
7a shows the image after compression at 0.46 bpp. Figure 7b shows the subblocks in the compressed image that the
encoder classified as natural, the man-made subblocks are replaced by solid white subblocks.

7. CLASSIFIED VECTOR QUANTIZATION

This work is related to the concept of a classified vector quantizer (CVQ)8. In CVQ, the training sequence is
typically divided into classes and separate vector quantizers, either full-search or balanced or unbalanced trees, are
developed for each class. The test image to be encoded is blocked into vectors, and each vector is classified in the
same manner as was done for the training sequence vectors. The appropriate quantizer for that class is used for that
vector, and the encoder must then transmit to the decoder both the index of the tree and the index corresponding
to the path of the vector through that tree. CVQ allows one to expend more bits (e.g. grow a larger tree) for those
classes that one judges important. One pays the price for this both with the extra bits (side information) needed to
state which quantizer is being used, and with the added complexity needed to classify the vector at the encoder. An
advantage is that one only has to search through the sub-codebook for that class, and not through the full codebook.
There exist several variations upon this basic theme. An advantage of our method is that the incoming test vectors
do not need to be classified, and no side information to specify the codebook is required; the classification is built
into the tree.
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Figure 7: a) Image compressed at 0.46 bpp using compression/classification encoder, and b) Natural sublocks using
compression/classification encoder. Man-made subblocks are replaced by solid white subblocks.
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8. CONCLUSIONS

We have used an input-dependent, weighted distortion measure in conjunction with a greedy growing algorithm
to grow unbalanced tree-structured vector quantizers. The weighting based on brightness for medical images caused
more quantization noise to be hidden in the dark parts of the image, and less in the bright parts. This would seem
to be useful for certain images in which the useful information is known a priorito be contained in the bright areas.
A weighting based on texture, in which quantization noise was hidden in the more textured areas of the image, was
used on an image of an outdoor scene. In both examples the weighted tree significantly improved the perceptual
compressed image quality although it reduced the SNR as defined according to the standard unweighted squared
error. Hand-labeling of aerial images was used to grow tree-structured vector quantizers which combined moderate
classification ability with encoding, useful in enhancing the reconstructed image. The classification schemes used
so far have classified each training vector without regard to its context in the training image. It might be possible
to use edge detectors or texture classifiers that operate on a More global scale to classify the training vectors. As
vector quantizers have frequently been accused of causing blockiness at edges9 , a vector quantizer that devotes a
larger portion of the tree to edges might help with this problem. Perhaps other types of images would yield their
own appropriate classification types, so that important structures in the image could be enhanced at the expense of
the other parts.
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