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Abstract—This paper studies the optimal transmission of
scalable multimedia sources over multiple-input multiple-output
channels. First, we derive the outage probability of a space-
time code for an arbitrary piecewise-linear diversity-multiplexing
tradeoff function. We next prove that, as long as a crossover point
of the outage probabilities of two space-time codes exists, then
as the spectral efficiency increases, the crossover point in signal-
to-noise ratio monotonically increases, whereas that in outage
probability monotonically decreases. Lastly, based on that, we
derive a method for optimal space-time coding of a scalable
multimedia sequence that contains multiple packets. It is shown
that, with the proposed method, the computational complexity
involved with optimal space-time coding is exponentially reduced
without losing any performance.

I. INTRODUCTION

This paper studies the optimal transmission of scalable (or
progressive) sources [1], [2] over a multiple-input multiple-
output (MIMO) system. Progressive sources have the key
feature that they have steadily decreasing importance for bits
later in the stream, which makes unequal target error rates
and/or transmission data rates in the stream very useful.
Hence, when progressive sources are transmitted over MIMO
channels, and each packet of the stream can be encoded with a
different space-time code, the tradeoff between the space-time
codes needs to be specified in terms of their target error rates
and transmission data rates.

In [3], the authors of this paper considered both vertical Bell
Labs layered space-time (V-BLAST) codes, and orthogonal
space-time block codes (OSTBC), and analyzed how the
crossover point of the error probability curves of the two
codes behaves in the high signal-to-noise (SNR) regime; it
was proven that as the data rate increases, the crossover point
in error probability monotonically decreases, whereas that in
the SNR monotonically increases. Then, the analysis was used
to determine the optimal space-time coding of progressive
sources.

The work in [3] analyzed only V-BLAST with a zero-
forcing (ZF) receiver and OSTBC in i.i.d. Rayleigh fading
channels. On the other hand, in this paper, with different
technical approaches from those used in [3], we extend the
work in [3] to other space-time codes and receivers, and
prove the monotonic behavior of their crossover points, which
is valid in spatially correlated Rayleigh and Rician fading
channels, in addition to i.i.d. Rayleigh channels. To do so,
we exploit the diversity-multiplexing tradeoff (DMT) [4].

More specifically, we derive the outage probability expres-
sion of the space-time code for an arbitrary piecewise-linear

DMT function, and then analyze the crossover point of the
outage probabilities of two space-time codes with given DMT
functions. We prove that, as long as a crossover point of
the outage probabilities exists, then, as the spectral efficiency
increases, the crossover point in the SNR monotonically
increases, whereas that in outage probability monotonically
decreases. The above analytical results hold for any type
of space-time codes and receivers which retain piecewise-
linear DMT characteristics. As a specific example, we analyze
the crossover point for the two-layer diagonal BLAST (D-
BLAST) with a group zero-forcing (GZF) receiver [5], and V-
BLAST with a minimum mean-square error (MMSE) receiver,
in addition to OSTBC. Based on the analysis, we derive the
optimization method for the space-time coding of progressive
sources with respect to D-BLAST, V-BLAST, and OSTBC.

II. CROSSOVER POINT ANALYSIS OF THE OUTAGE
PROBABILITY CURVES FOR GIVEN DMT FUNCTIONS

Consider a MIMO system with Nt transmit and Nr receive
antennas communicating over a frequency flat fading channel.
A space-time codeword, S = [s1 · · · sT ] of size Nt × T is
transmitted over T symbol durations. The baseband model,
at the kth time symbol duration (k = 1, · · · , T ), assuming
perfect matched filter detection is given by yk = Hsk + nk,
where sk is an Nt × 1 transmitted signal vector, yk is an
Nr×1 received signal vector, and nk is an Nr×1 zero-mean
complex AWGN vector with E

[
nkn

H
l

]
=σ2

nINrδ(k−l), where
(·)H denotes Hermitian operation. H denotes the Nr × Nt

channel matrix, whose entries are i.i.d. ∼ CN (0, 1), and it
is assumed that H is random, but constant over T symbol
durations. Let γs denote SNR per symbol, which is defined as
γs := E

[
|(sk)i|2

]
/σ2

n where (sk)i is the ith component of sk.
We assume that H is known at the receiver, but not known at
the transmitter.

Next, we derive the outage probability expression of the
space-time code for any given piecewise-linear DMT function.
Let r and d denote the multiplexing and diversity gains defined
in [4], respectively. That is,

r = lim
γs→∞

R(γs)

log2 γs
and d = − lim

γs→∞

log2 Pout(γs)

log2 γs
(1)

where R(γs) is the spectral efficiency (bits/s/Hz), and Pout(γs)
is the outage probability. By L’Hopital’s rule, the multiplexing
gain, r, in (1) can be expressed as

r = lim
γs→∞

∂R(γs)/∂γs
∂ log2 γs/∂γs

= lim
γs→∞

ln 2 · γs
∂R(γs)

∂γs
(2)
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From (2), it can be shown that

lim
γs→∞

R(γs) = lim
γs→∞

r log2 γs + cr (3)

where cr is an arbitrary real constant. Let kr = 2cr > 0. Then,
as γs → ∞ (i.e., high SNR), R(γs) can be expressed as

R(γs) = log2(kr γ
r
s ). (4)

In a similar way, from (1), it can be shown that, as γs → ∞,
Pout(γs) is expressed as

Pout(γs) = kd γ
−d
s (5)

where kd = 2cd > 0, and cd is an arbitrary real constant.
Consider a space-time code whose DMT characteristic

function, defined in [4], is given by

d†(r) = v − ur, for α ≤ r ≤ β (α > 0) (6)

where d†(r) ≥ 0, and where u ≥ 0 and v ≥ 0 are real
constants. Let P †

out(γs) denote the outage probability for the
space-time code whose DMT is given by (6). From (5) and
(6), as γs → ∞, P †

out(γs) can be expressed as

P †
out(γs) = kd γ

−d†(r)
s = kd

γur
s

γv
s

(7)

Eq. (4) can be rewritten as

γr
s =

2R(γs)

kr
> 1 (8)

where the inequality follows from γs >> 1 and r > 0.
Substituting (8) into (7), as γs → ∞, P †

out(γs) can be rewritten
as

P †
out(γs) = kd

(
2R(γs)

kr

)u
1

γv
s

(9)

for (2R(γs)/kr)
1/β ≤ γs ≤ (2R(γs)/kr)

1/α. The range of γs is
derived as follows: Since r > 0, (8) can be rewritten as γs =
(2R(γs)/kr)

1/r. Thus, from the inequality in (8) and α ≤ r ≤
β in (6), we have the range in (9). We focus on the situation
where the spectral efficiency, R(γs), does not change as γs
increases. Thus, from here onwards, we denote the spectral
efficiency, R(γs), simply by R. In the following subsections,
for given piecewise-linear DMT functions of the space-time
codes, the crossover points of their outage probability curves
are analyzed.

A. When There Exists a Crossover in the DMT Functions

Consider two space-time codes which have linear DMT
characteristics as follows:

d1(r) = v1 − u1r and d2(r) = v2 − u2r,

for α ≤ r ≤ β (α > 0) (10)

where
ui > 0 and vi > 0 (i = 1, 2), (11)

v1 − u1α < v2 − u2α and v1 − u1β > v2 − u2β (12)

That is, there exists a crossover in α < r < β for the two DMT
functions. Let Pout,1(γs) and Pout,2(γs) denote the outage

probabilities of the space-time codes whose DMT functions
are given by d1(r) and d2(r), respectively. Then, from (9), as
γs → ∞, we have

Pout,i(γs) = kd

(
2R

kr

)ui 1

γvi
s

(i = 1, 2) (13)

for (2R/kr)
1/β ≤ γs ≤ (2R/kr)

1/α. From (13), for a
given spectral efficiency, R, we find the SNR, γ∗

s , for which
Pout,1(γs) and Pout,2(γs) are identical. It can be readily shown
that, for v1 ̸= v2, γ∗

s is given by

γ∗
s =

(
2R

kr

)u2−u1
v2−v1

(14)

In the following, we will show that γ∗
s exists within the range

of SNR given below (13), and that v1 ̸= v2 (or, more precisely,
v2 > v1) for (14).

i) From (12), we obtain (β − α)u2 > (β − α)u1, or,
equivalently, u2 > u1. It can also be shown that v2 > v1.

ii) From u2 > u1 and v2 > v1, (12) can be rewritten
as 1/α > (u2 − u1)/(v2 − v1) and 1/β < (u2 −
u1)/(v2 − v1). From this and the inequality in (8), we
have (2R/kr)

1/β ≤ γ∗
s ≤ (2R/kr)

1/α.
Further, from u2 > u1 and v2 > v1, it follows that γ∗

s , given by
(14), is a strictly increasing function in R, for any kr > 0 given
below (3). In other words, as the spectral efficiency increases,
the crossover point of the outage probability curves in SNR
monotonically increases.

If we substitute γ∗
s , given by (14), into (13), it can be shown

that the corresponding outage probability, P ∗
out, is given by

P ∗
out = kd

(
2R

kr

)u1v2−u2v1
v2−v1

(15)

We will prove that P ∗
out is a strictly decreasing function in

R. From u2 > u1 and v2 > v1, (12) can be rewritten as
β > (v2−v1)/(u2−u1). From d2(β) = v2−u2β ≥ 0, which
is assumed in (6) and (10), and u2 > 0, given by (11), it is
seen that β ≤ v2/u2. Thus, we have (v2 − v1)/(u2 − u1) <
v2/u2. From this, u2 > 0, and u2 > u1, it can be shown that
u2v1 > u1v2. In addition, from v2 > v1, we have

u1v2 − u2v1
v2 − v1

< 0. (16)

Eqs. (15) and (16) show that P ∗
out is a strictly decreasing

function in R, regardless of what the constants kr > 0 and
kd > 0, given below (3) and (5), respectively, are. That is,
as the spectral efficiency increases, the crossover point in the
outage probability monotonically decreases.

Moreover, from (13) and v2 > v1, it can be shown that

Pout,1(γs) < Pout,2(γs) for

(
2R

kr

) 1
β

≤ γs < γ∗
s

Pout,1(γs) > Pout,2(γs) for γ∗
s < γs ≤

(
2R

kr

) 1
α

(17)

Let P ∗
out,f and γ∗

s,f denote the crossover point when a spectral
efficiency R = Rf is used, and let P ∗

out,g and γ∗
s,g denote
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the crossover point when R = Rg is employed. Suppose
that Rf < Rg . Since γ∗

s and P ∗
out are strictly increasing and

decreasing functions in R, respectively, we have

γ∗
s,f < γ∗

s,g and P ∗
out,f > P ∗

out,g for Rf < Rg. (18)

Based on (17) and (18), the outage probabilities of the two
space-time codes, for the same given spectral efficiency, are
qualitatively depicted in Fig. 1. Suppose that a target outage
probability, Pout,T , is smaller than P ∗

out,f but greater than
P ∗
out,g. Then, from Fig. 1, it is seen that, for a spectral

efficiency Rf , the space-time code with the DMT of d2(r)
given by (10) is preferable to that with the DMT of d1(r).
For a spectral efficiency Rg, however, the latter is preferable
to the former. Note that the analyses in this subsection are
valid for any kd > 0 and kr > 0.

B. When the DMT Functions Coincide Only at the Lowest
Multiplexing Gain

We next consider the case when the DMT functions coincide
only at the smallest multiplexing gain in α ≤ r ≤ β. Consider
two space-time codes which have linear DMT characteristics
given by (10) and (11), with

v1 − u1α = v2 − u2α and v1 − u1β < v2 − u2β (19)

From (19), in a similar way to Subsection A, it can be shown
that γ∗

s , given by (14), exists in the range of SNR given below
(13), such that (2R/kr)1/β ≤ γs ≤ (2R/kr)

1/α (= γ∗
s ).

Moreover, it can be shown that γ∗
s is a strictly increasing

function in R, for any kr > 0. It can also be proven that P ∗
out,

given by (15), is a strictly decreasing function in R, for any
kd > 0 and kr > 0.

Further, from (13), it can be shown that

Pout,1(γs) > Pout,2(γs) for

(
2R

kr

) 1
β

≤ γs <

(
2R

kr

) 1
α

(20)

From (20), it is seen that, except at the highest SNR, γs =
(2R/kr)

1/α, the space-time code with the DMT given by

Outage 

Probability

SNR

Outage 

Probability

SNR

X Y Y X

Spectral Efficiency Spectral Efficiency

∗
fs,γ
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gR
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Fig. 1. Outage probabilities of the two space-time codes for the same given
spectral efficiency. For Rf < Rg , we have γ∗

s,f < γ∗
s,g and P ∗

out,f >
P ∗
out,g .

d2(r) is always preferable to the space-time code with the
DMT given by d1(r), for any spectral efficiency R and target
outage probability Pout,T . Note that this differs from the result
of Subsection A which is stated below (18). However, as
described below (19), the crossover point, γ∗

s and P ∗
out, retains

the same properties as those of Subsection A, as given by (18).

C. When the DMT Functions Coincide Only at the Highest
Multiplexing Gain

For this case, we have similar results to Subsection B, which
are not presented here due to limited space.

III. CROSSOVER POINT ANALYSIS OF THE OUTAGE
PROBABILITIES FOR D-BLAST, V-BLAST AND OSTBC
Based on the analysis in Section II, we analyze the behavior

of the crossover point of the outage probabilities for specific
space-time codes. As an example, we consider two-layer D-
BLAST with a GZF receiver [5], V-BLAST with an MMSE
receiver, and OSTBC. GZF (group decoding) is a recent
decoding method studied in the literature. From here onwards,
D-BLAST and V-BLAST are assumed to be with those specific
receivers. Let dD(r), dV (r) and dO(r) denote the DMT char-
acteristics of D-BLAST, V-BLAST, and OSTBC, respectively.
Then, we have dD(r) = NrNt−Nt+1−Nr(Nt+1)r/2 for
0 ≤ r ≤ 2/(Nt+1); and dD(r) = (Nr−1){Nt−(Nt+1)r/2}
for 2/(Nt + 1) ≤ r ≤ 2Nt/(Nt + 1) [5]. In addition,
dV (r) = (Nr − Nt + 1)(1 − r/Nt) for 0 ≤ r ≤ Nt, and
dO(r) = NrNt(1 − r/rs) for 0 ≤ r ≤ rs. In the range of r,
which is not specified above, we have dD(r)=dV (r)=dO(r)=0.
To compare the above codes, it is assumed that Nr ≥ Nt ≥ 0.

A. Two-Layer D-BLAST and V-BLAST

The range of multiplexing gain given above can be divided
into 0 < r ≤ 2/(Nt + 1), 2/(Nt + 1) ≤ r ≤ 2Nt/(Nt + 1),
2Nt/(Nt + 1) ≤ r ≤ Nt, and Nt ≤ r < ∞, such that
the DMT functions of both D-BLAST and V-BLAST are
linear over each range. We analyze the crossover point of the
outage probabilities for each of the ranges. Let Pout,D(γs) and
Pout,V (γs) denote the outage probabilities of D-BLAST and
V-BLAST, respectively. Then, based on the analysis in Section
II, it can be shown that

Pout,D(γs)=Pout,V (γs) for 1 < γs ≤
(
2R

kr

) 1
Nt

Pout,D(γs)>Pout,V (γs) for

(
2R

kr

) 1
Nt

< γs < γ∗
s

Pout,D(γs)<Pout,V (γs) for γ∗
s < γs < ∞ (21)

where γ∗
s exists in the range of (2R/kr)

(Nt+1)/2Nt < γ∗
s <

(2R/kr)
(Nt+1)/2, and it exhibits monotonic behavior, as given

by (18):

γ∗
s,f < γ∗

s,g and P ∗
out,f > P ∗

out,g for Rf < Rg. (22)

Suppose that a target outage probability, Pout,T , is smaller
than P ∗

out,f but greater than P ∗
out,g. Then, from (21) and (22), it

follows that D-BLAST is preferable to V-BLAST for a spectral
efficiency Rf , but V-BLAST is preferable for Rg (see Fig. 1).
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B. Two-Layer D-BLAST and OSTBC

Let Pout,O(γs) denote the outage probability of OSTBC.
Based on the results of Section II, it can be shown that

Pout,D(γs)=Pout,O(γs) for 1 < γs ≤
(
2R

kr

)Nt+1
2Nt

Pout,D(γs)<Pout,O(γs) for

(
2R

kr

)Nt+1
2Nt

< γs < γ∗
s

Pout,D(γs)>Pout,O(γs) for γ∗
s < γs < ∞ (23)

where γ∗
s exists in γ∗

s > (2R/kr)
(Nt+1)/2, and it exhibits

monotonic behavior, as given by (22). Thus, the same argu-
ment as given below (22) can be made for this case.

IV. OPTIMAL SPACE-TIME CODING OF A SEQUENCE OF
NUMEROUS PROGRESSIVE PACKETS

We exploit the analysis in Section III to address the
optimization of progressive transmission in MIMO systems.
Progressive encoders produce data with gradual differences of
importance in their bitstreams. Suppose that the bitstream from
a progressive source encoder is transformed into a sequence
of NP packets. Each of those packets can be encoded with
different transmission data rates, as well as different space-
time codes, so as to yield the best end-to-end performance. The
error probability of an earlier packet needs to be less than or
equal to that of a later packet, due to the gradually decreasing
importance in the bitstream. Thus, given the same transmission
power, the earlier packet requires a data rate which is less than
or equal to that of the later packet.

Let ND denote the number of candidate data rates employed
by a system. The number of possible assignments of ND

data rates to NP packets would exponentially grow as NP

increases. Further, in a MIMO system, if each packet can be
encoded with different space-time codes (e.g., D-BLAST, V-
BLAST, or OSTBC), the assignment of space-time codes as
well as data rates to NP packets yields a more complicated
optimization problem. Note that each source, such as an image,
has its inherent rate-distortion characteristic, from which the
performance of the expected distortion is computed. Hence,
for example, when a series of images is transmitted, the
above optimization should be addressed in an image-by-image
manner (i.e., in a real time manner), considering which specific
image (i.e., rate-distortion characteristic) is transmitted in the
current time slot. To address this matter, for a SISO system,
there have been many studies about the optimal assignment
of data rates for a sequence of progressive packets. For a
MIMO system, we exploit the results in the previous sections
to optimize the assignment of space-time codes for progressive
packets.

First, we focus on D-BLAST and V-BLAST. Suppose that
we can employ one of the two codes for each packet, and
that the kth packet in a sequence of NP packets is encoded
with V-BLAST. Then, our analysis tells us that the k + 1st,
k + 2nd, . . ., NP th packets also should be encoded with V-
BLAST rather than with D-BLAST. This is because in Section

III we have shown that, when V-BLAST is preferable for a
packet with a data rate (i.e., spectral efficiency times signal
bandwidth) of Rf , a packet with a data rate of Rg (> Rf )
also should be encoded with V-BLAST, as long as the target
error rate of the latter is the same as or higher than that of the
former (see Fig. 1). That is, in a sequence of NP progressive
packets, the last i consecutive packets should be encoded with
V-BLAST, and the other NP − i packets are encoded with
D-BLAST (0 ≤ i ≤ NP ).

Next, suppose that either D-BLAST or OSTBC can be
employed for each packet, and that the kth packet is encoded
with OSTBC. Then, our analysis indicates that the 1st, 2nd,
. . ., k−1st packets also should be encoded with OSTBC rather
than with D-BLAST. Hence, the earliest i consecutive packets
should be encoded with OSTBC, whereas the other NP − i
packets are encoded with D-BLAST (0 ≤ i ≤ NP ).

From the statements above, the optimization strategy can
be derived as follows: Suppose that the system can employ
D-BLAST, V-BLAST or OSTBC for each progressive packet.
Then, the earliest i consecutive packets should be encoded
with OSTBC, the last j consecutive packets should be encoded
with V-BLAST, and the remaining NP − i − j packets are
encoded with D-BLAST (0 ≤ i, j ≤ NP and 0 ≤ i+j ≤ NP ).
Note that the strategy is based on the properties of progressive
sources that are involved with unequal target error rates and
spectral efficiencies in the bitstream. As a result, the number
of possible assignments of the three space-time codes to a se-
quence of NP packets is reduced from 3NP to

(
NP+1

2

)
. That is,

the computational complexity involved with the optimization
can be exponentially simplified.

V. NUMERICAL EVALUATION

First, we evaluate the outage probabilities of D-BLAST,
V-BLAST, and OSTBC for various spectral efficiencies and
numbers of transmit and receive antennas. As an example, the
results for 2× 3 and 2× 4 MIMO systems are depiced in Fig.
2, where solid curves denote the exact outage probabilities,
and dashed curves denote the high SNR approximate outage
probabilities which are derived from (9). Both Fig. 2 (a) and
2 (b) show that as spectral efficiency increases, the exact
crossover points as well as the approximate ones behave in
a manner predicted by the analysis as given by (22).

Next, we compare the performances of the optimal space-
time coding and the suboptimal ones for the transmission of
progressive sources. We evaluate the performances using the
source coder SPIHT [2], for the 8 bits per pixel (bpp) 512×512
Lena image with a transmission rate of 0.5 bpp. The end-
to-end performance is measured by the expected distortion
of the image. To begin, we briefly present the evaluation of
the expected distortion of the image: The system takes the
compressed bitstream from the progressive source encoder,
and transforms it into a sequence of NP packets. Then, each
packet is encoded by a space-time code. At the receiver, if
a received packet is correctly decoded, the next packet is
considered by the source decoder. Otherwise, the decoding
is stopped, and the source is reconstructed from only the
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Fig. 2. Exact and high SNR approximate outage probabilities in i.i.d. Rayleigh fading channels. The crossover points are marked with circles.

correctly decoded packets. We assume a slow fading channel
such that channel coefficients are nearly constant over an
image which consists of a sequence of NP packets.

Let Pi(γ̇s) denote the conditional probability of a decoding
error of the ith packet (1 ≤ i ≤ NP ), where γ̇s is the
instantaneous SNR per symbol, conditioned on fading channel
state. Then, the conditional probability that no decoding errors
occur in the first n packets with an error in the next one, Pc,n,
is given by Pc,n = Pn+1(γ̇s)

∏n
i=1(1 − Pi(γ̇s)) (1 ≤ n ≤

NP − 1). Note that Pc,0 = P1(γ̇s) is the probability of an
error in the first packet, and Pc,NP =

∏NP

i=1(1−Pi(γ̇s)) is the
probability that all NP packets are correctly decoded. Let dn
denote the distortion of the source using the first n packets for
the source decoder (0 ≤ n ≤ NP ). Then, dn can be expressed
as dn = D (

∑n
i=1 ri), where D(x) denotes the operational

distortion-rate function of the source, and ri is the number of
source bits in the ith packet (1 ≤ i ≤ NP ). Then, the expected
distortion, denoted by E[D], can be evaluated from Pc,n, dn,
and the probability distribution of the instantaneous SNR, γ̇s
(refer to [6, Sec. V] for more details of the evaluation). Note
that E[D] is a function of the SNR as well as the spectral
efficiency and the space-time code that are assigned to each
of NP progressive packets.

Let Ci denote the space-time code assigned to the ith
packet. One can find the optimal set of space-time codes
Copt = [C1, . . . , CNP ]opt which minimizes the expected
distortion over a range of SNRs using the weighted cost
function as follows:

arg min
C1,...,CNP

∫∞
0

ω(γs)E[D]dγs∫∞
0

ω(γs)dγs
(24)

where w(γs) ∈ [0, 1] is the weight function. For example,
w(γs) can be chosen such that w(γs) = 1 for γs, a ≤ γs ≤
γs, b, and w(γs) = 0 otherwise. In broadcast or multicast

systems, that weight function indicates that SNRs of multiple
receivers are uniformly distributed in γs, a ≤ γs ≤ γs, b. Eq.
(24) indicates that a set of codes, C1, . . . , CNP , is chosen such
that the total sum of the expected distortion of the receivers
distributed in γs, a ≤ γs ≤ γs, b is minimized. Note that the
amount of computation involved in (24) exponentially grows
as NP increases. Alternatively, as presented in Section IV,
we may choose a set of codes with the constraint that the
earliest i consecutive packets are encoded with OSTBC, the
last j consecutive packets are encoded with V-BLAST, and the
remaining NP − i− j packets are encoded with D-BLAST.

To compare the image quality, we use the PSNR, defined
as 2552/E[D]. We evaluate the PSNR performance as fol-
lows. We first compute (24) using the expected distortion,
E[D], obtained from both dn and Pc(n), and the weight
function, w(γs), given below (24). Next, with the optimal
set of codes, Copt, obtained from (24), we evaluate the
PSNR over a range of SNRs, γs, a ≤ γs ≤ γs, b. The
performance is numerically evaluated for the case when a
sequence of NP = 11 progressive packets is transmitted in
2 × 2 MIMO systems as an example, and we assume that
the spectral efficiencies are assigned in a way such that R=
[2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0] (bits/s/Hz),
where the ith component is the spectral efficiency assigned to
the ith packet. For this specific setup, the optimal set of space-
time codes computed from (24) is given by C1 = OSTBC,
C2 = · · · = C9 = D-BLAST, and C10 = C11 = V-BLAST.
Fig. 3 shows the PSNR of such an optimal set of space-time
codes, in addition to showing the PSNRs of other suboptimal
sets of codes, such as the sets at the 75th and 50th percentiles
among the sets of codes (note that the number of possible sets
is 3NP ), and the worst set of codes which shows the poorest
performance. Fig. 3 also shows the PSNR corresponding to the
expected distortion that is averaged over all possible sets of
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codes. From this example, it is seen that PSNR performance
of the progressive source is sensitive to the way space-time
codes are assigned to a sequence of packets, in part due to
the unequal target error rates and spectral efficiencies of the
bitstream.

Fig. 3 also shows the PSNR performance when (24) is
computed with the constraint proposed in Section IV. In this
case, the number of possible sets of space-time codes is
reduced from 3NP to

(
NP+1

2

)
. We note that the same optimal

set of codes has been obtained when (24) is computed with and
without the constraint. That is, without losing any PSNR, the
computational complexity involved with the optimization can
be exponentially reduced by exploiting the monotonic behavior
of the crossover point, as shown in Fig. 1. It is further seen
that the PSNR performance which corresponds to the expected
distortion averaged over all possible sets of codes becomes
better when the constraint in Section IV is introduced, which
shows that, on the average, the proposed constraint is a good
strategy for the space-time coding of progressive sources.

Lastly, we consider spatially correlated Rayleigh and Ri-
cian fading channels, instead of the i.i.d. Rayleigh channels
described in Section II. Note that DMT characteristics, with
multiplexing and diversity gains defined in (1) at high SNR,
are not influenced by spatial correlation or line-of-sight (LOS)
signal components [7], [8]. This is because, as stated in
[7], when the SNR approaches infinity, only the number
of channel eigenmodes determines the performance, i.e., the
relative strength of eigenmodes, which is primarily affected
by spatial correlation or LOS components, does not affect
high SNR behavior. From this, it follows that the analysis
in Sections II and III is also valid over correlated Rayleigh or
Rician channels at high SNR. Our numerical evaluations show
that the crossover points in such propagation channels behave
in the same way as do those for the i.i.d. Rayleigh channels,
though they are not depicted here for limited space.

VI. CONCLUSIONS

When a sequence of multimedia scalable (or progressive)
packets is transmitted over MIMO channels, due to the differ-
ences of importance in the bitstream, the tradeoff between the
space-time codes needs to be specified in terms of their target
error rates and spectral efficiencies. To address the matter, by
exploiting DMT functions, we analyzed the crossover point of
the outage probabilities of the space-time codes. The work in
this paper extended [3] to more general cases, in that the above
results can be applied to any space-time codes, receivers, and
propagation channels with given DMT functions.

As a specific example, we considered D-BLAST with a
GZF receiver, V-BLAST with an MMSE receiver, and OS-
TBC, and proved the monotonic behavior of their crossover
points, which holds in spatially correlated Rayleigh and Rician
channels, as well as in i.i.d. Rayleigh channels. Based on
that, we proposed an optimization method for the space-time
coding of a sequence of numerous progressive packets. The
numerical evaluation showed that, with the proposed method,
the computational complexity involved with the optimization
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Fig. 3. PSNR for 2× 2 MIMO systems in i.i.d. Rayleigh channels.

is exponentially reduced without any PSNR degradation, com-
pared to an exhaustive search.
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