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Abstract—Images taken underwater often suffer color dis-
tortion and low contrast because of light scattering and
absorption. An underwater image can be modeled as a blend of
a clear image and a background light, with the relative amounts
of each determined by the depth from the camera. In this
paper, we propose two neural network structures to estimate
background light and scene depth, to restore underwater
images. Experimental results on synthetic and real underwater
images demonstrate the effectiveness of the proposed method.
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I. INTRODUCTION

Images in fog, haze, sandstorms, or water can suffer from
visibility degradation as light is scattered and absorbed with
distance from the camera. In the image formation model
(IFM) [1], the observed intensity Ic(x) at pixel x consists
of the scene radiance Jc(x) blended with the background
light (BL) Bc according to the transmission maps tc(x),
where c is one of the red, green, and blue channels:

Ic(x) = Jc(x)tc(x) +Bc
(
1− tc(x)

)
, c ∈ {r, g, b} (1)

where Ic, Jc, tc and Bc ∈ [0, 1]. The transmission map
(TM) describes the portion of the scene radiance which is
not scattered or absorbed and which reaches the camera.
Large values in the TM mean that the corresponding scene
point is closer to the camera.

Using the IFM, He et al. [2] proposed the dark chan-
nel prior (DCP) to remove fog/haze in natural terrestrial
images via estimation of the ambient light and TM. This
motivated many underwater image restoration approaches
[3]–[5]. However, estimating BL and TM for underwater
images based on the DCP frequently fails since red light is
more attenuated than other wavelengths underwater. In [6],
image blurriness was adopted for estimation of BL and
TM, and [7] considers both blurriness and light absorption.
Some researchers exploited learning algorithms to generate
a mapping function from a hazy input image to an output
depth map [8]–[11]. Training using synthetic hazy images
with bright ambient light may not suit underwater images. In
addition, these methods adopted DCP-based BL estimation,
which often fails for underwater images.

In this paper, deep networks are adopted to estimate
BL and scene depth for underwater images, where a 5-

layer ConvNet and a multi-scale deep network architecture
similar to [12] are used to predict BL and scene depth.
Using these, we are able to restore underwater images by
reversing the image formation process based on the IFM.
Experimental results on synthesized and real underwater
images demonstrate the proposed method outperforms state-
of-the-art underwater image restoration methods.

II. PROPOSED METHOD

Typical restoration based on the IFM involves estimating
tc and Bc, and then determining Jc based on approximately
inverting the IFM:

Jc(x) =
Ic(x)−Bc

max
(
tc(x), t0

) +Bc, (2)

where t0 is set to 0.1 to increase the exposure of Jc for
display. We use a 5 layer ConvNet for BL estimation, and
a multi-scale deep network architecture [12] to estimate
underwater scene depth. Then, the TM can be computed
using underwater attenuation coefficients and scene depth.
With BL and the TM, we can restore images using Eq. (2).

BL Estimation: To estimate BL, we implement a 5-layer
convolutional neural network, shown in Fig. 1. The first three
layers are convolutional with filter sizes of 5 × 5, 5 × 5,
and 3 × 3, each of which has a 2 × 2 pooling layer and a
normalization layer. The last two layers are fully connected.
Before the final output Bc, we threshold to the range [0, 1].

TM Estimation: To predict scene depth, and hence the
TM, we adopt a multi-scale architecture based on [12],
which stacks two deep networks, a coarse global network
and a refined network. The method [12] originally was
proposed to predict depth from a single indoor image, and
was used to estimate depth for hazy images in [10]. Here,
we add an upsampling layer. The network architecture is
shown in Fig. 2. The coarse global network first has five
convolutional layers. The first two have a 2×2 pooling layer
and a normalization layer, and the last has only a 2 × 2
pooling layer. The last two layers of the coarse network
are fully connected layers, and the output coarse depth is
concatenated to the output of the first layer of the refined
network. The refined network has 3 convolutional layers and
a 4× upsampling layer. We place an upsampling layer before
the final convolutional layer in expectation of refinement on
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Figure 1: Network architecture for BL estimation

the upsampled feature map. The final output is a predicted
depth map d(x). After predicting scene depth, the TM for red
channel of the input underwater image are computed using
tr(x) = e−β

rd(x) where βr is the underwater attenuation
coefficient for red channel which is set 1/5 as default.
Lastly, the TM for red channel is resized and further refined
with guided filter. For green and blue channel, with their
attenuation coefficient βg and βb computed using Eq. (10)
from [7], their TMs are calculated by:

tk(x) = tr(x)
βk

βr , k ∈ {g, b} (3)

Finally, the restored underwater color image is calculated
using Eq. (2).

Training Data: To create sufficient data for training, we
synthesize underwater images using the NYU depth dataset
v2 [13] which contains 1449 densely labeled pairs of aligned
RGB and depth images of indoor scenes. We choose 29
typical underwater ambient lights, shown in Fig. 3(a). With
the paired depth map d, the TM can easily be computed. To
increase the training set, we apply a scale factor s and offset
f to generate a new depth map dnew = s × d + f . In our
experiment, s is randomly chosen from [0.875, 1.125] and
f is randomly chosen from [0, 1.5]. With Eq. (2), a synthe-
sized underwater image is generated. Fig. 3(d) demonstrates
example synthetic underwater images based on the scene
radiances shown in Fig. 3(b) and their corresponding depth
maps shown in Fig. 3(c).

Training Parameters: The minimizer used for both net-
works is AdamOptimizer with learning rate set to 10−4.
The dropout rate is 0.8. We use Tenserflow with GPU
acceleration and take 12, 000 synthetic underwater images
for training the BL estimation and depth prediction net-
works. For BL, we randomly choose initial weights from a
normal distribution with standard deviation 0.01. The depth
prediction network adopts weights from VGG net and [12]
as initial values. The loss function for the BL network is:

LossBL =
∑

c∈{r,g,b}

(Bcest −Bcgt)2 (4)

where Bcest is the estimated BL of channel c and Bcgt is
from ground truth. For depth estimation, we adopt the scale-

invariant mean squared loss function from [12]:

Lossdepth =
1

n

∑
x

δ(x)2 − 1

n2
(
∑
x

δ(x))2 (5)

where n is the total number of pixels and δ(x) is the
difference of the logarithm between prediction and ground
truth at pixel x: δ(x) = log dest(x)− log dgt(x).

III. EXPERIMENTAL RESULTS

We first compare the proposed method against five un-
derwater image restoration methods [3]–[7] using 3000
synthetic underwater images. The first row of Table I shows
the average mean square error (MSE) per channel for BL
estimation for all the compared methods. The next two rows
show the average PSNR and SSIM results for restoring the
images. The proposed method outperforms the others.

Original [3] [4] [5] [6] [7] Proposed
MSE / ch .045 .069 .070 .056 .042 .006

PSNR 16.83 17.08 16.46 14.67 16.72 20.26
SSIM .72 .74 .72 .67 .74 .85

UCIQE 0.51 0.59 0.57 0.55 0.59 0.58 0.60
UIQM 3.79 4.17 4.10 4.02 4.09 4.24 4.26

Table I: Average results: (First three rows, synthesized
images) MSE per channel for BL estimation, PSNR and
SSIM for restoration, (Last two rows, real images) UCIQE
and UIQM for restoration.

Next, we apply the proposed method to real underwater
images. Fig. 4 shows examples. Although ground truth depth
and BL are not available, they appear to be reasonable
(all the TMs shown have undergone a linear stretching for
display) and the restored images present better contrast and
more vivid colors compared to the input images. Fig. 5
shows restored images with the methods in [3]–[7] and our
method. The proposed method reveals more details. Lacking
reference images for real underwater images, we apply two
no-reference objective underwater image quality metrics,
UCIQE [14] and UIQM [15] on 50 real underwater images
(test images from Google Image). In Table I, the proposed
method outperforms the other methods with these metrics.

In conclusion, we proposed an underwater image restora-
tion method based on deep networks. BL and scene depth
for an underwater image are estimated via a 5-layer ConvNet
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Figure 2: Network architecture for transmission estimation

Figure 3: (a) 29 common underwater BLs. (b) Indoor images
from [13] with (c) corresponding depth maps. (d) Example
synthetic underwater images based on (a)-(c).

and a multi-scale deep network, allowing the input underwa-
ter image to be restored using the image formation model.
Using synthetic underwater images with different BLs and
real underwater images, we demonstrate that the proposed
method produces satisfying restored results and outperforms
other state-of-the-art IFM-based methods.

REFERENCES

[1] R. Fattal, “Single image dehazing,” ACM Trans. Graphics,
vol.27, no. 3, pp. 72 1-729, 2008.

[2] K. He, J. Sun, and X. Tang, “Single image haze removal using
dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 12, pp. 2341-2353, Dec. 2011.

[3] H. Wen, Y. Tian, T. Huang, and W. Gao, “Single underwater
image enhancement with a new optical model,” in Proc. IEEE
Int. Symp. Circuits & Syst. (ISCAS), May 2013, pp. 753-756.

[4] P. Drews, E. do Nascimento, F. Moraes, S. Botelho, and
M. Campos, “Transmission Estimation in Underwater Single
Images,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops
(ICCVW), pp. 825-830, Dec. 2013.

[5] X. Zhao, J. Tao, and Q. Song. “Deriving inherent optical
properties from background color and underwater image
enhancement,” Ocean Eng., vol. 94, pp. 163-172, Jan. 2015.

[6] Y.-T. Peng, X. Zhao, and P. C. Cosman, “Single Underwater
Image Enhancement using Depth Estimation based on Blur-
riness,” in Proc. ICIP, pp. 4952-4956, Sep. 2015.

[7] Y.-T. Peng and P. C. Cosman.“Underwater Image Restoration
Based on Image Blurriness and Light Absorption.” IEEE
Transactions on Image Processing 26.4 (2017): 1579-1594.

[8] W. Ren, L. Si, H Zhang, J. Pan, X. Cao, and M.-H. Yang.
“Single image dehazing via multi-scale convolutional neural
networks,” ECCV, pp. 154-169., 2016.

[9] Q. Zhu, J. Mai, and L. Shao, “A Fast Single Image Haze
Removal Algorithm Using Color Attenuation Prior,” IEEE
Trans. Image Process., vol. 24, pp. 3522-3533, Nov. 2015.

[10] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “DehazeNet: An
End-to-End System for Single Image Haze Removal,” IEEE
Trans. Image Process., vol. 25, pp. 5187-5198, Nov. 2016.

[11] X. Fan, Y. Wang, X. Tang, R. Gao, and Z. Luo, “Two-Layer
Gaussian Process Regression with Example Selection for
Image Dehazing,” IEEE Trans. Circuits Syst. Video Technol.,
2016.

[12] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction
from a single image using a multi-scale deep network,”
Advances in neural information processing systems, pp. 2366-
2374, 2014.

[13] http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html

[14] M. Yang and A. Sowmya. “An underwater color image quality
evaluation metric.” IEEE Transactions on Image Processing
24.12 (2015): 6062-6071.

[15] K. Panetta, C. Gao, and S. Agaian. “Human-visual-system-
inspired underwater image quality measures.” IEEE Journal
of Oceanic Engineering 41.3 (2016): 541-551.

3



Figure 4: Examples of restoration of real underwater images based on the proposed method. A: Original underwater image.
B: Estimated BL. C: Estimated transmission map. D: Restored images.

Figure 5: Restored images visual comparision. (a) [3]. (b) [4]. (c) [5]. (d) [6]. (e) [7]
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