
3586 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

Generalized Unequal Error Protection LT Codes
for Progressive Data Transmission

Suayb S. Arslan, Student Member, IEEE, Pamela C. Cosman, Fellow, IEEE,
and Laurence B. Milstein, Fellow, IEEE

Abstract— The original design of standard digital fountain
codes assumes that the coded information symbols are equally
important. In many applications, some source symbols are more
important than others, and they must be recovered prior to the
rest. Unequal error protection (UEP) designs are attractive solu-
tions for such source transmissions. In this paper, we introduce
a more generalized design for the first universal fountain code
design, Luby transform (LT) codes, that make it particularly
suited for progressive bit stream transmissions. We apply the
generalized LT codes to a progressive source and show that
it has better UEP properties than other published results in
the literature. For example, using the proposed generalization,
we obtained up to 1.7-dB peak signal to noise ratio gain in a
progressive image transmission scenario over the two major UEP
fountain code designs.

Index Terms— Fountain codes, iterative decoding, lossy
channels, progressive sources, unequal error protection (UEP),
unequal iteration time (UIT), unequal recovery time (URT).

I. INTRODUCTION

ERASURE channels can be used to model various data
networks, where packets are either received reliably or

lost completely due to channel impairments, buffer overflows
or excessive delays. For example, data files sent over the
internet are chopped into fixed or variable size packets, and
each packet is either received without error or corrupted
due to the channel and therefore considered erased during
the transmission. A cyclic redundancy check (CRC) code
is typically used to detect packet errors. When such errors
are detected, and the CRC code reports failure, the receiver
discards the whole packet [1].

For communicating over erasure channels, it is customary
to employ a feedback mechanism from the receiver to the
sender to manage the retransmission of erased packets. Such
retransmission protocols might be burdened with an excessive
number of feedback messages [2]. One interest of the coding

Manuscript received August 31, 2011; revised December 16, 2011; accepted
April 1, 2012. Date of publication April 26, 2012; date of current version
July 18, 2012. This work was supported in part by LG Electronics Inc.,
Intel Inc., the National Science Foundation under Grant CCF-0915727, the
Center for Wireless Communications at the University of California, San
Diego, and the UC Discovery Grant Program of the State of California. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Anthony Vetro.

The authors are with the Department of Electrical and Computer
Engineering, University of California, San Diego, CA 92093-0407 USA
(e-mail: sarslan@ucsd.edu; pcosman@ucsd.edu; lmilstein@ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2012.2195668

community was to make erasure-correcting codes require no
feedback (or almost no feedback) with reduced encoding and
decoding complexities. Digital fountain (DF) codes are a class
of erasure-correcting codes that require almost no feedback
with simple encoding and decoding structures. Fountain codes
are also known as rateless codes i.e., we can independently
generate as many coded symbols as desired from the original
content [3]. The first known rateless code is the Luby trans-
form (LT) code [3].

Because of the attractive features of fountain codes, and
recently introduced unequal error protection (UEP) fountain
code designs, they have become increasingly popular for
multimedia communications needing UEP [4]. The original
design of fountain codes assumes that the encoded data bears
equally important information about the source. For example,
executable computer programs are such data files that can be
transmitted using equal error protection (EEP) mechanisms.
However, in some multimedia applications, a portion of the
data might be more important than the rest. In particular, initial
parts of the progressive bit stream are more important for the
reconstruction of the image than are later portions [5]. When
the coding allows for a low quality or low resolution version
of the source to be recovered from an initial portion of the bit
stream, and hence recovered earlier in time than a high quality
version of the source, this is referred to as the unequal recovery
time (URT) property. In Internet browsing applications, timely
recovery of the more important sections of source files can
save us from unnecessary transmissions. This is because it
might be enough for the end user to see the low resolution
image or video before requesting further transmission. Such
examples show that codes having UEP and URT properties
might be useful [6].

A. Related Work

Unequal protection for progressive sources is usually
achieved by joint source channel coding (JSCC), in which
more important contents are encoded with stronger codes
(see [7]–[10]). Those studies assume that channel state infor-
mation is available at the transmitter. When the channel erasure
rate or the channel fading coefficients are unknown and non-
uniform, one JSCC mechanism targets the worst-case error
rate as the primary design criterion in choosing the optimal
code rate/s [11]. An optimal fixed code rate for a good state
is typically unable to perform well when the channel is bad.
At the other end, when the code rate is optimized for the bad

1057–7149/$31.00 © 2012 IEEE

ARSLAN et al.: GENERALIZED UEP LT CODES 3587

state, there will typically be many unnecessary redundant bits.
Rateless codes, such as LT codes [3], Raptor codes [12], and
Online codes [13] do not assume any information about the
channel and, therefore, are good matches for transmitting data
over time varying channels with unknown parameters. Simi-
larly, such codes can be very good candidates for multicast
transmissions because there is no prior assumption about the
channels.

In the original study of LT codes, EEP of all the information
symbols is assumed. The degree of a coded symbol d is
assigned according to a suitable distribution called the degree
distribution (DD). After choosing the degree for each coded
symbol, a d-element subset of the information block is chosen
randomly according to another distribution called the selection
distribution (SD). It is shown in a series of studies [14]– [17]
that UEP LT codes can be produced simply by allowing coded
symbols to make more edge connections with more important
parts of the information bit stream with high probability by
modifying the DD and SD. This way, the unrecovered symbol
probability becomes lower for the high priority content of the
original source. The ideas presented in those studies are suc-
cessfully applied to various transmission scenarios [18], [19].

In [16], a structured LT code graph is constructed. Then the
proposed code is randomized using a degree assigner and a
random selector. Although the terminology in [16] is different
from that in [14], the unequal protection is achieved essentially
the same way using a fixed DD and a non-uniform SD. In
other studies such as [20], the authors introduced the use of
overlapped windows to allow one to have a virtually extended
block for superior performance compared to fixed-window
encoding. Although the main objective was to increase the
virtual block size of the LT codes for a better performance, it
is recognized that such block size enhancement can be used to
provide UEP. Later, a similar idea is used in [21], called block
duplication, for the EEP of a two-layer source. It is shown
that under certain assumptions, the method of [21] provides
slightly better performance than [14]. The gains reported in
[17] over [14] are greater due to using different DDs for each
window. This shows the combined choice of degree and SD
had a great impact on the final performance of the fountain
code. Last, the algorithm presented in [22] chooses degree-one
coded symbols from the high priority class of source symbols,
and the edge connections of degree-two coded symbols are
selected non-uniformly similar to the weighted approach of
[14]. Unequal protection is achieved by this slight modification
and a fixed DD, and the rest of the encoding is exactly the
same as in original LT coding. Although all of these studies
([14]–[22]) consider fountain codes with a UEP property for a
given application scenario, a joint optimization of degree and
SD remains untouched.

B. Contribution and Organization

In this paper, we propose a generalization for two major
UEP LT codes. Specifically, inspired by [22], we introduce
a systematic degree-dependent selection concept that can be
applied to previous unequal protection rateless code designs. In
addition, we present a progressive source transmission scheme

using rateless codes. Since the beginning part of progressive
bit streams is more important than the succeeding parts,
previous UEP designs can directly be used in the transmission
of progressive sources. However, progressive sources do not
consist of only a few layers as traditionally assumed in
previous scalable video transmission scenarios [23]. We tailor
the parameters of the proposed design for this particular
scenario to minimize the expected distortion. We show that
although the previous UEP schemes can be used to provide
unequal protection for progressive bit streams, the proposed
generalization of the rateless codes, and its configuration for
progressive bit streams, give dramatic improvements in terms
of end-to-end expected distortion over the UEP rateless code
designs described in [14]– [17]. Furthermore, we introduce a
new property called unequal iteration time (UIT), where we
evaluate system performance as a function of the iteration
index of the decoding algorithm. This might be particularly
important for portable devices that are constrained by low-
complexity receiver architectures.

The rest of this paper is organized as follows. Section II
gives necessary background for progressive source coding,
LT codes, and previous UEP designs. Section III introduces
the proposed UEP generalized LT (GLT) coding design, the
encoding algorithm, the optimization problem, and the UIT
property. Section IV presents the proposed progressive trans-
mission set-up in detail. It also describes parameter selections
of the UEP GLT coding for comparisons to some of the major
UEP designs. Section V presents numerical results to show
the effectiveness of the proposed idea. Finally, Section VI
concludes this paper.

II. BACKGROUND

In this section, we first review progressive source coding.
Then, we review fountain codes and review the original
encoding and decoding structures for LT codes. Last, we
briefly discuss the previous UEP designs.

A. Progressive Source Coding

In progressive source coding, prefixes of a single bitstream
allow the decoder to progressively reconstruct the source. In
other words, all encodings of the source at lower bit rates are
embedded in the beginning of the encoded source at higher bit
rates. Thus, progressive source bitstreams have the property
that the beginning part of the bit stream is more important
than the succeeding parts of the bit stream. Progressive source
coders also have the property that bits later in the bit stream
are of no use unless the bits that precede them are reliably
received. In this respect, it is, therefore, convenient to define
useful bits to be the set of consecutive bits that are recovered
from the beginning of the bit stream up to the first unrecovered
bit location. In progressive source transmission, it is of more
concern to consider the decoded useful bits rather than the
decoded total bits.

Progressive transmission might be very useful in multimedia
communication scenarios, in particular fast browsing of high
definition media in non-homogeneous networks. However,
such bit streams use various forms of variable length codes,

3588 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

making them extremely susceptible to noisy channel effects,
i.e., any bit error might render the rest of the bit stream useless.
Therefore, a good protection mechanism is needed for reliable
transfer of such compressed data.

B. DF Codes

Fountain codes are random bipartite graph codes in which
the source data is recoverable from any subset of coded
symbols, when this subset contains enough coded symbols
in a lossy packet transmission scenario. These codes have
significantly less complex encoding and decoding structures
than more traditional Reed-Solomon codes, and they also
exhibit high erasure correction performance for large block
lengths. A fountain encoder generates potentially an unlimited
number of coded symbols. Once enough coded symbols are
collected at the receiver, an iterative decoder using a belief
propagation (BP) algorithm recovers the information symbols
through graph pruning [24].

1) Encoding: An LT encoder takes a set of k symbols of
information to generate coded symbols of the same alphabet.
We consider a binary alphabet and let a binary information
block xT = (x1, x2, . . . , xk) ∈ F

k
2 consist of k bits. The

m-th coded symbol ym is generated in the following way:
First, the degree of ym , denoted dm , is chosen according to a
suitable DD ϒ(x) = ∑k

�=1 ϒ�x�, where ϒ� is the probability
of choosing degree � ∈ {1, . . . , k}. Then, after choosing the
degree dm ∈ {1, . . . , k}, a dm-element subset of x is chosen
randomly according to the SD. For standard LT coding, the
SD is the uniform distribution. This corresponds to generating
a random vector wm of length k, and weight(wm) = dm

positions are selected from a uniform distribution to be logical
1, without replacement. More specifically, this means that any
possible binary vector of weight dm is selected with probability
1/

(k
dm

)
. Finally, the coded symbol is given by ym = wT

mx (mod
2). Note that all these operations are in modulo 2.

Some of the coded symbols are erased by the channel, and
for decoding purposes, we concern ourselves only with those
n-coded symbols which arrive unerased at the decoder. Hence,
the subscript m on ym , dm , and wm runs only from 1 to n,
and we ignore at the decoder those quantities associated with
erased symbols. Note that the way we generate each coded
symbol is independent of the way we generate other coded
symbols. LT codes have been shown to be asymptotically
optimal, i.e., as k tends to infinity, then n → k bits will be
enough to recover all the information content [3], [13].

2) Decoding: The maximum likelihood decoding of LT
codes over the binary erasure channel (BEC) is the problem of
recovering k information symbols from the n reliably received
coded symbols. Although maximum likelihood decoding is
optimal, it is computationally prohibitive for long block
lengths (k large). In order to allow linear decoding complexity
with increasing block length, the BP algorithm is used [1].

Let us denote information symbols as variable nodes, and
coded symbols as check nodes in the bipartite graph repre-
sentation of LT coding, as shown in Fig. 1. Assuming there
is at least one degree-one coded symbol received, the BP
starts decoding from degree-one coded symbols. The content

Fig. 1. BP algorithm for LT decoding. k = 4, n = 5. Squares (�) are check
nodes (coded symbols), and circles (©) represent variable nodes (information
symbols). (a) BP starts from degree-one coded symbol and (b)–(f) variable
node updates alternate with coded symbol updates.

is immediately sent to their one neighbor (variable nodes)
to decode the information bits. An example of the decoding
algorithm operation with k = 4 and n = 5 is shown in
Fig. 1. As can be seen in Fig. 1(a), BP starts decoding from
the degree-one coded symbol. In Fig. 1(b), the degree-one
coded symbol has transferred its content to its one neighboring
information symbol, and the corresponding edge is eliminated.
This is called the variable node update step. In the next
decoding step shown in Fig. 1(c), the recovered information
symbol is added modulo 2 to each connected coded symbol
to update its content. Then, the corresponding edges are
eliminated. This step is called the check node update step.
In the later stages, as depicted in Fig. 1(d)–(f), update steps
for variable nodes and check nodes are performed alternately
to recover the information symbols. Finally, after all node
updates are made, as shown in Fig. 1(f), we recover all the
information symbols. When there is no degree-one check node
at any stage of BP, the algorithm stops and declares a decoding
error. Details of BP can be found in [3].

For the decoding of a whole information block to be
successful, we need at least one degree-one check node at
each iteration. The set of degree-one nodes is called the ripple.
If the ripple does not have any elements, the decoder stops
iterating. Luby [3] proposed the ideal-soliton DD so that at
each decoding iteration, the expected ripple size is one. This
means in expectation, the algorithm never stops and decodes
the whole information block.

Definition 1—Ideal-Soliton Distribution:

1) �1 = 1/k;
2) for i = 2, . . . , k: �i = 1/ i(i − 1).

However, the performance of the ideal-soliton distribution
is poor in practice because the ripple size can very likely be
zero. Later, Luby [3] proposed the robust soliton distribution
(RSD), which overcomes this problem. The expected ripple
size of RSD is R = c · ln(k/δ)

√
k ≥ 1 for some suitable

constant c > 0 and an allowable failure probability δ of
the decoder. RSD is shown to give good performance using
practical information block sizes, such as k = 100 or k =
1000.

ARSLAN et al.: GENERALIZED UEP LT CODES 3589

Definition 2—Robust-Soliton Distribution:

1) for i = 1, . . . , k: probability of choosing degree i is
given by μi = (�i + τi) /β, where

a) τi =

⎧
⎪⎨

⎪⎩

R/ ik, for i = 1, . . . , k/R − 1

R ln(R/δ)/k, for i = k/R

0, for i = k/R + 1, . . . , k;
b) β = ∑k

i=1(�i + τi).

C. UEP DF Code Designs

Previous LT codes with UEP and URT properties can be
classified into two main categories.

1) Weighted Approach: In studies, such as [14], [15], and
[21], the authors proposed various intuitive modifications to
the SD of LT codes. These unequal protection schemes will
be referred to as a weighted approach in this paper. A generic
description of the weighted approach is as follows. A block
of k source symbols is divided into r disjoint sets s1, . . . , sr ,
having sizes |s j | = α j k symbols, where 0 < α j < 1 are design
parameters satisfying

∑r
j=1 α j = 1, α j k is an integer, and |.|

denotes the cardinality of the argument. The encoding process
is the same as for LT codes, except the check nodes select their
adjacent variable nodes non-uniformly. More specifically, after
choosing a degree dm according to some DD, dm information
symbols are selected one by one: first the set s j is chosen
from {s1, . . . , sr } with probability ω j . After choosing the set
index, the input symbol is selected uniformly from the set
s j only. This selection process is repeated dm times, without
replacement, to determine dm distinct connections to the
information symbols. Finally, the value of the coded symbol
is given by the sum of the selected dm information symbols.
The probability of selecting a particular set is designed such
that the probability of recovery for more important classes of
bits is higher than that of the less important classes of bits.
Therefore, this approach, in which the neighbors of a coded
symbol are selected non-uniformly, is a generalization of LT
codes.

2) Expanding Window Fountain (EWF) Codes: Another
approach, called EWF codes, was developed in [17]. An
information block of k bits was divided into r successively
larger windows. This can be thought of as first dividing the
information block into r disjoint sets s1, . . . , sr , and then
defining r embedded windows {W j }r

j=1, such that W j =
⋃ j

l=1 sl . To generate a new EWF coded symbol, one of the
windows is randomly selected by the coded symbol according
to a window SD given as follows.

Definition 3—Window SD:

1)
(x) = ∑r
j=1
 j x i

where
 j is the probability that window W j is chosen.
Upon selection of the window, standard LT coding is applied

only to the bits contained in that window using a suitably
chosen DD given as follows.

Definition 4— jth Window DD:

1) for j = 1, . . . , r : �(j)(x) = ∑|W j |
i=1 �

(j)
i x i

where �
(j)
i is the conditional probability of choosing degree

i , given that W j is selected by the coded symbol.

The same procedure is invoked for each encoded symbol.
Thus, a UEP EWF code is a rateless code, which provides
unequal protection by choosing the appropriate set {
(x),
�(1)(x), �(2)(x), …, �(r)(x)}. UEP EWF coding modifies
not only the SD but also the DD, which makes the code
a more flexible unequal protection scheme compared to the
weighted approach. However, the superiority of this scheme
over the weighted approach depends on whether the DD for
each window is judiciously selected.

III. UEP GLT CODING

In this section, first we apply the degree-dependent selection
idea to the weighted approach to provide increased UEP, URT,
and UIT properties. Note that the same idea can be applied
to UEP EWF codes through the use of a degree-dependent
window SD. More specifically, we propose to use a (window)
SD that depends on the degree number of the particular check
node to give priority decoding to earlier bits of a progressive
bit stream.

A. Generalization of “Weighted Approach”

Similar to previous studies, let us partition the information
block into r variable size disjoint sets s1, s2, . . . , sr (s j has
size α j k, j = 1, . . . , r such that

∑r
j=1 α j = 1 and the α j k

values are integers). In the encoding process, after choosing
the degree number for each coded symbol, we select the edge
connections according to a generalized SD given as follows.

Definition 5—Generalized SD:

1) for i = 1, . . . , k: Pi (x) = ∑r
j=1 p j,i x j

where p j,i ≥ 0 is the conditional probability of choosing the
information set s j , given that the degree of the coded symbol
is i and

∑r
j=1 p j,i = 1.

Note that p j,i are design parameters of the system, subject
to optimization. For convenience, we denote the proposed SD
in a matrix form as follows:

Pr×k =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p1,1 p1,2 . . . p1,k

p2,1 p2,2 . . . p2,k
...

... . . .
...

pr−1,1 pr−1,2 . . . pr−1,k

pr,1 pr,2 . . . pr,k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since the set of probabilities in each column sums to unity,
the number of design parameters of Pr×k is (r − 1) × k.
Similarly, for the proposed GLT, the DD can be expressed in a
vector form as λk , where the i th vector entry is the probability
that a coded symbol chooses degree i . Note that λk and Pr×k

completely determine the performance of the proposed GLT
code. More specifically, the design steps taken to generate each
coded symbol are summarized in Algorithm 1.

In the BP algorithm, we observe that not all the check
nodes decode information symbols at each iteration. For exam-
ple, degree-one check nodes immediately decode neighboring
information symbols at the very first iteration [3]. Then,
degree-two and degree-three check nodes recover some of the
information bits later in the sequence of iterations. In general,
at the later update iterations, low degree check nodes will

3590 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

Algorithm 1 UEP GLT encoding (for “weighted approach”)
for m = 1, . . . , n,

1) Choose a degree dm ∈ {1, . . . , k} according to some
appropriate DD ϒw(x).

2) Initialize count_deg = 1, count_edge[r] = 0.a

3) while count_deg ≤ dm

a) Choose a set index j ∈ {1, . . . , r} according to the
Generalized SD {p1,dm , p2,dm , . . . , pr,dm }b

b) if count_edge[j] < α j k

i) Choose an information symbol from s j

uniform randomly. count_edge[j] previously
chosen information symbols are excluded
from this selection process (selection without
replacement).

ii) count_edge[j] = count_edge[j] + 1.

c) else
i) Choose an information symbol from all the

sets except s j uniform randomly. Again, the
selection uses only information symbols not
previously chosen.

ii) if selected information symbol belongs to
st , t �= j

A) count_edge[t] = count_edge[t] + 1.

iii) end if
d) end if
e) count_deg = count_deg + 1.

4) end while
5) XOR all the selected information symbols to find the

value of ym .
end for

aHere, count_edge[r] denotes a vector of length r . Also, count_edge[r]
= 0 denotes that each entry of the vector is initialized to 0.

bThis means that a set index j (s j) is selected with probability p j,dm .

already be released from the decoding process, and higher
degree check nodes start decoding the information symbols
(due to edge eliminations). So, the coded symbols take part
in different stages of the BP decoding process, depending on
their degree numbers.

It is clear from the previous designs that unequal protec-
tion is achieved by allowing coded symbols to make more
edge connections with more important information sets. This
increases the probability of decoding the more important sym-
bols. However, coded symbols are able to decode information
symbols in different iterations of the BP depending on their
degree numbers. For example, at the second iteration of the BP
algorithm, the probability that degree-2 coded symbols decode
information symbols is higher than that of coded symbols with
degrees > 2. If the BP algorithm stops unexpectedly at an early
iteration, it is essential that the more important information
symbols are recovered. This suggests that it is beneficial to
have low degree check nodes generally make edge connections
with important information sets. This can be achieved by the
proposed scheme. An example realization for r = 2 is shown
in Fig. 2. A check node with degree 6 makes t2 = 1 connection
with s1, whereas a check node with degree 4 makes t1 = 3

Algorithm 2 UEP GLT encoding (for EWF codes)
for m = 1, . . . , n,

1) Choose a degree dm ∈ {1, . . . , k} according to some
appropriate DD ϒew f (x).

2) Initialize count_deg = 1, count_edge[r] = 0.a

3) while count_deg ≤ dm

a) Choose a window index j ∈ {1, . . . , r} i.e.,
W j according to the Generalized window SD
{γ1,dm , γ2,dm , . . . , γr,dm }b

b) if count_edge[j] < k
∑ j

i=1 αi

i) Choose an information symbol from W j

uniform randomly. count_edge[j] previously
chosen information symbols are excluded
from this selection process (selection without
replacement).

ii) count_edge[j] = count_edge[j] + 1.

c) else
i) Choose an information symbol from the

set
⋃r

i= j+1 si uniform randomly. Again, the
selection uses only information symbols not
previously chosen by the same coded symbol.

d) end if
e) count_deg = count_deg + 1.

4) end while
5) XOR all the selected information symbols to find the

value of ym .
end for

aHere, count_edge[r] denotes a vector of length r . Also, count_edge[r]
= 0 denotes that each entry of the vector is initialized to 0.

bThis means that the window index j (W j = ⋃ j
i=1 si) is selected with

probability γ j,dm .

Fig. 2. Non-uniform selection of variable nodes is made based on the degree
of the check node. Black squares represent coded symbols (check nodes), and
circles represent information symbols (variable nodes). White and gray circles
represent two different priority classes. Only the edge connections of the first
two coded symbols are shown for clarity.

connections with s1 satisfying t1 > t2. The main advantage
of the proposed scheme over the previous designs is to allow
a greater flexibility in the LT encoding process. We will see
later that this flexibility will allow us to tailor the parameters
of the system to a progressive source transmission scenario.

B. Generalization of EWF Codes

In the encoding process of this generalization, after choosing
the degree number for each coded symbol, we select the edge
connections according to a generalized window SD, given as
follows.

Definition 6—Generalized Window SD:
1) for i = 1, . . . , k: Li (x) = ∑r

j=1 γ j,i x j

ARSLAN et al.: GENERALIZED UEP LT CODES 3591

Progressive
Source
Encoder

LT Encoding BPAlgorithm

M
UX

Progressive
Source
Decoding

k-

n
bi
ts

BPAlgorithm

BPAlgorithm

LT Encoding

LT Encoding
XU

MED

generated

optimal
parameters

Fig. 3. Block diagram of the progressive transmission scheme.

where γ j,i ≥ 0 is the conditional probability of choosing the
information set s j , given that the degree of the coded symbol
is i and

∑r
j=1 γ j,i = 1.

Similar to the previous generalization, γ j,i are design para-
meters of the system, subject to optimization. For convenience,
we denote the proposed window SD in a matrix form as
follows:

Lr×k =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

γ1,1 γ1,2 . . . γ1,k

γ2,1 γ2,2 . . . γ2,k
...

... . . .
...

γr−1,1 γr−1,2 . . . γr−1,k

γr,1 γr,2 . . . γr,k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The set of probabilities in each column sums to unity, and
the number of design parameters of Lr×k is again (r − 1)× k.
Similarly, we observe that λk and Lr×k completely determine
the performance of the proposed generalization of EWF codes.
More specifically, the design steps taken to generate each
coded symbol are summarized in Algorithm 2.

C. UIT Property

The URT definition, given in [15] or [17], is with respect to
the reception overhead (ε), i.e., it examines the fraction of the
source message that can be recovered for different overhead
values. This means that, given a target bit-error rate, increasing
portions of information bits can be decoded after receiving
increasing numbers of encoded bits, so that information bits
can be recovered in a progressive manner.

Thus, URT is concerned with performance as a function of
the number of received symbols. In contrast to this definition,
UIT is concerned with the performance as a function of the
number of iterations of the decoding algorithm. Usually, it
is assumed that the decoding algorithm iterates as much as
needed. Since rateless codes are most effective with increasing
source block sizes, this requires more iterations in the BP algo-
rithm. However, in many portable wireless applications, low-
complexity designs are desired for less battery consumption.
In that scenario, UIT is relevant and provides insight about
the performance of the compared schemes.

Important

I I I

M

M M M

L

L L L

I M L I M I M
B
lo
ck
s

stne
mgeS

L L

Fig. 4. Demultiplexing of the source bit stream.

k information
bits

bits

n

LT encoding

DEMUX

Progressive bit stream

2TNEMGES1TNEMGES

1 2 n 1 2 n

Fig. 5. Each information block is of size 	B/k
 information bits. The zth
k-bit segment is generated as shown i.e., the zth bit of each information block
is collected. After forming each k-bit segment as described, a realization of
the LT coding is generated and the same realization is applied to each k-bit
segment. An example realization is shown in this figure.

IV. PROGRESSIVE SOURCE TRANSMISSION SYSTEM AND

DESIGN PARAMETER SELECTION

A. Progressive Source Transmission System Description

Our previous descriptions are based on nodes contain-
ing bits. In most practical multimedia transmission systems,
the basic unit of information is usually a fixed or variable
length packet [25]. In this section, we describe the way
we transmit a progressive bit stream using rateless codes.
The system block diagram of our proposed setup is shown
in Fig. 3.

A bit stream is produced using a Lx × L y grayscale image
coded with set partitioning in hierarchical trees and arithmetic
coding. The progressive bit stream is assumed to have a total

3592 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

of B bits, i.e., a source rate of B/(Lx × L y) bits per pixel
(b/pixel). First, the source bit stream is divided into equal size
blocks of bits. Then, the bits in those blocks are rearranged as
shown in Fig. 4 to produce equal size segments. Using such
a configuration, for instance, the initial part of each block
constitutes the contents of the first segment. Thus, the total
source bit stream is demultiplexed to produce a set of equal
size segments. Those segments are the output of the DEMUX
block in Fig. 3. To be more specific, the progressive bit stream
of B bits is divided into k equal size blocks (each with
	B/k
 information bits) as shown in Fig. 5. Those information
blocks are demultiplexed into 	B/k
 equal size segments
(each with k bits) in the following way. The zth k-bit segment
is generated by collecting the zth bit of each information block.
The reason for using such a demultiplexing methodology is
that the proposed coding scheme is most powerful when the
source bits within each segment have unequal importance.
Using demultiplexing, for example, the information bits in the
first block, the most important information block, are equally
shared by the segments. In contrast, we could have skipped the
demultiplexing, i.e., we could have treated the source blocks
directly as our segments (without the rearrangement shown in
Fig. 4) before LT encoding takes place. However, in that case,
each k-bit information segment would include almost equally-
significant content.

After demultiplexing, we generate a particular realization
of the proposed DF code and apply it to each k-bit segment
to produce coded symbols. Assuming that each coded symbol
stream goes through the same erasure channel, we collect n
coded symbols at the receiver for each k-bit segment decoding.
Note that since we apply the same realization of the random
code to each k-bit segment and use independent decoding,
if m information bits are useful in each segment after each
BP decoding (as shown in Fig. 3), because of the rearrange-
ment/demultiplexing operation, we will have 	B/k
m total
number of useful bits in the progressive bit stream for source
decoding.

B. Comparison With the “Weighted Approach”

It is easy to see that the “weighted approach” is a special
case of the proposed UEP GLT coding given in Algorithm 1.
Since encoding–decoding is done according to two interrelated
distributions (SD and DD), the design criterion in our case is to
select both distributions judiciously to minimize the average
distortion, as given by (3). To reduce the number of opti-
mization parameters, let us choose p j,i to be an exponential
function of the degree number i , for j = 1, 2, . . . , r − 1 as
follows.

Definition 7—Exponential SD:

1) p j,i = A j + B j × exp

{

− i − 1

C j

}

for i = 1, 2, . . . , k (1)

where {A j ≥ 0, B j ≥ 0, C j ≥ 0}r−1
j=1 are design parameters

satisfying
∑r

j=1 p j,i = 1 for all i .
The exponential SD is an intuitive choice, because the low

degree check nodes make, on average, more edge connections
with the more important information sets. Note that using

the exponential SD, we reduce the parameter space size from
(r −1)k+k−1 to 3(r −1)+k−1. Let us use standard DDs (for
example, the robust soliton distribution) and a predetermined
partitioning set {α1, . . . , αr } in conjunction with an exponen-
tial SD, so that we will have only 3(r − 1) parameters subject
to optimization. Note that an additional optimization can be
run over the partitioning set {α1, . . . , αr }. In that case, the
parameter space size increases to 3(r−1)+r−1 = 4(r−1). As
will be shown in the numerical results section, this will lead
to a slightly better performance at the expense of increased
complexity.

C. Comparison With UEP EWF Codes

In EWF codes [17], one of the expanding windows is first
selected by a coded symbol before the selection of its edge
connections. After choosing a specific window, all the edge
connections of that coded symbol are constrained to be chosen
from the selected window. In our UEP GLT coding process
(Algorithm 1), the edge connections are not constrained in that
way. Thus, although the EWF code is not a special case of the
proposed UEP GLT code given in Algorithm 1, it is a special
case of Algorithm 2.

Let us use a DD called the compound DD �c(x), given as
follows.

Definition 8—Compound DD:

1) �c(x) = ∑k
i=1 �c

i x i , �c
i �

∑r
j=1 ρ j �

(j)
i

where �c
i is the probability of choosing degree i , �

(j)
i � 0 if

i > |W j |, and 0 ≤ {ρ j }r
j=1 ≤ 1 such that

∑r
j=1 ρ j = 1.

It can be shown that the compound DD is a valid probability
mass function by realizing that it is a convex combination of
probability mass functions.

The main motivation behind using such a distribution is
the following. In a progressive transmission, recovery of the
whole source block is not usually the key objective. The
goal is to maximize the number of useful source symbols.
Thus, the source block size that can be communicated to
the receiver with small error probability is the outcome of
the optimization. Using a compound DD enables us to tailor
a set of DDs (specifically good for a set of source block
sizes) for our progressive source transmission scenario. Using
appropriate weights ρ j , we can make the compound DD a
good DD for a specific information block size and a source
whose rate-distortion (R-D) characteristic is known. Finally,
the parameters of the compound DD are fed to the optimization
to minimize the distortion.

Similar to previous reasoning, in order to reduce the number
of optimization parameters, we choose γ j,i to be an exponen-
tial function of the degree number i for j = 1, 2, . . . , r − 1
as follows.

Definition 9—Exponential Window SD:
For i =1, 2, …, k

1) γ j,i =
⎧
⎨

⎩

A j + B j × exp
{
− i−1

C j

}
, if i ≤ k

∑ j
t=1 αt

0, if i > k
∑ j

t=1 αt

(2)

where {A j , B j , C j }r−1
j=1 are design parameters satisfying

∑r
j=1 γ j,i = 1 for all i .

ARSLAN et al.: GENERALIZED UEP LT CODES 3593

D. Optimization Problem

The BP algorithm can terminate at any iteration with some
non-zero probability. Let Pr(Y = s) be the probability that
the BP algorithm terminates at iteration s. In this type of
algorithm, one typically chooses the maximum number of
iterations of the BP algorithm (Mmax) such that Pr(Y >
Mmax) is negligible. Mmax is usually chosen based on the value
of k, the number of information symbols being encoded in all
the simulations. In our case, we chose Mmax = 70 because
the algorithm always terminated (either by correct decoding
or by having a decoding failure) prior to 70 iterations being
reached. The optimization problem is given by

min
λ,P(or L)

DM s.t. n coded symbols are received unerased (3)

where n ≥ k, and DM is the average mean square distortion
at the Mth iteration of the BP algorithm. Note that the
optimization problem for Algorithm 2 is exactly the same,
except that we replace P with L. The minimization can be
done at any specific iteration M , 1 ≤ M ≤ Mmax. This could
be useful if different UEP, URT, and UIT characteristics are
desired for a specific application. The minimization is over
the entries of λ and P (or L). Note that the proposed code is
specified by the entries of two matrices, λ and P (or L), and
the total number of entries is (r + 1)k. However, the columns
of P (or L) as well as the entries of λ should sum up to one.
Therefore, we have (r − 1)k + (k − 1) = rk − 1 parameters
subject to optimization. For large k, as a practical matter, it is
infeasible to jointly optimize all design parameters. Previous
sections discussed how we reduce the number of parameters
subject to optimization. We use numerical experimentation and
exhaustive search to find the optimum solution.

V. NUMERICAL RESULTS

In this section, we will compare the performance of our
proposed scheme with that of two major classes of unequal
protection rateless codes: “weighted approach” and UEP EWF
codes. We use the minimum distortion criterion throughout
our simulations. Quality assessment of the decoded images
is given in terms of the average peak signal to noise ratio
(PSNR), expressed in dB, a performance measure inversely
related to the average mean square distortion by the Mth
iteration of the BP algorithm, DM . We use standard 512×512
Lena and 512 × 512 Goldhill images.

We initially set B = 50 000 bits (≈0.19 b/pixel source
rate) and run all realizations (encoding and decoding using
Mmax = 70) 104 times, and compute the total number of useful
bits (number of recovered consecutive information symbols)
in each realization. We considered two different values for
k: k = 100 and k = 1000. Since, a specific image with a
particular source encoder determines the R-D characteristics
of the source, we can find the distortion1 corresponding to
the useful number of bits. Then, we take the average of
these distortion values computed for each of the 104 different
realizations. We optimize the parameters of each system to
give the minimum average distortion (the solution to the

1We use mean square error as our distortion metric throughout this paper.

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Standard LT
"weighted approach", 1

GLTexp, 1

GLTexp, optimal 1

1

Fig. 6. Performance comparisons using Lena and k = 100.

optimization problem). Last, minimum average distortion is
converted to average PSNR.

A. Comparisons With the “Weighted Approach”

In our first simulation, we compare our UEP GLT scheme
using Algorithm 1 with the weighted approach. We set r = 2
and B = 5 × 104. Both schemes use the RSD with γ = c =
0.01 i.e., ϒw(x) is an RSD in Algorithm 1. We define the
following version of the proposed scheme.

1) GLTexp : This scheme uses the exponential SD with
A1 + B1 = 1 and optimizes the set {A1, C1} so that
the proposed scheme achieves minimum distortion.

For a fair comparison, we also optimize the weighting para-
meter ω1 for the weighted approach for minimum distortion.
Average PSNR versus the number of reliably received coded
symbols (n) is plotted for both systems using a fixed α1 = 0.3
and the optimal α1 value for each system. For the weighted
approach, the optimal α1 (α∗

1) turns out to be 0.3 for n ≥ 160.
We also included the performance of standard LT coding (EEP
scheme) in the same figure for comparison. In Figs. 6 and 7,
performance results are shown for k = 100 as a function of n,
and are observed to be increasing with growing n. Although
the proposed scheme does not show a major performance
improvement over the weighted approach up to n = 130 coded
symbols, it provides over a 1-dB improvement for a substantial
range of n (from 140 to 210) for both fixed or optimal α1, and a
huge improvement over standard LT coding. After collecting
n > 240 coded symbols, all the systems perform almost a
complete decoding of the whole source block, and hence they
exhibit a similar performance. As a perspective, the PSNR
performance of a source with a rate of ≈0.19 b/pixel, and
which is operating under error-free conditions, is included in
the figures for reference.

In Fig. 8, we show the performance of these systems for k =
1000. As can be seen, when k gets large, the performance of
each system increases, as does the gain of the proposed scheme
over the weighted approach. It is quite common to define the
coding overhead of a rateless code as ε � (n/k)−1. Using the

3594 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

Fig. 7. Performance comparisons using Goldhill and k = 100.

1100 1200 1300 1400 1500 1600 1700
23

24

25

26

27

28

29

30

31

32

33

34

Standard LT

1=0.3

"weighted approach", 1 =0.3

PSNR @0.19bpp source rate

GLTexp, optimal 1

"weighted approach", optimal 1

GLTexp,

Fig. 8. Performance comparisons using Lena and k = 1000.

TABLE I

NUMBER OF CODED SYMBOLS, WHICH NEED TO BE RECEIVED

RELIABLY FOR A PSNR OF 31 dB USING LENA

k = 100 k = 1000

n Savings n Savings

GLTexp 171 43 1196 229

weighted approach 209 5 1350 75

standard LT 214 – 1425 –

proposed scheme with Lena, for example, an overhead of 0.3
when k = 1000 gives around 32.5-dB average PSNR, whereas
the same overhead with k = 100 gives around 27.6-dB average
PSNR. Another way of looking at these performance curves
is to consider the percentage of savings of the coded symbols
reliably received for a given image quality. Table I shows the
number of coded symbols which need to be received to obtain
a PSNR of 31 dB using various rateless code schemes. As
can be seen, a substantial savings (relative to standard LT
coding) in terms of the received unerased coded symbols can

Fig. 9. Performance comparisons using Lena and a overhead of ε = 0.4 for
a range of B .

TABLE II

OPTIMAL PARAMETERS OF VARIOUS UEP DESIGNS

SHOWN IN FIGS. 6 AND 8

k = 100, ε = 0.5 A1 B1 C1 α1 PSNR (dB)

“weighted approach” 0.55 0.0 N/A 0.3 27.61

“weighted approach” (α∗
1) 0.95 0.0 N/A 0.5 28.05

GLTexp 0.19 0.81 2.0 0.3 29.19

GLTexp (α∗
1) 0.06 0.94 0.9 0.1 29.82

k = 1000, ε = 0.3 A1 B1 C1 α1 PSNR (dB)

“weighted approach” 0.45 0.0 N/A 0.3 29.63

“weighted approach” (α∗
1) 0.76 0.0 N/A 0.6 30.39

GLTexp 0.17 0.83 1.9 0.3 32.23

GLTexp (α∗
1) 0.25 0.75 1.2 0.25 32.46

be obtained. Also, Table II shows the optimal parameters used
to obtain some of the data points shown in Figs. 6 and 8.

Note that Figs. 6–8 can all be considered to be depictions
of both the URT and UEP performances of the various
schemes. These figures all show the quality as a function of
the number of received symbols. Therefore, for a fixed quality,
the horizontal distance between two curves is a measure of
how much earlier in the received bit stream one system can
recover that fixed quality compared to another system (URT
property). For a fixed number of received symbols, the vertical
distance between two curves is a measure of the PSNR gain
(UEP property).

Fig. 9 shows performance comparisons for a range of B
and ε = 0.4. As a perspective on PSNR, assume that all the
source bits are recovered. We call this idealized scenario the
“error-free” case. We observe that the proposed scheme not
only improves the performance over the weighted approach,
but also gives results that are close to the “error-free” case.
One other observation is that for k = 100, an improvement of
almost 1 dB is possible for a range of B (from B ≈ 2×104 to
B ≈ 6 × 104). For the range of values shown on the abscissa,
increasing B yields larger gains when k = 1000, but not when

ARSLAN et al.: GENERALIZED UEP LT CODES 3595

Fig. 10. UIT performance comparisons using Lena for n = 150, α1 = 0.3,
and B = 50 000 bits.

k = 100. The reason is related to the system description and
the assumption made in Section A. A closer look at Fig. 5
reveals that k also equals the number of blocks, and for a fixed
k, the size of the information blocks increases with growing B .
For large B and small k, the contents of each segment might
be quite different. For example, if k = 2, the first segment
will have one bit from the beginning of the total bit stream
and one bit from the middle. The last segment will have one
bit from the middle of the bit stream and one bit from the
end. Since B is large and the progressive coder has a non-
increasing and convex R-D characteristic, these two segments
are substantially different from each other. Considering the
progressive source transmission system shown in Fig. 3, we
note that the same code is applied for each segment. Therefore,
a set of optimal values tailored to a particular segment might
not be the best set of parameters for other segments. This
degrades the performance of the system. If k gets large, the R-
D characteristics of each segment become similar, and thus the
parameters of the proposed code fit a larger set of segments.
We note that the progressive source transmission system shown
in Fig. 3 assumes that one segment contains almost equally
important content compared to another segment, although the
importance varies considerably within each segment. In Fig. 9,
for the parameters of this scenario, k = 100 turns out to be
too small for this assumption to hold; the k-bit segments differ
from each other in the importance of their information content.
However, if we increase k from 100 to 1000, the assumption of
Fig. 3 will approximately hold and segments become almost
equally important and have similar R-D characteristics. Thus,
the proposed scheme gives increased gains at larger B values,
as shown in Fig. 9.

Finally, we show the UIT performance of the proposed
scheme, that is, how the PSNR varies if the BP algorithm
is not allowed to iterate until its natural termination,2 but is

2By natural termination, we mean the algorithm either decodes all the
information bits, or declares failure, i.e., there remains no degree-one coded
symbol after edge eliminations and node updates even though the decoding
of the whole source block is not complete.

instead cut off at some early iteration M , by design. We note
that the previous results are based on solving the minimization
problem in (3) for M = 70. However, the parameters that
give the best performance for M = 70 do not necessarily
give the best performance at early iterations. A simulation
result is shown in Fig. 10, in which the proposed scheme and
the weighted approach are compared using parameter values
optimized for M = 70 as a function of the number of iterations
in the BP algorithm. A 1.7-dB PSNR gain when the number
of iterations is greater than 16 is shown over the weighted
approach. Fig. 10 also shows a performance curve that results
by solving the minimization problem in (3) for M = 6. This
curve gives a large gain over the weighted approach at iteration
6 at the expense of some performance loss (compared to the
weighted approach) at later iterations. The performance curves
optimized for M = 6 and M = 70 suggest that there is a
family of performance curves that give better PSNR gains at
early iterations, if we allow some performance loss at later
iterations. For example, in Fig. 9 we show a family of curves
obtained by varying parameter C1 from 1.2 to 2.2 with fixed
{A1 = 0.55, B1 = 0.45}. From this family of curves, we show
one of them with C1 = 1.6. It can be observed that, although
this sample system performs worse than the system optimized
for M = 70, it performs better than the weighted approach
for all iterations, but especially for some early iterations. For
example, at iteration 6, it provides a 3.32-dB gain over the
weighted approach. This result shows that we can tailor the
parameters of the proposed scheme to achieve better UIT
properties at the expense of some loss in performance at later
iterations.

B. Comparisons With UEP EWF Codes

We now compare the proposed generalization i.e., Algo-
rithm 2, with UEP EWF codes. We also compare the proposed
scheme with increased parameter sizes. The EWF code has
the parameters α1 and
1 subject to optimization. The DDs
for the UEP EWF code, {�(1)(x),�(2)(x)} are the truncated
RSD [17] �rs(krs, γ , c) using γ = c = 0.01, in which
krs is the maximum degree of each DD, and is constrained
not to exceed the size of the corresponding window i.e., the
size of the first window W1 = α1k or the size of the second
window W2 = k [19]. Details of the design parameters of the
comparison systems are summarized in Table III. The UEP
GLT scheme given in Algorithm 2 uses the compound DD
i.e., ϒewf (x) is �c(x). In other words, for any coded symbol,
the probability of choosing degree i is given by

�c
i = ρ1�

(1)
i + (1 − ρ1)�

(2)
i (4)

where �
(1)
i = 0 for i > α1k. Let αewf

1 and

ewf
1 be the

optimum parameters of the EWF code in the minimum-
distortion sense for our progressive transmission scenario. For
GLTexp, for all n, we set α1 = αewf

1 and ρ1 =

ewf
1 . In

addition to GLTexp, we define two other versions of the
proposed UEP GLT with a larger size of the parameter set
subject to optimization.

1) GLTexpOpt: This scheme uses the exponential SD with
A1+B1 = 1. It optimizes the set {α1, ρ1, A1, C1} so that

3596 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

TABLE III

PARAMETERS OF THE UEP GLT AND COMPARISON OF UEP DF DESIGNS

UEP schemes r Optimized parameters DD SD

Standard LT 1 N/A �rs (k, γ, c) Uniform

UEP EWF 2 α1,
1
(
�(1)(x),�(2)(x)

) = (
�rs (α1k, γ, c),�rs (k, γ, c)

)
Uniform within the window

UEP GLT 2 α1, ρ1, A1, B1, C1 �(c)(x) Exponential window

Fig. 11. Performance comparisons with EWF codes using Lena with k = 100.

Fig. 12. Performance comparisons with EWF codes using Goldhill with
k = 100.

the proposed scheme achieves the minimum distortion.
2) GLTexpFullOpt: This scheme uses the exponential SD

and optimizes the whole set of parameters, i.e., (α1, ρ1,
A1, B1, C1) so that the proposed scheme achieves the
minimum distortion.

Figs. 11 and 12 compare these unequal protection schemes
with k = 100 in terms of the average PSNR as a function
of n, the number of unerased symbols. As we increase
the parameter space of the proposed UEP GLT scheme as
described, we observe more sizable improvements in a pro-
gressive transmission scenario. For example, GLTexp opti-
mizes only two parameters of the exponential SD and gives

TABLE IV

OPTIMAL PARAMETERS OF VARIOUS UEP DESIGNS

FOR VARIOUS k AND ε

k = 100,
ε = 0.4

A1 B1 C1 α1
1 PSNR(dB)

UEPEWF N/A N/A N/A 0.5 0.97 29.63

GLTexpOpt −0.62 1.62 1.1 0.24 0.55 30.94

k = 1000 ε A1 B1 C1 α1
1 PSNR(dB)

UEPEWF

0.1 N/A N/A N/A 0.65 0.95 30.27

0.2 N/A N/A N/A 0.68 0.92 30.78

0.3 N/A N/A N/A 0.2 0.15 31.63

GLTexpOpt

0.1 −0.94 1.94 1.1 0.36 0.52 31.23

0.2 −0.7 1.7 0.8 0.16 0.55 31.71

0.3 −0.7 1.7 0.9 0.15 0.55 32.39

some improvement over the UEP EWF code. Note that both
GLTexp and the UEP EWF code optimize two parameters.
If we increase the parameter space subject to optimization,
the relative gains over the UEP EWF code performance
increase. For example, in Fig. 11, GLTexpOpt uses four
parameters, and GLTexpFullOpt uses five parameters to min-
imize the source reconstruction distortion, giving 1.3- and
1.53-dB average PSNR gains, respectively, compared to the
UEP EWF code when ε = 0.4. Table IV shows some of the
optimal parameters used to obtain the performance curves in
Fig. 11.

VI. CONCLUSION

Fountain codes are a type of erasure-correcting code with
simple encoding and decoding structures used both for point-
to-point communications and for multicasting information.
The initial design of such codes was aimed at recovering the
entire information block, and therefore might not be the best
choice when different parts of the data have different levels
of importance, such as image or video files compressed in a
progressive or scalable fashion. In this paper, we introduced
a generalized version of UEP LT codes having a larger set of
parameters and hence a more flexible rateless coding scheme.
We also introduced a progressive transmission scheme using
this generalized version of UEP LT codes. We compared the
proposed scheme with two other major UEP LT codes in
the literature for the progressive transmission scenario. Sim-
ulations show that the proposed coding scheme outperforms
these previous schemes by providing improved UEP, URT, and
UIT properties. As a future work, we plan to investigate the
asymptotic analysis of the proposed generalization.

ARSLAN et al.: GENERALIZED UEP LT CODES 3597

REFERENCES

[1] D. J. C. MacKay, “Fountain codes,” IEE Proc.-Commun., vol. 152, no.
6, pp. 1062–1068, Dec. 2005.

[2] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] M. Luby, “LT-codes,” in Proc. 43rd Annu. IEEE Symp. Found. Comput.
Sci., Vancouver, BC, Canada, Nov. 2002, pp. 271–280

[4] Universal Mobile Telecommunications System (UMTS): Multimedia
Broadcast/Multicast Service (MBMS): Protocols and Codecs, Standard
ETSI TS 126 346 V8.1.0, 2005.

[5] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[6] L. Xu, “Resource-efficient delivery of on-demand streaming data using
UEP codes,” IEEE Trans. Commun., vol. 51, no. 1, pp. 63–71, Jan.
2003.

[7] P. G. Sherwood and K. Zeger “Progressive image coding for noisy
channels,” IEEE Signal Process. Lett., vol. 4, no. 7, pp. 189–191, Jul.
1999.

[8] T. Thomos, N. V. Boulgouris, and M. G. Strintzis, “Wireless image
transmission using turbo codes and optimal unequal error protection,”
IEEE Trans. Image Process., vol. 14, no. 11, pp. 1890–1901, Nov.
2005.

[9] X. Pan, A. H. Banihashemi, and A. Cuhadar, “Combined source and
channel coding with JPEG2000 and rate-compatible low-density parity-
check codes,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 1160–
1164, Mar. 2006.

[10] S. S. Arslan, P. C. Cosman, and L. B. Milstein, “Concatenated
block codes for unequal error protection of embedded bit streams,”
IEEE Trans. Image Process., vol. 21, no. 3, pp. 1111–1122, Mar.
2012.

[11] A. Nosratinia, J. Lu, and B. Aazhang, “Source-channel rate allocation
for progressive transmission of images,” IEEE Trans. Commun., vol. 51,
no. 2, pp. 186–196, Feb. 2003.

[12] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2410–2423, Jun. 2006.

[13] P. Maymounkov, “Online codes,” Secure Computer Systems Group, New
York Univ., New York, Tech. Rep. TR2002-833, 2002.

[14] N. Rahnavard and F. Fekri, “Finite-length unequal error protection
rateless codes: Design and analysis,” in Proc. IEEE Global Telecommun.
Conf., Nov.–Dec. 2005, pp. 1–5.

[15] N. Rahnavard, B. N. Vellambi, and F. Fekri, “Rateless codes with
unequal protection property,” IEEE Trans. Inf. Theory, vol. 53, no. 4,
pp. 1521–1532, Apr. 2007.

[16] S. K. Chang, K. C. Yang, and J. S. Wang, “Unequal-protected LT code
for layered video streaming,” in Proc. IEEE Int. Conf. Commun., Beijing,
China, Jun. 2008, pp. 500–504.

[17] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki,
“Expanding window fountain codes for unequal error protection,” IEEE
Trans. Commun., vol. 57, no. 9, pp. 2510–2516, Sep. 2007.

[18] J. Wagner, J. Chakareski, and P. Frossard, “Streaming of scalable video
from multiple server using rateless codes,” in Proc. IEEE Int. Conf.
Multimedia Exposit., Toronto, ON, Canada, Jul. 2006, pp. 1501–1504.

[19] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z.
Xiong, “Scalable video multicast using expanding window fountain
codes,” IEEE Trans. Multimedia, vol. 11, no. 6, pp. 1094–1104, Oct.
2009.

[20] M. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, “Sliding
window digital fountain codes for streaming of multimedia applications,”
in Proc. IEEE Int. Symp. Circuits Syst., New Orleans, LA, May 2007,
pp. 3467–3470.

[21] S. Ahmad, R. Hamzaoui, and M. Al-Akaidi, “Unequal error protection
using LT codes and block duplication,” in Proc. Middle Eastern Multi-
conf. Simul. Model., Aug. 2008, pp. 1–5.

[22] S. S. Woo and M. K. Cheng, “Prioritized LT codes,” in Proc. 42nd Annu.
Conf. Inf. Sci. Syst., Princeton, NJ, 2008, pp. 568–573.

[23] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission
using scalable video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 17, no. 9, pp. 1204–1217, Sep. 2007.

[24] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[25] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, 2nd ed, Reading, MA: Addison-Wesley, 2002.

Suayb S. Arslan (S’06) received the B.S. degree in
electrical and electronics engineering from Bogazici
University, Istanbul, Turkey, in 2006, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of California, San Diego, in 2009 and
2012, respectively.

He was with Mitsubishi Electric Research Labora-
tory, Boston, MA, in 2009, where he was involved
in research and development of image and video
processing algorithms for biomedical applications.
In 2011, he joined Quantum Corp., Irvine, CA,

where he conducted research on advanced detection algorithms and post
processing for increased capacity tape drives. His current research interests
include wireless/wireline digital multimedia communication and storage, joint
source-channel coding, information theory, image/video processing, and cross
layer design optimizations.

Pamela C. Cosman (S’88–M’93–SM’00–F’08)
received the B.S. degree (Hons.) in electrical engi-
neering from the California Institute of Technology,
Pasadena, in 1987, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, in 1989 and 1993, respectively.

She was an NSF Post-Doctoral Fellow with Stan-
ford University and a Visiting Professor with the
University of Minnesota, Minneapolis, from 1993
to 1995. In 1995, she joined the Faculty of the
Department of Electrical and Computer Engineering,

University of California at San Diego (UCSD), San Diego, where she is
currently a Professor. She was the Director of the Center for Wireless Com-
munications, UCSD, from 2006 to 2008. Her current research interests include
image and video compression and processing and wireless communication.

Dr. Cosman was a Guest Editor of the June 2000 special issue of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS on error-resilient
image and video coding and the Technical Program Chair of the Information
Theory Workshop in San Diego in 1998. She was an Associate Editor of the
IEEE COMMUNICATIONS LETTERS from 1998 to 2001 and the IEEE SIGNAL

PROCESSING LETTERS from 2001 to 2005. She was the Editor-in-Chief from
2006 to 2009, as well as a Senior Editor from 2003 to 2005 and from 2010 to
2012, of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.
She is a member of Tau Beta Pi and Sigma Xi. She was a recipient of the ECE
Departmental Graduate Teaching Award, a Career Award from the National
Science Foundation, a Powell Faculty Fellowship, and a Globecom Best Paper
Award in 2008.

Laurence B. Milstein (S’66–M’68–SM’77–F’85)
received the B.E.E. degree from the City College
of New York, New York, in 1964, and the M.S.
and Ph.D. degrees in electrical engineering from the
Polytechnic Institute of Brooklyn, Brooklyn, NY, in
1966 and 1968, respectively.

He was with the Space and Communications
Group, Hughes Aircraft Company, Culver City,
CA, from 1968 to 1974. From 1974 to 1976,
he was a member of the Department of Elec-
trical and Systems Engineering, Rensselaer Poly-

technic Institute, Troy, NY. Since 1976, he has been with the Depart-
ment of Electrical and Computer Engineering, University of California
at San Diego, San Diego, where he is currently the Ericsson Professor
of Wireless Communications Access Techniques and a former Depart-
ment Chairman, working in the area of digital communication theory
with special emphasis on spread-spectrum communication systems. He has
also been a consultant to both government and industry in radar and
communications.

Dr. Milstein was an Associate Editor for Communication Theory for the
IEEE TRANSACTIONS ON COMMUNICATIONS and Book Reviews for the
IEEE TRANSACTIONS ON INFORMATION THEORY, an Associate Technical
Editor for the IEEE Communications Magazine, and the Editor-in-Chief
of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. He
was the Vice President for Technical Affairs of the IEEE Communications
Society in 1990 and 1991, and a former Chair of the IEEE Fellows Selection
Committee. He was a recipient of the Military Communications Conference
Long Term Technical Achievement Award in 1998, an Academic Senate
UCSD Distinguished Teaching Award in 1999, an IEEE Third Millennium
Medal in 2000, the IEEE Communication Society Armstrong Technical
Achievement Award in 2000, and various prize paper awards, including the
MILCOM Fred Ellersick Award in 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

