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Abstract—Generalized diversity combining (GDC), also known
as hybrid selection/maximal ratio combining or generalized selec-
tion combining, is a low-complexity diversity combining technique
by which a fixed subset of a large number of available diversity
channels is chosen and then combined using the rules of maximal
ratio combining. In this paper, we analyze the performance of GDC
on time-correlated Rayleigh fading channels with noisy channel
estimates. We derive expressions for the probability of error for
various linear modulation schemes with coherent detection, and
discuss the conditions under which the analysis can be extended
to noncoherent and differentially coherent receiver structures.
Throughout the paper, using a fundamental approach to obtain
the decision statistic at the combiner output, a number of new
expressions for the error probabilities are obtained in a rigorous
way, along with a presentation of their performance with channel
estimation errors. The final expressions have roughly the same
complexity of evaluation as that for the channel with only additive
Gaussian noise. Our results correct various inaccuracies in the
literature, and show that coherent receivers based on imperfectly
estimated channel knowledge incur a significant performance loss.

Index Terms—Generalized diversity combining, imperfect
channel estimation, pilot symbol-assisted modulation (PSAM),
Rayleigh processes, two-dimensional signal constellation.

I. INTRODUCTION

WIDEBAND wireless channels are capable of resolving
a large number of multipath components which can be

combined constructively to improve communication reliability
[1, Ch.29]. This can result in a low signal-to-noise ratio (SNR)

Manuscript received June 10, 2005; revised May 15, 2007. This work
was supported in part by the Office of Naval Research under Grant N00014-
03-1-0280, the National Science Foundation under Grant CCF-0635165, the
Center for Wireless Communications at the University of California, San Diego
(UCSD), and LG Electronics. The material in this paper was presented in part
at the IEEE Information Theory and Applications (ITA) Workshop, San Diego,
CA, January 2007.

R. Annavajjala was with the Electrical and Computer Engineering De-
partment, University of California, San Diego, La Jolla, CA 92093 USA.
He is now with ArrayComm LLC, San Jose, CA 95131 USA (e-mail:
ramesh.annavajjala@gmail.com).

P. C. Cosman and L. B. Milstein are with the Electrical and Computer Engi-
neering Department, University of California, San Diego, La Jolla, CA 92093
USA (e-mail: pcosman@ucsd.edu; milstein@ece.ucsd.edu).

Communicated by A. Høst-Madsen, Associate Editor for Detection and
Estimation.

Color versions of Figures 1 and 4–11 in this paper are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2007.909130

on a per-resolvable path basis, which exacerbates the system’s
ability to obtain accurate channel estimates, as do the effects of a
large Doppler spread and/or a low-rate coding scheme. Further,
systems designed to have disparate users share a common spec-
trum, such as cognitive radio and ultra wideband, are dependent
upon accurate channel estimation techniques to ensure efficient
operation. In practice, due to implementation constraints, only
a subset of the available paths are typically combined. General-
ized diversity combining (GDC), also referred to as hybrid-se-
lection/maximal ratio combining or generalized selection com-
bining, is a technique to choose a fixed subset (of size ) of
a large number of available diversity channels (of size ) and
then combine them using the rules of maximal ratio combining
(MRC) [2]. With perfect channel state information (CSI) at the
receiver, and for large values of the average received SNR, a
GDC( , ) receiver with can achieve the same di-
versity order, , as that of MRC [1]. In practice, the receiver
has to estimate the channel and the CSI is not perfect. An in-
formation-theoretic approach to the effect of imperfect CSI on
the channel capacity can be found, for example, in [3] and [4],
whereas the main goal of this paper is an exact quantification
of the effect of noisy channel estimates on the error probability
performance of linear modulation schemes with GDC.

We now summarize the relevant research work dealing with
the error performance of digital modulation schemes on fading
channels with imperfect CSI, and contrast them with the re-
sults we derive in this paper. In [5], the authors analyze the
performance of -branch diversity1 for independent and identi-
cally distributed (i.i.d) Rayleigh fading channels with a separate
pilot channel for estimating the fade in the data channel. They
consider both coherent binary phase-shift keying (BPSK) and
noncoherent binary frequency-shift keying (BFSK) signaling
schemes, derive the probability density function (pdf) of the
instantaneous SNR random variable (r.v.) at the output of the
combiner, and use it to average the conditional error probability
expressions [5, Eqns. (16), (31), (34), and (40)] to obtain the
average error rates. As shown in [6], with a completely decor-
related pilot channel, while the average error rate for BPSK
signaling is , noncoherent BFSK is unaffected by estima-
tion errors (see, also, Section IV-A of this paper). However, an
inaccurate conclusion in [5] is that, with an uncorrelated pilot

1Throughout this paper, L-branch diversity is to be interpreted as combining
all the available diversity branches (i.e., GDC(L, L)).
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channel, the error probability varies inverse linearly with the av-
erage received SNR.2

To analyze the performance of MRC with Gaussian weighting
errors, [10], in a novel way, models the channel fade as a func-
tion of the channel estimate (since both the channel gain and
its estimate are assumed to be jointly complex Gaussian) and
obtains the pdf of the SNR at the output of the combiner to an-
alyze the outage behavior. However, a conclusion of [10, eq.
(50) ], shows that, with a completely decorrelated fade esti-
mate, the outage probability approaches that of a no-diversity
system, whereas, in reality, outage occurs with probability one
(see (14) in this paper and the discussion below it). In [11],
the authors analyze the error performance of a binary differ-
entially coherent PSK (BDPSK) receiver for i.i.d. Rayleigh
fading channels with imperfect channel estimates. A BDPSK
receiver uses the signal received in the previous symbol interval
as a channel estimate for the current symbol, and hence channel
estimation is not a requirement. However, [11, eq. (20)] shows
that with a completely decorrelated fade estimate the error prob-
ability approaches that of a system with no diversity, whereas
we show that BDPSK is insensitive to channel estimation er-
rors (see (119) in this paper). References [12], and [13] extend
the results of [11] for selection combining (SC, i.e., GDC )
and GDC schemes, respectively, and for various modulation/de-
modulation formats. We address the following main limitations
of [12] and [13].

1) With coherent detection, [12] and [13] do not account
for the effect of crosstalk and signal-dependent noise,
due to imperfect estimates, on the quadrature branches of
the modulation signals, and show that imperfect channel
estimates reduce the diversity order without causing any
error floor. Specifically, with completely decorrelated
channel estimates, [13] shows that the outage performance
of a coherent GDC , receiver approaches that of a
no-diversity system.
In this paper, we present a new analysis on the outage
probability (see Appendix I), and show that the diversity
order of a coherent GDC( , ) scheme is preserved even
with noisy CSI, whereas the error floor limits the receiver
performance (also see [14] for a related study on mul-
tiple-input multiple-output channels). We re-examine the
average symbol error probability (SEP) expressions for
coherent phase-shift keying (PSK) [13, eq. (17)], quadra-
ture amplitude modulation (QAM) [13, eq. (19)], and gen-
eral two-dimensional (2-D) modulations with polygonal
decision boundaries [13, eq. (12)], and derive versions of
these expressions that take into account signal-dependent
noise and crosstalk between the in-phase and quadrature
branches.

2) The authors in [12] and [13] show that -ary noncoherent
and differentially coherent receivers are severely impacted
by imperfect CSI (see, (18) in [13], for -ary noncoherent
FSK (NCFSK) and (20) for -ary differentially encoded
PSK (DPSK) ( -DPSK)). In particular, with completely
decorrelated channel estimates, [13] shows that the av-
erage error performances of FSK and DPSK receivers with

2This conclusion has also appeared in some classic textbooks (see [7, pp.
549–555] and [8, pp. 325–329, 371–375]), and in a recent work [9, eqs. (39),
(40), (42), and (56).]

GDC( , ) vary inverse linearly with the average received
SNR.
We show that these receivers are insensitive to channel es-
timation errors (see (123) for -ary NCFSK and (130)
for -ary DPSK in this paper). Specifically, we use the
channel estimates only for choosing the diversity chan-
nels from the available ones, but not for the actual de-
modulation/detection process (see Figs. 2 and 3). With
completely decorrelated channel estimates, we show that
the error rates of both noncoherent and differentially co-
herent receivers with GDC( , ) coincide with that of an
ideal GDC( , ) receiver.

In addition to the above, the expressions derived in this paper
also extend various published results on coherent modulation
with imperfect channel estimates. To this end, we first briefly
review some of these published results. An upper bound on the
SEP for QAM with pilot-symbol assisted modulation (PSAM)
[15] is presented in [16], whereas performance of -PSK and

-QAM with minimum mean-square error (MMSE) channel
estimation on Rayleigh and Rician fading channels without
diversity is presented in [17] and [18], respectively. With an
assumption that the amplitude and phase estimation errors are
independent of each other, approximate bit error probability
(BEP) performances of 16- and 64-QAM modulation schemes
are analyzed in [19] for a Rayleigh fading channel. An exact
expression, in terms of a complicated double-integral, for
the average BEP of 16-QAM is obtained in [20] with MRC
diversity and channel estimation errors. Using the results on
Gaussian quadratic forms [21, Appendix B], [22] presents
closed-form expressions for the average BEP of -QAM with
MRC on Rayleigh fading channels, whereas a Rician-fading
channel is considered in [23]. An approximate analysis of BEP
for -QAM with GDC is conducted in [24] for Rayleigh, Ri-
cian, and Nakagami fading channels. SEP analysis for general
2-D modulation schemes is investigated in [25] for Rayleigh
fading channels with channel estimation errors and no diversity.
Probability density functions, with channel estimation errors,
for analyzing the performance of PAM and QAM signals on
Rayleigh fading channels with MRC diversity, and for Ri-
cian-fading channels without diversity, are developed in [26].

As described in the previous paragraph, most of the reported
results are limited to either constellations with restricted al-
phabet sizes (such as 16-QAM/64-QAM), or a particular choice
of diversity scheme (such as MRC or no diversity). In partic-
ular, for QAM constellations, the analytical framework with es-
timation errors, so far, is limited to BEP performance only. The
following contributions in our paper extend various results sum-
marized in the previous paragraph.

1) For -PSK modulation, we derive the conditional (condi-
tioned on the channel estimates) distribution of the phase
angle of the received signal at the output of the GDC re-
ceiver with imperfect channel estimates. This result is a
generalization of [27], wherein Proakis derives the distri-
bution of the phase angle of the received signal for MRC
with channel estimation errors. Using this distribution, we
extend the BEP expressions of [28] to account for fading,
GDC, and noisy CSI. Furthermore, our results are exact
(whereas [29] presents an approximate analysis), and are
in a simple closed form.
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2) For an -PAM (pulse-amplitude modulation) signal set,
we derive new expressions for SEP and BEP (with Gray
mapping) which extend [26] to GDC( , ) reception
based on noisy channel estimates.

3) With QAM, our average BEP expressions with GDC and
channel estimation errors are valid for arbitrary rectangular
constellation sizes with Gray code mapping. Our BEP re-
sults generalize the 16-QAM and MRC results of [20] to

-QAM and GDC, and -QAM and MRC results of [22]
to GDC. A closed-form analysis on the average SEP for

-QAM is also presented, which, to the best of our knowl-
edge, has not been reported in the literature.

4) Analogous to the single-antenna results of [25], our anal-
ysis on the average SEP performance of 2-D constellations
allows us to express the final results in terms of a single
integral [30]. Our results are nontrivial generalizations of
[25] to GDC and imperfect CSI.

The rest of this paper is organized as follows. In Section II,
we describe the system and the channel estimation error models.
Analysis of average SEP and BEP of various coherent signaling
schemes is presented in Section III. In particular, -PSK
signaling is considered in Section III-A, -PAM and -QAM
are considered in Sections III-B and III-C, respectively, and
an analysis is presented for arbitrary 2-D constellations in
Section III-D. Extensions to noncoherent and differentially
coherent schemes are studied in Section IV. Numerical results
and discussions are provided in Section V, and we conclude
our work in Section VI.

II. SYSTEM MODEL

We assume that the information bits are mapped onto a gen-
eral 2-D constellation with the r.v. denoting the trans-
mitted signal point. The signal points are normalized to have an
average energy of (i.e., ). We assume that the
channel is frequency nonselective and slowly fading over the
duration of the transmitted symbol, and the receiver employs
antennas for diversity reception. Assuming perfect recovery of
symbol timing, the low-pass equivalent representation of the re-
ceived signal at the output of a matched filter on the th antenna
path is given by

(1)

where is the complex channel gain whose real and imagi-
nary parts are assumed to be uncorrelated and are Gaussian dis-
tributed each with zero mean and variance of . The noise r.v.

is complex Gaussian with independent components each with
zero mean and variance . The channel gains, and

, at two different diversity branches and , are assumed to
be i.i.d. We also assume that is independent of . Note
that this model is chosen because it has often been used in the
past (see, e.g., [19] and [31]). The implicit assumption we are
making is that various physical effects, such as path loss and
multipath fading, as well as all normalizations from gains at the
receiver, are embodied in the variance of , .

Let be the estimate of the complex fade on the th diver-
sity path, which is also assumed to be a complex Gaussian r.v.
with zero mean and variance of . Since and

are jointly Gaussian, the conditional distribution of , condi-
tioned on , is also Gaussian with mean proportional to and
variance independent of . That is, conditioned on , we can
express as [32]

(2)

where is the complex correlation coefficient between and
, and and are independent Gaussian random variables

(r.v.’s) each with zero mean and variance ,
and are independent of . The parameter is defined as the
channel estimation error variance (per dimension). The complex
correlation coefficient between and is defined as

(3)

where . Then

(4)

and (5)

In (4), we defined and .

A. Practical Channel Estimation Schemes

The previously described channel estimation error model
can be specialized to a variety of practical channel estimation
schemes. In this subsection, we illustrate this for three popular
channel estimation schemes.

1) Additive Channel Estimation Errors: If a channel esti-
mation scheme results in an additive error, then the estimate

can be written as . With the assumption that
is a complex Gaussian r.v. with zero mean and variance

, and is independent of , by using (3) we
directly obtain and . Clearly, the

channel estimation error variance is given by
. We point out that the clairvoyant and pilot

signal estimates, as discussed by Proakis in [27], can be viewed
as particular instances of the general additive estimation error
model.

2) MMSE Channel Estimation: With an MMSE channel esti-
mation scheme, the channel estimate is chosen in such a way that
the mean square error between the estimate and the fade is
minimized. From [33], it is well known that, with MMSE esti-
mation, the estimation error is uncorrelated with the es-
timate . Since both and are complex Gaussian, it follows
that is independent of . Upon setting

, we arrive at , , , and
. Finally, the estimation error

is given in terms of and as .
3) Pilot Symbol Assisted Modulation: In a PSAM system, as

detailed in [15] and [19], information symbols are packed into
-length frames containing one pilot symbol followed by

information symbols. The channel estimate is derived from the
pilot symbols of past, the present, and future frames.
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If and denote, respectively, the complex fade
and the additive noise on the pilot symbol corresponding to the
th frame on the th branch, and if denotes the energy-per-

branch invested on the pilot symbol, then the estimate
on the th symbol corresponding to the current frame can be
written as

(6)

where is the set of real filter coefficients and the pilot
symbols are assumed to be BPSK modulated. Clearly, is
zero mean complex Gaussian with variance [19]

(7)

where is the zeroth-order Bessel function of the first kind
[8], is Doppler frequency, and is the symbol duration.
Again, the estimate of (6) and the fade are jointly
Gaussian, so that from (3), we have

(8)

and (9)

Using (7)—(9) in (4), and are simply given by (10)–(11)
at the bottom of the page, where, in (10),
is the average SNR per branch for the pilot signal.

III. ERROR PROBABILITY ANALYSIS

With the received signal of (1) and the corresponding channel
estimates , the output of the diversity combiner for a
linear modulation scheme is given by

(12)

where are the order statistics of
such that , and

is the received signal on the diversity branch for which
is the corresponding channel estimate. For simplicity, let us
define . Conditioned on ,
and are zero mean independent Gaussian r.v.’s each having
a variance

(13)

Recognize that is the normalized SNR r.v. at the output of a
genie-aided GDC receiver [34], [35]. We also notice that, unlike
the case of ideal channel estimation, the variance , condi-
tioned on , depends on the transmitted signal point . How-
ever, for an -PSK signal set, is not a function of . Inter-
estingly, the r.v.’s and are correlated and are non-Gaussian
distributed. Thus, we conclude from (12) and (13) that the ef-
fect of imperfect channel estimation at the output of a linear
diversity combiner is scaling the transmitted signal by an un-
known (to the receiver) complex constant and
then corruption by a complex, correlated, non-Gaussian noise
whose variance is proportional to the transmitted signal energy.

An interesting observation can be made from (12) when
the channel estimate is completely decorrelated from the ac-
tual channel gain. In this scenario, we have . That is,

and (12) reduces to

for (14)

That is, there is no signal component at the output of the
combiner. As a result, with no further computation, we con-
clude that with a completely decorrelated channel estimate,
the outage probability, the probability that the received SNR
at the output of a coherent diversity combiner falls below a
predetermined threshold, is always unity irrespective of the
modulation type, the number of paths , and the parameter

of the diversity combiner. For the sake of completeness, an

(10)

(11)



ANNAVAJJALA et al.: PERFORMANCE ANALYSIS OF LINEAR MODULATION SCHEMES WITH GENERALIZED DIVERSITY COMBINING 4705

analysis of the outage probability for an arbitrary value of is
provided in Appendix I, and is contrasted with the results in the
literature.

A. -PSK Constellation

For coherent -PSK signaling, we have

When is transmitted, (12) can be conve-
niently written as

(15)

where

(16)

and (17)

The decision statistic that we are interested in is the phase
of the received complex variable , which is defined as

. Note from (16) and (17) that, conditioned on
and , and are independent real Gaussian r.v.’s with
the following means and variances:

(18)

(19)

(20)

The following result will be useful for obtaining the pdf of :

Lemma 1: If and are two independent real Gaussian
r.v.’s with mean values and , respectively, and have vari-
ances of each, then the pdf of is given by

(21)

where is the pdf of evaluated at with parameters

and , , , and

Proof: Refer to [36, Sec. 5A.5].

Fig. 1. M -PSK signal constellation with decision boundary in the presence of
channel estimation errors. Notice that the angle � is due to phase estimation
errors. Due to this, the decision region when � is transmitted is given by the
wedge between � � � � and � + � � .

Upon using (20) together with Lemma 1, and after some sim-
plification,3 we arrive at the following expression for the condi-
tional pdf of :

(22)

where ,

(23)

(24)

The probability of symbol error when is the transmitted
phase, from Fig. 1, is

3Detailed in Appendix II.
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(25)

where the second equality in (25) is due to a change of integra-
tion variable. Observe that is just the pdf of
the phase angle when is transmitted on a fading channel
with perfect CSI and with an instantaneous channel SNR of

[37]. An important result is that the cumulative distri-
bution function (cdf) of is obtained by Pawula
et al. in [37] in a simplified form which is given in (26) at the
bottom of the page, where and

(27)

In (27), for and is equal to otherwise. Due
to the discontinuity of of (27) at , for evaluating
(26) either at or ,we have to use

and . For details please refer
to [37].

Using (27) in (25), and using the fact that
for , we obtain

(28)

It is to be noted that, due to the definition of the cdf of in (26),
(28) is valid only when . Expressions similar to
(28) can be readily obtained, using (25) and (26), even for the
case of or . In practice, is very
small, and in what follows, we assume that .

Notice that, fortunately, in (28) the r.v. appears in the
exponent of the integrand. By recalling that

, where is the Laplace transform of the pdf of the

r.v. , the average SEP for -PSK signaling, with GDC recep-
tion and noisy CSI, can be obtained by taking the expectation of
(28) over . The result is

(29)

For the practical channel estimation schemes described in Sec-
tion II-A, we have . This implies that and

. With this, (29) reduces to

(30)

Equation (30) shows that the average SEP for -PSK is similar
to the ideal SEP, with the ideal average SNR replaced by the
effective average SNR . When , (30) shows that the
average SEP of -PSK modulation is equal to
(i.e., randomly choosing one of signal points), whereas [13]
shows that the average SEP varies inverse linearly with .

To obtain expressions for the average SEP, averaged over ,
the following expression for the Laplace transform of the pdf of

is needed [38]:

(31)

(32)

where (31) is due to partial fractions techniques and

(33)

We also need the following trigonometric identity [39]:

(34)

if
if or

(26)
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(35)

where is derived in closed form in [39,
Appendix 5].

Upon using (31)–(34), (29) can be expressed in closed form,
given in (35) at the top of the page. Equation (35) is a simple ex-
tension of the results developed in [27] for GDC and noisy CSI.
The results of [27] are valid only for (i.e., for the channel
estimation schemes of Sections II-AI–III) and for . With
perfect CSI, we have and , and (35) reduces to
the well-known average SEP expression with GDC on Rayleigh
fading channels [38]. As will be discussed in Section V, and
illustrated in Fig. 6, by not considering the signal dependency
on the noise variance, the average SEP expression of [13, eq.
(17)] does not agree with (35), and is overly optimistic by not
exhibiting any error floor.

1) Average BEP With Gray Mapping: We now derive the
average BEP with Gray code mapping. Our approach is due to
[40] (also see [28] for a correction to [40]). Similar to [28],
we define as the probability of the received signal
falling in a wedge of width centered around the th
symbol point , , conditioned on , when

is the transmitted signal. That is,
we have

(36)

where the second equality in (36) is due to a change of integra-
tion variable. Note that, similar to the case of perfect channel
knowledge, is not a function of the transmitted
signal phase . As a result, we use instead of

. To proceed further, as done previously to arrive at
(28) from (25), we employ (26) and (27), and simplify (36) to

(37)

Note that (37) is valid only for . The cases
can also be treated in a similar manner. As

a sanity check, with , , and ,
(37) reduces to the expression derived in [39, eq. (8.29)] for the
additive white Gaussian noise (AWGN) channel. Following the
steps of (29) and (35), a closed-form expression for

is given by (38) at the bottom of the page. Using
(38), the average BEP for the Gray coded -PSK signal set is

- (39)

where is the weight spectrum of Gray code, derived in [28],
which is reproduced here:

(40)

In (40), rounds to the closest integer.

(38)
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We note that (38) and (39) extend, in a closed form, the results
of [28] to the case of fading, GDC, and imperfect CSI. When

, (39) reduces to the average BEP performance with
BPSK and GDC, as reported in [6].

2) Remarks and Discussion: Recently, [31] analyzed the per-
formance of -PSK with MRC diversity and channel estima-
tion errors. Specifically, for Rayleigh fading with i.i.d. branches
(using [31, eqs. (4), (17), and (18)] and simplifying using our
notation), the following expression for the average BEP was
obtained:

(41)

where is given in (32). We now show the limitations of
(41). For simplicity, we set . Using these parameters,
(41) shows that the average BEP is unaffected by a phase rota-
tion of . However, with the help of (25), (26), (27), and (29),
derived in this paper, the average BEP is given by

(42)

which is attributed to the fact that the decision region is flipped
for bits “ ” and “ ” due to a phase rotation of 180 . The reason
for this discrepancy is as follows: From (25), we observe that
imperfect channel estimation affects a PSK system in two ways:
a) the average SNR per branch is reduced to and b) the
decision region for symbol shifts from

to , whereas the analysis
of [31] did not take into account the effect of the phase offset
on the demodulator’s decision region.

In [41], the authors analyzed the average BEP performance
of generalized hierarchical PSK constellations (i.e., embedded
PSK constellations), with perfect CSI, using Pawula’s -func-
tion. By modifying Pawula’s original -function to incorporate
the effects of noisy CSI, as done in this paper, we are extending
the effects of channel estimation errors to the signal constella-
tions of [41].

B. -PAM Constellation

For an -ary PAM constellation, is a real-valued
signal point. The th signal point is represented
as for , where

is the minimum distance between
two signal points so that . From (12), the relevant
decision statistic is the real part of , which is given by

(43)

To proceed further, let us define the following:

(44)

(45)

(46)

and (47)

where in (44) denotes the average power imbalance between
the channel fade and its estimate, in (45) is the effective SNR
due to , and (45) is obtained by substituting (44), making
use of the fact that , and the definition

.
Due to the signal-dependent noise variance, as given by (13),

to analyze the error performance of -PAM, one has to con-
sider each signal point separately. For signals and , the
probabilities of correct decision, conditioned on , are given
by

(48)

Note that since , we have .
For , , can be expressed as

(49)

Since the -PAM signal set is symmetric about the origin, and
for , the average probability

of error, conditioned on and using (44)–(47) in (48) and (49),
can be written as in (50) at the top of the following page.

We need the following definitions:

if
if
if

(51)

where, from [39], we have

(52)

and where is given by (34), and is derived in closed
form in [39, Appendix 5A]. Using (51) and (52) to average (50)
over , we obtain the closed-form solution shown in (53) also
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-

(50)

-

(53)

at the top of the page. Note that (53) generalizes [26] to the case
of GDC. Also, with , our results are simpler than [26].

1) Average BEP With Gray Mapping: We now derive the av-
erage BEP for Gray coded -PAM. Let
denote the index set of the PAM signal points. For any ,
let denote the binary representation
of (i.e., ), where . Let
us also denote by , the Gray mapping
of . For , let us de-
fine the following sets:

and

. The sets and , for various values
of the constellation size , were presented in [42]. For com-
pleteness, we tabulate these sets in Table I. It was shown in [42]
that the decision statistic for bit , , can be
expressed as the following4 disjoint union of intervals on the

-axis shown in (54) at the bottom of the page, where is the
indicator function that evaluates to when is true. Otherwise,
it evaluates to . As an example, consider -ary PAM and bit .

4We note that [42] does not employ indicator functions for the decision
boundaries of the end points.

Table I gives us . With the help of Table I
and (54), we can express the decision region for bit as
if
(i.e., ) and otherwise.

The average probability of bit error for bit , conditioned on
, can be expressed as equation (55) at the bottom of the fol-

lowing page. Notice that the r.v. appears in the func-
tions of (55) only in the form of , where is real.
Using (51) to average (55) over , the average probability of
error for bit , , can be obtained.
This task can be accomplished trivially by replacing each
function in (55) by of (51). The resulting av-
erage BEP is obtained in closed form as shown in (56) also at
the bottom of the following page. Finally, the average BEP can
be obtained as

(57)

Equations (56) and (57) provide a novel expression for the av-
erage BEP of -PAM with Gray code mapping, GDC, and im-
perfect CSI.

if

otherwise
(54)



4710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, DECEMBER 2007

TABLE I
TABULATION OF THE SETS X (j) AND X (j) FOR EACH VALUE OF THE PAM CONSTELLATION SIZE

M . NOTE THAT FOR A GIVEN M , FOR ANY j , X (j) [X (j) = f0; 1; . . . ;M � 1g

C. Rectangular -QAM Constellations

From (12), we observe that the effects of channel es-
timation error on a QAM signal constellations are three-
fold: to scale the transmitted signal point by a factor of

, to rotate the constellation by
, and to add a signal-dependent noise term. We let

, , ,
, where the -QAM constellation is

of size . Here , , where
, , is the size

of the in-phase PAM constellation, and is the size of the
quadrature-phase PAM constellation. To proceed further, we
define, for and ,
the parameter , shown in (58) at the bottom of the

following page. In (58), we have used the fact that, for
-QAM, [43].

Let us denote by the probability of correctly
receiving , conditioned on . It is now straight-
forward to compute . For ,

, we have (59), at the bottom of the fol-
lowing page. For convenience, for other values of

and are expressed as (60)–(67) at the bottom of the fol-
lowing page, and simplified final expressions for (60)–(67)
are tabulated in Table II.

Let us define by the probability
of correct reception of , averaged over . Each of
the expressions in Table II can be expressed as

. To derive , we need to evaluate
. To this end, we define (68) at the

(55)

(56)
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bottom of the page, where is given in (52),
and is derived
in closed form in (148), Appendix III.

For simplicity, let us define the following scalar variables:

(69)

(70)

(71)

(72)

Notice that (69)–(72) appear as the arguments of functions
in Table II. Using (68) below and (69)–(72), each row in Table II
can be averaged over to obtain closed-form expressions for

, , . These

expressions are tabulated in Table III. Using them, the average
SEP can be written as

(73)

It can be numerically shown (see Fig. 7 and the discussion
in Section V) that this equation does not agree with the average
SEP expression of [13, eq. (19)].

1) Average BEP With Gray Mapping: Similar to the
sets and , , ,
as in Section III-BI, we now introduce the following sets.
We define , , and the sets

and .
The vector is the Gray code map-
ping for the in-phase signal , and

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)



4712 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, DECEMBER 2007

TABLE II
FOR EACH x 2 f0; 1; . . . ;M � 1g AND y 2 f0;1; . . . ;M � 1g, CONDITIONED ON � , THE PROBABILITY OF CORRECT RECEPTION OF THE SYMBOL s + js

IS THE THIRD COLUMN FOR AN M �M RECTANGULAR QAM CONSTELLATION

TABLE III
FOR EACH x 2 f0;1; . . . ;M � 1g AND y 2 f0;1; . . . ;M � 1g THE AVERAGE PROBABILITY OF CORRECT RECEPTION OF THE SYMBOL s + js IS THE

THIRD COLUMN FOR AN M �M RECTANGULAR QAM CONSTELLATION. THE FUNCTIONS (x; y); (x; y); (x; y); (x; y) ARE DEFINED IN (69)–(72),
RESPECTIVELY. THE FUNCTION H (a; L;K) IS DEFINED IN (51), WHEREAS THE FUNCTION H(a; b; L;K) IS DEFINED IN (68)

is the Gray code mapping for the quadrature-phase signal
. For , let us define the following sets:

and

. For
, let us define the following sets:

and

. Using these sets,
the decision statistic for each bit , , is given
by the following disjoint union of intervals on the -axis in (74)
at the bottom of the page; whereas for bit , ,
it is given by (75) also at the bottom of the page. Following the
steps of (55) and (56), we obtain closed-form expressions for
the average probability of bit error ,

, and , ,

if

otherwise
(74)

if

otherwise.
(75)
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(76)

(77)

as shown in (76) at the top of the page, and in (77) also at the
top of the page. Finally, the average BEP can be obtained as

(78)

2) Remarks and Discussion: Recently, [20] presented an
analysis of BEP for 16-QAM with MRC diversity and estima-

tion errors. Unfortunately, the results are not in closed form, and
a 2-D numerical integration is needed to evaluate the average
BEP [20, eqs. (35) and (37)]. A simple closed-form solution
for [20], involving no numerical integration, was reported in
[44]. Note that the results of [20] are valid only for 16-QAM,
whereas using (76)–(78) derived here, one can obtain a simple
closed-form expression valid for arbitrary rectangular QAM
constellations with GDC and estimation errors. The average
BEP expressions for -QAM in [22], which are based on
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Gaussian quadratic forms [21, Appendix B], are valid only
for MRC, and the methodology in [22] does not appear to be
extendable to GDC, whereas (76)–(78) are valid for arbitrary
GDC( , ).

In [45], the authors present expressions for the exact BEP of
hierarchical QAM constellations (i.e., embedded QAM constel-
lations) on fading channels with perfect CSI. We are currently
investigating the impact of GDC and channel estimation errors
on the average BEP and SEP performances of the embedded
constellations of [45].

D. Arbitrary Two-Dimensional Constellations

When belongs to an arbitrary 2-D constellation, we
rewrite (12) as

(79)

where, conditioned on and , is a complex Gaussian r.v.
with the conditional mean

and its conditional variance-per-dimension given by (13). The
joint pdf of , conditioned on , in polar coordinates
is

(80)

We now express of (13) as , where

(81)

For 2-D constellations having polygonal decision regions, the
probability of error for the th decision boundary when is
the transmitted signal is given by the joint pdf of the equiva-
lent noise that is superimposed on evaluated for that deci-
sion region [36]. The error probability over the th subregion

, can be expressed as [36]

(82)

In (82), the amplitude parameter is defined as
[36], and the variables , , , and

are the constellation parameters for the th subregion [36]. As
an example, for 16-star-QAM, these parameters can be found in
[46].

In order to average (82) over , we note that

With this, the expectation of (82) over yields

(83)

Using (31), the derivative of can be obtained as

(84)

Invoking the partial fractions method, (84) can be simplified as

(85)

where

(86)

and (87)

To proceed further, let us define the following functions:

(88)

and (89)
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We note that, throughout this section, is assumed to be a pos-
itive integer. Using the identity

(90)

recursively, (88) can be simplified to

(91)

where

(92)

Assuming , and , we now define the
following integrals:

(93)

(94)

In Appendix IV, we derive the following expressions for
and :

(95)

and

(96)

In (95)

is the incomplete beta integral [47], and
is the complete beta function [47]. In (96),

is defined in (34). Similar to (88), let us define the
following functions:

(97)

(98)

Using (88) and (98), we can write (97) as

(99)

Similar to (93), let us define the three integrals in (100)–(102)
at the top of the following page. The last equality in (102) is
due to the relationship between , , and

, as given in (91), and then using (93) and (94).
Since has a closed-form solution, as given in (95),
and has a closed-form solution, as given in (96), we
can evaluate (102) in closed form.

Observe that . As a
result, we can express (100) only in terms of as

(103)

Since is only a function of and
, via , (103) can also be evaluated in

closed form.
To proceed for the final derivation of symbol error rates, let

us now define the integral in (104) at the top of the following
page, where
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(100)

(101)

(102)

(104)

and

Using (88), (89), and (93), (104) can be written as

(105)

where .

Similar to (104), for , consider the integral shown
in (106) at the top of the following page. Using (100), we can
express (106) as

(107)

That is, evaluation of (105) and (107) requires a single integra-
tion over , similar to what is needed for the AWGN channel
[36, eq. (3.125)].

Upon using (105), (107), and (85) in (83), the average prob-
ability of symbol error of (83) can be expressed as (108) also
at the top of the following page. The average probability of
symbol error can then be obtained by summing (108) over all
possible decision regions, and averaging the resulting expres-
sion for every symbol in the constellation. This leads to

(109)
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(106)

(108)

where is the number of nonintersecting decision regions for
signal .

Note again that by including the effects of signal-dependent
noise, (108) and (109) improve upon the prior work. The av-
erage SEP expressions for 2-D signal constellations on Rayleigh
fading without diversity but with channel estimation error are
given in [25]. It is also easy to show that the final expressions in
[25] are a special case of the results presented here in (108) and
(109) when .

IV. NONCOHERENT AND DIFFERENTIALLY

COHERENT RECEIVERS

We now extend the results of Section III to noncoherent
and differentially coherent receivers. The receiver structure
for -ary orthogonal signaling and noncoherent detection
is shown in Fig. 2, whereas the structure for an -DPSK
receiver with the conventional two-symbol detection is shown
in Fig. 3. For -DPSK, similar to [11]–[13], we also assume
that both the channel and its estimate remain constant over
the detection interval. Based on the relative strengths of the
channel estimates, , the demodulator outputs
from the out of the available channels, for each of the
possible hypotheses, are simply combined algebraically. One
key observation to make regarding Figs. 2 and 3 is that the
channel estimates play no role in the detection stage. First we
start with binary FSK (i.e., ) signaling.

A. Binary FSK

Assume that the branches corresponding to the estimates
are chosen for square-law combining. Then,

conditioned on , the average probability of
error is given by [21]

(110)

where, from (2)

(111)

Clearly, conditioned on , is noncentral dis-
tributed with two degrees of freedom. The Laplace trans-
form of the conditional density function of

is given by [21]

(112)

Using (112) in (110), and the fact that, for , the
pairs are independent, we obtain

(113)
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Fig. 2. GDC receiver for M -ary orthogonal FSK signaling with noncoherent detection. Note that the complex channel estimates fp ; . . . ; p g play no role in
the demodulation process, whereas their magnitudes fjp j; . . . ; jp jg are used to combine only a subset of the demodulator outputs.

The average probability of error is obtained by averaging over
the statistics of

Binary FSK

(114)

Note from (114) that, when , we have

(115)

which is the same as the performance of binary FSK signaling
with th-order diversity. This is expected, and is explained as
follows: When the channel estimate is completely decorrelated
from the actual fade (as is evidenced by ), picking
the best branches based on is equivalent
to picking branches randomly. Consequently, we obtain

th-order diversity performance. Note that, in contrast to
(115), [13, eq. (16)] concludes that with .

When , using (32) for , we obtain

(116)

which is the same as the performance of binary FSK signaling
with th-order square-law combining. This is also to be ex-
pected, since when all the branches are chosen, the channel es-
timates play no role in deciding the receiver performance, as the
latter is employed with estimate-independent square-law detec-
tion (also see Fig. 2). In contrast, the authors in [5, eq. (26)]

conclude that the -branch binary NCFSK receiver is affected
by channel estimation errors.

B. Binary DPSK

The main thing to notice for BDPSK signaling is that, condi-
tioned on , (110) changes to [21]

(117)
Now, upon following the steps of (111)–(114), we arrive at the
final expression for the average probability of error as

Binary DPSK

(118)

When , and for a given value of , similar to (116), we
obtain the average BEP as

(119)

When , (118) reduces to

(120)

which is exactly the same as the performance of ideal GDC( ,
). The intuitive explanations for (119) and (120) are the same

as given for binary FSK. By averaging the conditional BEP
with the pdf of the instantaneous SNR r.v., [11]–[13] showed
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Fig. 3. GDC receiver for two-symbol M -ary DPSK signaling. Here, � is the propagation delay on the lth channel and � = 2�k=M , k = 1; . . . ;M , is the
phase of the information symbol. Note that the complex channel estimates fp ; . . . ; p g play no role in the demodulation process, whereas their magnitudes
fjp j; . . . ; jp jg are used to combine only a subset of the demodulator outputs.

that, when , the average BEP of BDPSK reduces to
(i.e., single-channel performance), whereas the

actual performance is given by (119).5

C. -Ary FSK

Conditioned on , the average symbol error
probability for -FSK signaling with noncoherent reception is
given by [21] (121) at the bottom of the page. Using (112) in
(121), we obtain the following simplification:

(122)

Invoking the Laplace transform of , the average SEP with
noncoherent -FSK is

(123)

5It is to be noted that [31, eq. (22)] concludes that when % = 0 the average
BEP of BDPSK approaches 0:5.

using which the average BEP can be obtained as
[21].

The following two special cases are worth mentioning: a)
, and b) . When , with the help of (32),

(123) reduces to

(124)

Notice that (124) is exactly the same as the performance of an
-branch square-law receiver [39]. This shows that imperfect

CSI does not have any effect on the performance of the -FSK
receiver.

When , using , (123) can be simplified to

(125)

Comparing (125) with (124) we conclude that with ,
GDC( , ) has the same performance as that of GDC( , ).
In contrast, [13] concludes that, with , GDC( , ) has
the performance of GDC(1,1) (i.e., no diversity). The reason for
this is the same as given for (115).

(121)
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D. -Ary DPSK

To derive the average SEP with MDPSK reception and GDC,
we use the following simple expression, due to [48, eq. (3)] and
[49, eq. (11b)], for the average SEP of MDPSK on an AWGN
channel:

(126)

Now observe that, conditioned on , the av-
erage SEP of MDPSK is

(127)

Using (112), we have

(128)

Upon using (128) in (127), we obtain (129), shown at the bottom
of the page. Upon letting and ,
and averaging (129) over , we obtain the following simpli-
fication for the average SEP of MDPSK shown in (130), also

at the bottom of the page. For the special cases of and
, we obtain

(131)

and

(132)

That is, (131) shows that by randomly picking branches, we
obtain the performance of GDC( , ) (see Fig. 3), whereas
(132) shows that channel estimates play no role in SEP when
combining all the branches.

V. RESULTS AND DISCUSSION

In this section, we compare and contrast some of the results
published in the literature against the ones presented in this
paper. Fig. 4 plots the average output SNR of an MRC re-
ceiver with combiner weights derived from pilot-based MMSE
channel estimation (see Section II-A). In Fig. 4, we assume

branches, and set the average received pilot SNR per
branch, , to 20 dB. From Section II-A, we have

and

The average output SNR, derived in [10], is compared against
the results presented in this paper in Appendix I. From Fig. 4,
we observe that [10] predicts a linear increase in the average
output SNR as a function of the average input SNR, whereas,
in reality, signal-dependent noise due to imperfect channel esti-
mation leads to a saturation of the output SNR. For the same set
of parameters as that of Fig. 4, in Fig. 5 we compare the outage
probability reported in [10, eq. (48)] against (137) derived in this
paper. From Fig. 5, we observe that, due to imperfect channel

(129)

(130)
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Fig. 4. Average output SNR as a function of the average input SNR for MRC
receiver with the combiner weights based on MMSE channel estimation.

Fig. 5. Outage probability of MRC receiver with the combiner weights based
on MMSE channel estimation. The legend labeled “This paper” corresponds to
the outage probability expression derived in Appendix I, whereas the legend
labeled “[10]” corresponds to the outage probability derived in [10, eq. (48)].

estimation, the actual outage probability suffers from an error
floor.

The average SEP performance of 8-PSK modulation with
MRC and SC receivers, and with channels, is presented
in Fig. 6. Similar to Figs. 4 and 5, MMSE channel estimation
is assumed with 20 dB. The ideal performance (i.e.,
without estimation errors), and the performance based on the
analysis in [13, eq. (17)] are also compared against the results
derived in this paper. From Fig. 6, our analysis shows that the
receiver incurs a severe degradation in performance due to an
error floor. For the same set of system and channel parameters
Fig. 7 shows the SEP performance of 64-QAM constellation,
with a conclusion similar to Fig. 6.

We now plot the average SEP performance of -ary DPSK
and NCFSK modulations in Figs. 8 and 9, respectively. We set

Fig. 6. Average SEP of 8-PSK with MRC and SC receivers, assuming L = 4

branches. The combiner weights are based on MMSE channel estimation. The
legend containing “[13]” corresponds to the expression derived in [13, eq.(17)].

Fig. 7. Average SEP of 64-QAM with MRC and SC receivers, assumingL = 4

branches. The combiner weights are based on MMSE channel estimation. The
legend containing “[13]” corresponds to the expression derived in [13, eq. (19)].

, , and choose . We also assume that
(i.e., a completely noisy channel estimate is provided to

the conventional noncoherent/differentially coherent receivers).
We note, from Figs. 2 and 3, that the channel estimates are used
only for selecting the diversity channels but not for the signal
detection process. From Fig. 8, we notice that, with ,
our result reveals that th-order diversity performance can be
achieved with a completely noisy channel estimate. Similar re-
sults can be seen in Fig. 9 for the -ary NCFSK receiver. In
short, our results establish that the effective diversity order of
the receiver is equal to the number of branches the receiver com-
bines. As reasoned in Section IV, with and i.i.d. channel
estimates, randomly choosing channels from channels is
tantamount to having only branches to start with. It follows
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Fig. 8. Average SEP of 8-ary DPSK with GDC(L, K) reception. We assume
L = 4 branches and K 2 f2; Lg. We consider the case with � = 0 (i.e., a
completely noisy channel estimate is supplied to the conventional differential
detector). The legend containing “[13]” corresponds to the expression derived
in [13, eq.(20)].

Fig. 9. Average SEP of 8-ary NCFSK with GDC(L,K) reception. We assume
L = 4 branches and K 2 f2; Lg. We consider the case with � = 0 (i.e., a
completely noisy channel estimate is supplied to the conventional noncoherent
detector). The legend containing “[13]” corresponds to the expression derived
in [13, eq.(18)].

that the latter system, with a conventional noncoherent/differen-
tially coherent detection, yields a diversity of [21]. Until now,
we have assumed that the pilot SNR is fixed, irrespective of the
operating data SNR. In this regime, the performance is limited
by the quality of the channel estimates. However, in some prac-
tical wireless standards, the pilot SNR is continuously boosted
relative to the data SNR.6 In this case, asymptotically as the data
SNR goes to infinity the pilot SNR also goes to infinity, and

6For example, in the emerging IEEE 802.16e WiMax standard [50], the pilot
SNR is boosted by a variable factor relative to the data SNR.

Fig. 10. Average probability of bit error for Gray coded 8-PSK with PSAM.
The pilot SNR is continuously boosted relative to the data SNR by a factor of
2.5 dB.

Fig. 11. Average probability of bit error for Gray coded 16-QAM with PSAM.
The pilot SNR is continuously boosted relative to the data SNR by a factor of
2.5 dB.

hence the estimation errors vanish. As a result, there will not be
any error floor.7 Figs. 10 and 11 numerically verify this obser-
vation for 8-PSK and 16-QAM constellations with Gray code
mapping. Here, the pilot SNR is assumed to be boosted by a
factor of 2.5 dB. We let , and focus on the BEP perfor-
mance with MRC and SC receivers. For channel estimation, we
use the PSAM technique of [15] with the following parameters:
Bessel fading correlation with a normalized fading bandwidth of

, a frame length of 20 symbols, one pilot symbol
per frame, fading interpolation using the pilots of the current,
past four, and future four pilots, and a interpolation
filter. Figs. 10 and 11 show that, except for a penalty in output
SNR, there is no noticeable loss in diversity performance.

7This observation can in fact be proven analytically. However, for brevity we
skip the proof.
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VI. CONCLUSION

In this paper, using a fundamental decision-variable ap-
proach, we presented a rigorous analysis of the performance
of GDC receivers on time-correlated Rayleigh fading channels
with noisy channel estimates. We derived several new results
on the error probabilities of coherent, noncoherent, and differ-
entially coherent receivers with GDC and imperfect CSI. Our
expressions for coherent receivers are also shown to be general-
izations of some of the published results that were valid either
for small constellation sizes, or for specific combining schemes
(i.e., MRC or no-diversity systems), or both. We showed that
the final analytical expressions were simple, requiring at most
a single numerical integration with finite integration range, and
have the complexity of evaluation that is comparable to that for
the AWGN channel.

With completely decorrelated channel estimates, our results
differ from prior literature in the following manner: i) While
[10], [12], and [13] show that the outage probability, and the
average SEP of -ary PSK signaling, with a GDC( , ) re-
ceiver vary inverse linearly with the average SNR, we prove that
outage occurs with probability one, whereas the average SEP
reduces to . ii) With noncoherent and differentially
coherent signaling, [5], [9], [11]–[13] conclude that the average
probability of error varies inverse linearly with the average SNR,
whereas our results show that the receiver performance is iden-
tical to that of an ideal GDC( , ) receiver.

APPENDIX I
OUTAGE ANALYSIS FOR COHERENT RECEPTION

In this appendix, we present a simple analysis for the outage
probability of a coherent diversity receiver whose output signal
is given by (12). Let us denote by the instantaneous
SNR r.v. at the output of the combiner, conditioned on and

. Using (12), can be written as

(133)

Let us denote by the
ideal received SNR when is transmitted, so that

(134)

is the effective SNR due to noisy CSI. Note that, for an -PSK
constellation, all the signal points have identical effective SNR.

Let us denote by the instantaneous SNR averaged over
the constellation. For simplicity, we assume each is
equiprobable, so that can be calculated as

(135)

where in (135) denotes the size of the set and

(136)

denotes the constellation-averaged effective SNR. For an
-PSK constellation, is identical to of (23). Using

(135), the probability that falls below a predetermined
threshold is

(137)

where is the cdf of which is computed in [38], in
closed form, as shown in (138) at the bottom of the page. We
now perform some sanity checks on (137). First, let .
Using (134) and (136), we have . Substituting
in (137), we see that , which is in agreement with
our intuition, as argued below (14). Next, when , (136)
with (134) gives us

Upon substituting in (137), we see that
, which is the same as the outage probability for

an ideal GDC [39]. For values of , from (137), the
outage probability is given by , which indicates
that, except for replacing the ideal SNR by the effective SNR

, noisy CSI does not reduce the diversity order of a coherent
GDC.

Note that, when , the expressions for from
[10] and [13] are given by

([10, eq. (50)], [13, eq. (34)]) (139)

(138)
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which leads to the incorrect conclusion that single-channel per-
formance results when .

Notice that when , using (134) in (136), the average
SNR at the output of the GDC receiver becomes zero, irrespec-
tive of the GDC parameters and (This also follows from
(14), since there is no signal component). On the other hand,
the results in [10, p. 497] and [13, p. 505] show that the average
SNR at the output of the combiner is equal to the per-branch
average SNR .

APPENDIX II
DERIVATION OF (22)

To use Lemma 1, we need to compute , , and . The
parameter is given by , where , as given
by (18), and , as given by (19). This yields

(140)

The phase angle is a function of the trans-
mitted information phase and is denoted by . This is given
by

(141)

The term is simply given by (or ), as in (20). The
ratio is then

(142)

where is given in (23). In the second step of (142) we have
used , and . In
the third step, we have used . Upon substituting
(141) and (142) in Lemma 1, we arrive at (22).

APPENDIX III
DERIVATION OF OF (68)

Let and denote two real-valued constants. Let us consider
the following integral:

(143)

where the simplification is due to integration-by-parts.
Recognizing that every term in of (138) can be ex-

pressed as a linear combination of , we can find a so-
lution for (143) as a linear combination of the solution for the
following integral:

(144)

Fortunately, each of the above integrals can be simplified using
the following result: First, using the definition

[51], we simplify the following integral as:

(145)
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where and . Upon using [39, eq. (5.17b)], we arrive
at the following simplification for (145):

(146)

where is the Gauss hypergeometric function [47],
and is the standard Gamma function [47].

Using (146), (144) can be expressed as

(147)

Using (147) along with (138), an expression for
can be obtained as shown in (148) at the bottom of the page. For
the case of SC, we have

[39], whereas with MRC

[39]. Accordingly, (148) reduces to

(SC) (149)

and

(MRC)

(150)

APPENDIX IV
DERIVATION OF (95) AND (96)

Consider the following integral:

(151)

By setting and in (151), we obtain
(93).

By changing the integration variables from to through the
transformation in (151), we obtain

(152)

where . The second integral in (152) can

easily be evaluated to , whereas the first integral can
be rewritten as

(153)

(148)
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where we have used the definitions of and
in the second step of (153).

Finally, after combining terms, (151) can be simplified to

(154)

which, with and , reduces to (95).
We now derive (96). From (94), we have

where and (155)

We write , where and
, and use the change of integration variable,

from to , via . With this, (155) becomes

(156)

where, in (156), , and we have used (34)
in the last step of (156). Equation (96) follows upon setting

and .
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