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(76)

(77)

as shown in (76) at the top of the page, and in (77) also at the
top of the page. Finally, the average BEP can be obtained as

(78)

2) Remarks and Discussion: Recently, [20] presented an
analysis of BEP for 16-QAM with MRC diversity and estima-

tion errors. Unfortunately, the results are not in closed form, and
a 2-D numerical integration is needed to evaluate the average
BEP [20, eqs. (35) and (37)]. A simple closed-form solution
for [20], involving no numerical integration, was reported in
[44]. Note that the results of [20] are valid only for 16-QAM,
whereas using (76)–(78) derived here, one can obtain a simple
closed-form expression valid for arbitrary rectangular QAM
constellations with GDC and estimation errors. The average
BEP expressions for -QAM in [22], which are based on
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Fig. 3. GDC receiver for two-symbol M -ary DPSK signaling. Here, � is the propagation delay on the lth channel and � = 2�k=M , k = 1; . . . ;M , is the
phase of the information symbol. Note that the complex channel estimates fp ; . . . ; p g play no role in the demodulation process, whereas their magnitudes
fjp j; . . . ; jp jg are used to combine only a subset of the demodulator outputs.

that, when , the average BEP of BDPSK reduces to
(i.e., single-channel performance), whereas the

actual performance is given by (119).5

C. -Ary FSK

Conditioned on , the average symbol error
probability for -FSK signaling with noncoherent reception is
given by [21] (121) at the bottom of the page. Using (112) in
(121), we obtain the following simplification:

(122)

Invoking the Laplace transform of , the average SEP with
noncoherent -FSK is

(123)

5It is to be noted that [31, eq. (22)] concludes that when % = 0 the average
BEP of BDPSK approaches 0:5.

using which the average BEP can be obtained as
[21].

The following two special cases are worth mentioning: a)
, and b) . When , with the help of (32),

(123) reduces to

(124)
Notice that (124) is exactly the same as the performance of an

-branch square-law receiver [39]. This shows that imperfect
CSI does not have any effect on the performance of the -FSK
receiver.

When , using , (123) can be simplified to

(125)

Comparing (125) with (124) we conclude that with ,
GDC( , ) has the same performance as that of GDC( , ).
In contrast, [13] concludes that, with , GDC( , ) has
the performance of GDC(1,1) (i.e., no diversity). The reason for
this is the same as given for (115).

(121)
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D. -Ary DPSK

To derive the average SEP with MDPSK reception and GDC,
we use the following simple expression, due to [48, eq. (3)] and
[49, eq. (11b)], for the average SEP of MDPSK on an AWGN
channel:

(126)

Now observe that, conditioned on , the av-
erage SEP of MDPSK is

(127)

Using (112), we have

(128)

Upon using (128) in (127), we obtain (129), shown at the bottom
of the page. Upon letting and ,
and averaging (129) over , we obtain the following simpli-
fication for the average SEP of MDPSK shown in (130), also

at the bottom of the page. For the special cases of and
, we obtain

(131)
and

(132)

That is, (131) shows that by randomly picking branches, we
obtain the performance of GDC( , ) (see Fig. 3), whereas
(132) shows that channel estimates play no role in SEP when
combining all the branches.

V. RESULTS AND DISCUSSION

In this section, we compare and contrast some of the results
published in the literature against the ones presented in this
paper. Fig. 4 plots the average output SNR of an MRC re-
ceiver with combiner weights derived from pilot-based MMSE
channel estimation (see Section II-A). In Fig. 4, we assume

branches, and set the average received pilot SNR per
branch, , to 20 dB. From Section II-A, we have

and

The average output SNR, derived in [10], is compared against
the results presented in this paper in Appendix I. From Fig. 4,
we observe that [10] predicts a linear increase in the average
output SNR as a function of the average input SNR, whereas,
in reality, signal-dependent noise due to imperfect channel esti-
mation leads to a saturation of the output SNR. For the same set
of parameters as that of Fig. 4, in Fig. 5 we compare the outage
probability reported in [10, eq. (48)] against (137) derived in this
paper. From Fig. 5, we observe that, due to imperfect channel

(129)

(130)


