
PERCEPTUAL VIDEO QUALITY OPTIMIZATION IN AWGN CHANNEL USING LOW
COMPLEXITY CHANNEL CODE RATE ALLOCATION

Ting-Lan Lin and Pamela C. Cosman

University of California, San Diego – ECE

Review Topics : H-7 = Speech, Image and Video Processing (Image and Video Coding)

ABSTRACT
In error-prone channels, forward error correction is neces-
sary for protecting important data. In this paper, we use a
packet loss visibility model to evaluate the visual importance
of video packets to be transmitted. With the loss visibility of
each packet, we use the Branch and Bound method to opti-
mally allocate rates of Rate-Compatible Punctured Convolu-
tional codes. The complexity of our prior algorithm can be
reduced by k-means clustering before using the Branch and
Bound method. Experimental results show that the proposed
unequal error protection algorithm can improve upon the re-
ceived video quality compared to our prior work with much
lower complexity.

Index Terms— Unequal error protection, packet loss vis-
ibility model, perceptual quality.

1. INTRODUCTION

Packets of compressed video induce different levels of qual-
ity degradation when lost. Therefore they should be protected
by channel codes based on their importance. FMO (Flexible
Macroblock Ordering) in H.264 is employed in [1] to group
macroblocks of similar estimated distortion in a frame into a
slice, with different levels of channel protection over slices.
This method is extended in [2] with Converged Motion Es-
timation, which performs motion estimation for the current
frame using mostly the highly-protected MBs in the previ-
ous frame as reference. In [3], frames closer to the end of a
GOP have less error protection. Traditionally and in the meth-
ods mentioned above, video quality degradation is measured
with MSE (mean-squared error). However, MSE is not cor-
related well with human perception [4]. Therefore, a metric
developed/verified by subjective experiments is necessary for
evaluating the video quality.

We evaluate the visual importance of each packet by the
packet loss visibility model developed by extensive subjective
experiments from [5, 6]; the model estimates for each packet
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the probability that the end user will observe the packet loss
artifact if the packet is lost. Based on this metric, we aim
to optimally allocate Rate-Compatible Punctured Convolu-
tional (RCPC) codes to minimize the visual quality degrada-
tion when transmitting video over an AWGN channel, given
a total rate budget. We solve the optimization problem by
the Branch and Bound method (BnB) in [7]. However, BnB
has worst case exponential complexity [8]. In this paper, we
reduce the complexity of our algorithm presented in [7] by
preprocessing the packet information using k-means cluster-
ing. We evaluate the decoded lossy video using Video Quality
Metric (VQM) [9, 10], a full reference (FR) metric developed
by the National Telecommunication and Information Admin-
istration, shown to be well correlated with human perception
compared to other FR video quality metrics [11]. The pro-
posed algorithm has much lower complexity, and performs
slightly better than the prior algorithm.

The organization of this paper is as follows. In Section 2,
we explain the packet loss visibility model and its predictors.
Section 3 formulates the RCPC rate allocation problem as an
integer programming problem. In Section 4, the branch and
bound method is introduced to solve the optimization prob-
lem. Section 5 describes how we apply K-means algorithm to
reduce the complexity of our prior algorithm. Experimental
results and conclusions are shown in Section 6.

2. PACKET LOSS VISIBILITY MODEL

In this paper, we evaluate the visual importance of each packet
by our packet loss visibility model [5, 6]. Packet loss visibility
is the probability that the end user will observe the packet loss
artifact if the packet is lost. Therefore, higher loss visibility
means a packet is more visually important. This model was
built from three subjective experiments with various codecs
(H.264 and MPEG-2), encoding rates, GOP structures and er-
ror concealment methods. The packet loss visibility is mod-
eled using a Generalized Linear Model, whose link function is
a logit function [6]. In the following, we describe the factors
used in the model.



IMSE, ISSIM (the average MSE and SSIM [12] among
all MBs in an initial packet loss) and MaxIMSE (the maxi-
mum per-MB MSE over all MBs in the initial packet loss) are
significant to the packet loss visibility. A forward motion es-
timation using 16x16 motion blocks from the uncompressed
signal f(t) was used to measure the motion information (x,y)
per MB that is independent of any codec. (MOTX,MOTY)
is the average motion vector, and ResidEng is the aver-
age residual energy after motion compensation, over MBs
in a packet. The boolean variable HighMOT is TRUE if√

MOTX2 + MOTY 2 >
√

2.
We also consider Reference-Scene-related factors. A

method for detection of quick scene cuts was presented
in [13]. Each packet loss was labeled by the distance in
time between the first frame affected by the packet loss and
the nearest scene cut, either before or after. This is Dist-
FromSceneCut, and is positive if the packet loss happens
after the closest scene cut in display order, and negative oth-
erwise. DistToRef per MB describes the distance between
the current frame (with the packet loss) and the reference
frame used for concealment. This variable is positive if
the frame with the packet loss uses a previous (in display
order) frame as reference, and negative otherwise. FarCon-
ceal is TRUE if MaxDistToRef (maximum of |DistToRef|
in a slice) ≥ 3. In this inequality, MaxDistToRef has units
of frames. The Boolean variable, OtherSceneConceal, is
TRUE if |DistFromSceneCut| < |MaxDistToRef|, where
the compared variables must be of the same sign (same di-
rection). In this inequality, the compared variables have
units of seconds. If the compared variables have different
signs, OtherSceneConceal is FALSE. OtherSceneConceal
describes whether the packet loss will be concealed by an
out-of-scene reference frame which will increase the visi-
bility of packet loss. To account for the depressed visibility
immediately before a scene cut, BeforeSceneCut is TRUE
if −0.4sec < DistFromSceneCut < 0sec. Scenes are
classified based on four camera-motion types: still, panning,
zooming, or complex camera motions. Since significantly
fewer viewers see packet loss in still scenes than in pan-
ning or zooming scenes [5], the Boolean variable NotStill is
TRUE if motion type is not still. If a packet loss induce two
consecutive slices lost, SXTNT2 is TRUE. SXTNTFrame is
TRUE when all slices in the frame are lost. Error1Frame is
TRUE if the packet loss lasts only one frame. The factors and
coefficients of our final model are summarized in Table 1,
taken from [6].

3. RCPC RATE ALLOCATION

Packets transmitted through the wireless network are sub-
jected to bit errors. Therefore, to minimize the video quality
degradation from the transmission over the error-prone chan-
nel, we aim to optimally allocate RCPC codes, for a given
total output bandwidth, to video packets. The basic idea is

Factors
Coeff. for

Final Model
Intercept 4.18061

log(1− ISSIM + 10−7) 0.22871
SXTNT2 -0.41208

SXTNTFrame -1.47672
Error1Frame -0.33009

log(MaxIMSE + 10−7) 0.27578
log(ResidEng + 10−7) -0.61219

HighMOT 0.18290
NotStill 0.73364

BeforeSceneCut -1.14434
OtherSceneConceal 2.08966
log(IMSE + 10−7) 0.30492

log(IMSE + 10−7) : FarConceal 0.25720

Table 1. Factors of the final model. Note that the colon (:)
means “interact with”

SNR -2dB -1dB 0dB 1dB 2dB
a(SNR) -1.59 -2.15 -2.59 -3.11 -3.43
b(SNR) 1.82 2.35 2.46 2.5 2.01

Table 2. The coefficients of the linear model for BER in
Equation (3) for different AWGN SNR.

to assign lower RCPC rates (more protective) to packets with
higher packet loss visibility (more visually important). We
formulate the problem as follows: assume we have N packets
in an optimization group (e.g., N = 450 is the number of
packets in a GOP), with size Si and packet loss visibility
Vi, i = 1, 2, ..., N . We seek the optimal RCPC rate se-
lection ri for the ith packet from the RCPC candidate set
{R1, R2, ..., RK}, so as to minimize the end-to-end expected
packet loss visibility, while the outgoing total rate budget is
constrained to be B. The problem can be formulated as:

minr
1
N

∑N
i=1 Vi × PacketErrorRate(SNR,Si, ri)

s.t.
∑N

i=1 Si × 1
ri
≤ B

ri ∈ {R1, R2, ..., RK}
i = 1, 2, ..., N (1)

where r = [r1, r2, ..., rN ]. Here we define a packet to be in
error (undecodable by the source decoder) when any of the
bits in the packet is incorrect. Therefore,

PacketErrorRate(SNR,Si, ri)
= 1− (1−BER(SNR, ri))Si (2)
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Fig. 1. Logarithm of BER versus the inverse of RCPC rates
for different SNRs of an AWGN channel.

Also, from [14] and Figure 1, the logarithm of BER (bit
error rate after channel decoding) is approximately linearly
related to the inverse of the RCPC rate for a given SNR in an
AWGN channel. Thus we approximate

BER = 10a(SNR) 1
r +b(SNR)

r ∈ {R1, R2, ..., RK} (3)

where the regression coefficients a and b are functions of
SNR, as listed in Table 2. From here we fix SNR for discus-
sion simplicity. Substituting the expression of packet error
rate and BER into problem (1), we have the following:

minr
1
N

∑N
i=1 Vi × {1− (1− 10a 1

ri
+b)Si}

s.t.
∑N

i=1 Si × 1
ri
≤ B

ri ∈ {R1, R2, ..., RK}
i = 1, 2, ..., N (4)

This problem can be recognized as a nonlinear integer pro-
gramming problem, and can be solved by a well-developed
method called branch-and-bound (BnB). We transform the
original discrete optimization variables into binary boolean
variables [15] to use the BnB algorithm. The optimization
variables are transformed into xij ∈ {0, 1} defined as

xij =
{

1 if packet i uses rate j
0 otherwise

Since one packet can only use one rate, we have the following
linear equality constraint:

K∑

j=1

xij = 1, ∀i = 1, 2, ..., N

Therefore, our problem in (4) can be written as:

minX
1
N

∑N
i=1

∑K
j=1 xij × Vi × {1− (1− 10a 1

Rj
+b)Si}

s.t.
∑N

i=1

∑K
j=1 xij × Si × 1

Rj
≤ B

∑K
j=1 xij = 1,∀i = 1, 2, ..., N

xij ∈ {0, 1} (5)
i = 1, 2, ..., N, j = 1, 2, ..., K

where X = {xij}i=1,...,N
j=1,...,K . The problem can now be solved

by BnB as described next.

4. BRANCH AND BOUND

BnB partitions the original problem into smaller subsets by
tree-growing, and eliminates further consideration of the fea-
sible solutions that can not be better than the current one [15].
The algorithm solves the binary-variable problem as follows :

1. The original problem is solved with the integer con-
straint relaxed to allow 0 ≤ xij ≤ 1. A lower bound
(LOWER) of the optimized value to the original prob-
lem is the optimized value of the relaxed problem since
it has a larger feasible set. An upper bound (UPPER)
of the optimized value to the original problem can be
obtained by substituting the rounded solutions (to zero
or one so that they are feasible) into the problem. This
is an upper bound of the optimal value to the original
problem since it is the best feasible value we can find
at this stage. The optimal value to the original problem
must be less than or equal to UPPER, and greater than
or equal to LOWER.

2. For non-zero-or-one entries (which are infeasible) in
the solution from the previous stage, the algorithm
grows binary subtrees that fix one entry to zero or one,
then solves the problem while relaxing other entries.
The optimized value is a lower bound to this subprob-
lem. If this lower bound is greater than the UPPER,
we prune this branch, since the solutions to any feasi-
ble combination of the trees growing from this point
are not going to be better (less) than the UPPER we
currently have. Otherwise, we keep the node for fur-
ther growing. The upper bound of this subproblem can
again be yielded by substituting the rounded solution
to the problem. If the upper bound to this subproblem
is less than UPPER, we update UPPER, and mark this
rounded solution (feasible) as the best solution so far.

3. Step 2 will be repeated until there is no node to be
grown.

Details of the BnB algorithm can be found in [15].
Ideally, we should perform BnB on all packets (N =

450 = 15packets/frame×30frames/GOP for our exper-
iment) in a GOP (Group of picture) using all (K = 13) RCPC



codes for the algorithm to select from. However, the com-
plexity of BnB has worst-case exponential time [8]. In our
prior work [7], we select from only 4 RCPC codes, and per-
form BnB on every N=15 packets, grouped by selecting the 2
most visible and 13 most invisible packets from the packets in
a GOP, so that we can better reallocate channel rates among
visible and invisible packets. For example, after sorting the
packets by the estimated loss visibility in ascending order, the
first group of packets includes packets 1-13, 449, 450 from
the sorted packets, and the second 14-26, 447, 448, etc. This
way, for each GOP, we need to perform a (N,K)=(15,4) BnB
30 times. We denote this the SORTED algorithm.

5. K-MEANS CLUSTERING

An algorithm involving (N,K)=(15,4) BnB 30 times for a
GOP may still be complicated for real-time processing, there-
fore, we aim to reduce the complexity of the algorithm. From
Equation 4 we see that the optimization problem depends on
not only the visibility of the packet (Vi), but also the size
of the packet (Si). The idea is to group packets of similar
visibility and packet size together and consider this group
as one packet. Thus we propose to use k-means clustering
to group packets before using BnB. Considering N packets
in a GOP, each has a 2-dimensional vector (Vi,Si), k-means
partitions the N vectors into P clusters that minimizes the
sum, over all clusters, of the within-cluster sums of point-to-
cluster-centroid distances. Each of the P clusters has a quan-
tized vector (V̄z ,S̄z) for the cluster, z = 1, 2, ..., P . We then
use these P vectors to perform the BnB. Equation 4 can now
be rewritten as:

minr̄
1
N

∑P
z=1 V̄z ×Numz × {1− (1− 10a 1

r̄z
+b)S̄z}

s.t.
∑P

z=1 S̄z ×Numz × 1
r̄z
≤ B

r̄z ∈ {R1, R2, ..., RK}
z = 1, 2, ..., P (6)

where r̄ = [r̄1, r̄2, ..., r̄P ], and Numz is the number of vec-
tors in cluster z. After solving this problem, the optimal rate
allocation for each packet i, i = 1, 2, ..., N , is the optimal
r̄z where packet i is in cluster z. In our experiment, we use
P = 15. Therefore, for each GOP, we only need to do one
(N = P, K)=(15,4) BnB, which is 30 times less compli-
cated than SORTED is. The proposed algorithm is denoted
KMEANS.

6. EXPERIMENTAL RESULTS

In this section we compare the performance of SORTED and
KMEANS, in terms of perceptual video quality and algorithm
complexity.

The video sequence used in our experiment is encoded
by H.264/AVC JM Version 12.1 in SIF resolution (352×240)
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Fig. 2. The average VQM comparison among EEP, SORTED
and KMEANS algorithms over 100 realizations of each
AWGN channel.

with GOP structure IPPP, frame rate 30 fps, and encoding rate
600 kbps. We define a packet (a NAL unit) as a horizontal row
of macroblocks. Therefore, there are 15 packets in a frame.
Here we consider all packets in a GOP (N = 450 = 15×30).
The convolutional coder to produce the mother code of the
RCPC code has rate 1

L where L = 4, with memory M = 4.
The puncturing period of the RCPC code is P = 8. The chan-
nel we simulate for the wireless communication is AWGN.
As mentioned previously, the logarithm of the bit error rate
at a given SNR can be linearly related to the inverse of the
RCPC rates, as shown in Fig 1. The coefficients of models
for different SNRs are shown in Table 2. In this simulation,
the RCPC rate used by EEP is 8

14 , and the RCPC rates from
which our method can select are { 8

12 , 8
14 , 8

16 , 8
18}. The budget

for the optimization problem will be the number of bits used
by the EEP in the optimization group. The simulated AWGN
channel SNR ranges from −2 to 2 dB, corresponding to bit
error rates after decoding from about 10−1 to 10−4 when the
RCPC rate of EEP ( 8

14 ) is considered. The resulting source-
decoded videos are evaluated by a full-reference metric VQM
(Video Quality Metric) [9] which has been shown to be much
closer than other perceptual video quality metrics to human
perception. VQM ranges from 0 (excellent quality) to 1 (poor
quality).

As discussed earlier, for a GOP, KMEANS is 30 times less
complicated than SORTED. However, with much less compu-
tational complexity, we can see from Figure 2 that the VQM
result of KMEANS is competitive to and even slightly better
than the result by SORTED when the number of RCPC codes
is the same (K = 4). This is because for SORTED, each opti-
mization is performed for the heuristically grouped packets in
a GOP, so the bit budget allocation is restricted in each small



group of N=15 packets. However, KMEANS can assign the
resources to representative packets from the total budget of
N=450 packets, and therefore achieve better performance.

Since the complexity is lower for KMEANS, we try to
improve the performance by offering the algorithm six RCPC
code rates { 8

10 , 8
12 , 8

14 , 8
16 , 8

18 , 8
20} to select from. Figure 2

shows that at 0 dB, by using 6 RCPC codes, the improve-
ment from EEP increases to 0.1 in VQM score, while at -1
dB, the VQM difference to EEP increases from 0.1 to 0.15.
Note that a 0.1 improvement in VQM is considered to be a
significant difference in VQM score (see, e.g., [16]). This
means that the performance of our visibility-based algorithm
could make more difference in the comparison if more RCPC
codes are used in the optimization scheme, with consideration
of reasonable algorithm complexity. In future work, we aim
to lower complexity further to solve our problem with all 13
RCPC code rates.

In conclusion, we proposed a much less complicated al-
gorithm than the one in our prior work to solve the channel
rate allocation problem for end-to-end video perceptual qual-
ity. The proposed algorithm with low complexity performs
better since no heuristic grouping is used. And because of
the lower complexity, the code rate set can be enlarged and
better visual performance is achieved by our visibility-based
unequal error protection algorithm.
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