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Image Quality Evaluation Based on Recognition
Times for Fast Image Browsing Applications

Dirck Schilling and Pamela C. Cosman, Senior Member, IEEE

Abstract—Mean squared error (mse) and peak signal-to-
noise-ratio (PSNR) are the most common methods for measuring
the quality of compressed images, despite the fact that their
inadequacies have long been recognized. Quality for compressed
still images is sometimes evaluated using human observers
who provide subjective ratings of the images. Both SNR and
subjective quality judgments, however, may be inappropriate
for evaluating progressive compression methods which are to be
used for fast browsing applications. In this paper, we present
a novel experimental and statistical framework for comparing
progressive coders. The comparisons use response time studies
in which human observers view a series of progressive trans-
missions, and respond to questions about the images as they
become recognizable. We describe the framework and use it to
compare several well-known algorithms [JPEG, set partitioning
in hierarchical trees (SPIHT), and embedded zerotree wavelet
(EZW)], and to show that a multiresolution decoding is recognized
faster than a single large-scale decoding. Our experiments also
show that, for the particular algorithms used, at the same PSNR,
global blurriness slows down recognition more than do localized
“splotch” artifacts.

Index Terms—Human image recognition, image quality evalua-
tion, multiresolution coding, progressive image coding, wavelet ze-
rotree coding.

I. INTRODUCTION

T HE number of images available on the World Wide Web
(WWW) continues to grow, and users are often frustrated

by the length of time required to download an image. Fast
browsing of image databases is of increasing importance in a
number of application areas, including stock photo agencies,
geographical information systems, medical databases, law
enforcement, and real estate. Often, the image obtained is not
the one the user wanted. If the image arriving is recognized
as being of no interest, the user can save time by aborting the
transmission and jumping to the next item. It is important that
the user be able to identify the contents of an image early in its
transmission.

With many compression algorithms, the entire compressed
bit stream must arrive and be decoded before the decompressed
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image can be displayed to the viewer. With a progressive
image compression algorithm, however, the encoder transmits
the bits in an order which allows the decoder to reconstruct
the image with increasing quality as more bits arrive. In the
past, this progressivity was a property that one paid for dearly,
as the total encoded bit stream would require a substantially
larger number of bits in order to allow initial portions of the
stream to be decodable. Such is the case, for example, with the
progressive and hierarchical modes of the JPEG standard (the
hierarchical mode can be used to provide progressivity) [1].
Progressive compression algorithms enjoyed a renaissance with
the advent of the wavelet zerotree coders (embedded zerotree
wavelet (EZW) coding due to Shapiro [2] and set partitioning
in hierarchical trees (SPIHT) due to Said and Pearlman [3]) in
which the progressivity came with little penalty in the overall
distortion-rate performance. Fig. 1 shows an example of the
progressively improving image quality provided by SPIHT as
the bit stream is decoded.

With many different progressive compression algorithms
from which to choose, application designers are in need of ap-
propriate methods for evaluating the comparative performance
of various coders. The use of peak signal-to-noise (PSNR)
as a performance criterion is problematic. In many cases, it
fails to accurately reflect the subtleties of human perception.
In addition, for several types of algorithms, including those
with spatially scalable decoders, PSNR might not even be
computable. Finally, there are applications for which it is not
the perceived quality of the decoded image that is of primary
importance, but rather the basic recognizability of objects in
the image.

A number of methods have been used to evaluate the per-
ceptual distortion caused by lossy compression. One class of
methods employs models of human psychovisual response de-
veloped by testing specific visual effects [4]–[7]. These models
can explain a number of effects such as contrast and orientation
masking, but are not yet general enough to predict human un-
derstanding of complex real-world images. Other methods rely
on subjective opinions, where subjects are asked, for example,
which of two images looks better, or whether the primary object
in the image has been recognized [8]–[11]. In this paper, we di-
rectly assess image recognition by having observers respond to
questions whose answer could only be known by recognizing
the image content. Although not dealing with progressive com-
pression, a few previous studies have been close in spirit to the
work described in this paper; they compare compression algo-
rithms by an objective recognition task in a reasonably real-
istic simulation of image use. In [12]–[15], still-image compres-
sion algorithms are evaluated for diagnostic utility by simulating
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Fig. 1. Example image progression for SPIHT: (a) 0.01 bpp; (b) 0.05 bpp; and (c) 0.10 bpp.

their clinical use by radiologists. In [16], compressed video clips
of American Sign Language were compared by deaf subjects for
intelligibility.

In our study of recognition times for progressive compression
algorithms, we analyze the correctness of the answers as well
as the response times. In the first evaluation experiment, com-
paring JPEG, EZW, and SPIHT, we show that this approach can
provide a reliable comparison between progressive algorithms
[17]. We then apply our evaluation methodology in a second ex-
periment to demonstrate that images are recognized faster when
displayed by a multiresolution decoder than by a decoder that
presents images at a single, full-size resolution [18]. In a third
experiment, we compare SPIHT with the packetized zerotree
wavelet (PZW) coder [19], [20] under lossy channel conditions,
and show for these algorithms that, at a given PSNR, global blur-
riness slows recognition more than do localized blurring arti-
facts.

Two factors contribute to the performance of a compression
algorithm as measured by our experiments: the efficiency with
which the algorithm compresses a given item of information,
and the psychophysical advantage or disadvantage conferred by
displaying that information in a given form. An algorithm fo-
cusing on the first factor seeks to present the same visual pro-
gression as its competitor, but at a lower bit rate. An algorithm
focusing on the second factor might draw upon studies of the
human visual system [21]–[23] to prioritize certain spatial fre-
quencies over others, in an effort to provide a more recognizable
image at a given bit rate. Our experiments measure the overall
comparative performance of algorithms, but do not attempt to
identify the contribution of specific psychophysical effects in-
volved in recognition.

This paper is organized as follows. In Section II, we discuss
the experimental setup and statistical analysis for these response
time studies. In Section III we present the results of comparing
JPEG, EZW, and SPIHT (Experiments 1a and 1b). In Section IV,
we describe a spatially scalable version of the SPIHT coder, as
well as our experimental evaluation of its usefulness for fast
recognition (Experiments 2a and 2b). Section V discusses the
evaluation of algorithms under lossy channel conditions (Ex-
periment 3), and we present our conclusions in Section VI.

II. EVALUATION FRAMEWORK

This section describes our experimental and statistical frame-
work for simulating fast browsing tasks and comparing any two
progressive compression algorithms.

A collection of images is selected for which a multiple choice
question can be asked. We have primarily used questions with
binary answers, for example, “Do you see males or females in
the image?” We also used some artificial images showing a low-
ercase letter set against a textured background and asked a mul-
tiple-choice question: “What letter do you see in the image?”
The images are chosen such that the question can be reliably
answered when the image is shown at full quality. Several such
image collections, each with its own associated question, are
combined into an experiment collection. Each image is com-
pressed both by algorithm and by algorithm . The method
for displaying the images to observers varies slightly depending
on the specific experiment. In the method used for our first eval-
uation, each observer views every image, half in each of two
viewing sessions. For each observer, one compressed version of
each image is randomly assigned to the first viewing session,
and the other version is assigned to the second viewing session.
Thus, no observer sees the same image twice on the same day.
The images within a given session are presented in a different
random order to each observer. The two sessions are seen one
week (or more) apart to minimize inter-session learning effects.
In the method used for our second and third evaluations, an ob-
server participates in a single viewing session. Each observer
sees a given image only once. The images compressed by each
algorithm are randomly assigned to observers, under certain re-
strictions, such that both algorithms are viewed an equal number
of times in the aggregate of all observers.

In our experiments, the observers were untrained persons
over age 18 drawn from the general university population.
They signed informed consent forms, and were paid for their
participation. The only requirement was that they have normal
or corrected-to-normal vision.

The images selected for our experiments varied in com-
plexity, quality, composition and size, and placement of the
object or feature to be recognized. The image sizes varied for
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some of the experiments, as described in each experiment’s
discussion. The variation in image size and content is intended
to represent to a reasonable degree the variation to be expected
in the fast browsing applications addressed by our method-
ology. All images used in our experiments are 8-bit greyscale.
While we expect the evaluation methodology to be applicable
to color images as well, several of the compression algorithms
tested were available only in greyscale versions, and for this
reason color was excluded. Color can provide important cues
for recognition, and would be useful to include in future
recognition studies.

All of our experiments were carried out at the same worksta-
tion under indirect fluorescent lighting typical of an office envi-
ronment. Observers were allowed to position themselves com-
fortably with respect to the viewing monitor; the typical viewing
distance was about 20 in. Observers in real-life applications em-
ploy a variety of conscious and unconscious strategies for image
recognition, and it was our intent to create as natural a simula-
tion of a fast-browsing application as possible.

For each image to be viewed, the corresponding question is
first displayed on the screen. After reading it, the observer hits
a key to begin the progressive display. While watching the pro-
gressive display, as soon as the observer is reasonably confident
that she can correctly answer the question, she hits a key to halt
the progression. The image disappears from the screen, and she
enters the answer and goes on to the next image. The time and bit
rate required for each response are recorded, as well as whether
the correct answer was given. Observers are instructed not to
rush, but to answer the question as soon as they are reasonably
sure of the answer. We can expect an overall shift of the response
times to larger or smaller values depending on how this issue of
“reasonably sure” is expressed to the observer. For a medical
diagnostic task, the observer could be told that correctness is of
the utmost importance, and the observers would tend to wait far-
ther into the progression to answer. In some other application,
some incorrect decisions may matter little, and the responses
would be faster. However the question is worded, consistency
throughout the experiment should ensure a fair comparison of
algorithms within a particular bit rate regime.

The progressive transmissions are simulated by displaying
image frames at selected bit rates in sequence. For each image,
the elapsed time when a given bit rate (in bits per pixel) is dis-
played for algorithm is the same as that for algorithm.
For Experiment 1a, comparing JPEG with SPIHT, frames were
spaced 0.02 bits per pixel (bpp) apart in bit rate and displayed at
a rate of 1.33 frames/s. As we will discuss later in this paper, this
relatively slow speed helped to ensure that image recognition
time, rather than underlying human reaction time, was being
measured [24]. Since both the time and the bit rate spacing of
frames were constant, an analogy could be made with the trans-
mission of image data over a fixed-rate channel. Fifty frames
were pre-stored for each image, so that the progression could
continue out to 1 bpp, ensuring that observers would eventu-
ally be able to answer the question with confidence. However,
the vast majority of responses were found to occur near the be-
ginning of the progression. Accordingly, for Experiment 1b, in
which EZW was compared with SPIHT, the bit rates selected for
each frame were spaced evenly on a logarithmic scale. Within

the constraints of the total memory usage, this provided greater
resolution in bit rate at the very low bit rates, and coarser reso-
lution at the higher rates where fewer response occurred, while
still allowing the progression to continue to a sufficiently high
final quality if needed. The display rate for this and all later ex-
periments was 2 frames/s.

A. Statistical Analysis

The algorithms are compared both on the basis of the bit rate
at which observers answer the posed question for each algo-
rithm and on the frequency of error in the answer. We describe
here the statistical methods used in our first evaluation. The
same general approach was used in the later evaluations, with
some differences which are discussed in the corresponding sec-
tions. Denote the bit rate at which observeranswers a question
for image compressed by algorithm as and the corre-
sponding bit rate for algorithm as , and let
and be indexes for observers and images. For com-
paring algorithms and , we would like to know mean values

and , and whether any difference in these values should
be deemed statistically significant. Examination of probability
plots of the data showed that they approximate the lognormal
distribution, which suggests that and be geometric means
and that normal theory statistical methods (such as ANOVA)
be used to analyze the log-transformed values and

. Three analyses are carried out: one uses the bit rates
from algorithm , one uses the bit rates from algorithm, and
one uses their ratios, i.e., .

These analyses are carried out by fitting the data to the mixed
effects linear model [25]

In this model, is an vector containing either
, or , where is the total

number of observations. is the design matrix for fixed effects
and in this case is just an vector of ones with
being the mean of . Note that is the geometric mean
of the bit rate or ratio. is the design matrix for random effects
and can be partitioned as , where
contains a one in column for each row involving observer

and zeroes elsewhere, and where contains a
one in column for every row involving image and zeroes
elsewhere. The vector of random effects can be par-
titioned as and it is assumed that the random
effects are independently distributed as and

. Finally, is the residual vector for
which it is assumed that .

Using restricted maximum likelihood (REML), estimates are
obtained for the coefficient and for the variance components

and . An estimate of the standard error of
is obtained from the variance components and this can be used
to perform significance tests or to form the 95% confidence in-
terval for , i.e., , and for its antilog

. Model fitting is performed using theSplusfunction
varcomp [26].
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The geometric mean bit rates for responsesand give
an indication of what compressed bit rates tend to be of in-
terest for recognition responses. The geometric mean of the ratio

can summarize the comparison. If the 95%
confidence interval for includes the value one, then neither
algorithm can be said to be significantly better than the other by
this experiment.

1) Analysis of Observer Mistakes:Observer responses were
also examined for correctness. We wish to examine the possi-
bility that more errors occur with one algorithm than with an-
other. It would be possible, in theory, that one algorithm might
lead people to make rapid yet incorrect decisions. We use the
paired data in which, for a given reader and image, the correct-
ness result for algorithm is paired with that for algorithm .
For each image in the pair, the observer is either correct or not.
There are thus four types of pairs:

1) those with both members correct;
2) those with algorithm correct and not;
3) those with algorithm correct and not;
4) those with neither one correct.

In the McNemar analysis [27], we concern ourselves with two
of the four types: those pairs in which the members differ. If an-
swers are equally likely to be correct whether an image was seen
with algorithm or , then conditional on the numbers of the
other two types, these would have a binomial distribution with
parameter . For example, one observer saw 118 pairs of im-
ages. Of these, both images in the pair were recognized correctly
110 times; for three pairs both versions were recognized incor-
rectly. Of the remaining five pairs, four times the EZW image
was recognized correctly while SPIHT was not, and one time the
SPIHT image was recognized correctly while the EZW image
was not. The probability that a fair coin flipped five times will
produce a heads/tails split at least as great as 4:1 is 0.375, thus
this result is not significant.

2) Analysis of Learning Effects:In Experiments 1a and 1b,
images were seen twice, once per session. It is thus possible that
an observer could remember what was seen in the first session
and use this information to answer more quickly, or to answer
more correctly, in the second session.

The issue of answering more correctly was addressed by in-
corporating into the mixed-effects linear model a fixed effect for
which algorithm was seen first. The fitted model’s coefficient
for this session effect provides insight into the session effect’s
impact. For Experiment 1a (JPEG versus SPIHT), the effect of
which algorithm was seen first was not significant. For Exper-
iment 1b (EZW versus SPIHT) the learning effect was small
but statistically significant, indicating that observers responded
slightly faster in the second session. However, the magnitude of
the effect was the same for the two algorithms, and each algo-
rithm was seen first on half of the images, so learning effects
did not favor one algorithm over the other.

The issue of answering more quickly was addressed by a Mc-
Nemar analysis in which the correctness result for Session 1 was
paired with the correctness for the same image in Session 2. The
comparison was also done broken down by algorithm type. For
example, the McNemar analysis was performed for the image
pairs seen first by EZW and second by SPIHT, and it was also

performed for the image pairs seen first by SPIHT and second by
EZW. The reason for examining the data separately by algorithm
is that it is possible that seeing a SPIHT image first conveys an
advantage in a subsequent viewing of the image compressed by
EZW, but that the reverse is not true. The reason for examining
the data also in aggregate is that a subtle effect may be found
in a larger data set. In no case was a statistically significant dif-
ference found. Therefore, we conclude that observers were not
making more correct answers on the second session.

In Experiments 2a, 2b, and 3, the observers saw a given image
only once, so these learning effects based on image content are
not an issue.

III. EXPERIMENTS 1A AND 1B: COMPARING JPEG,
SPIHT,AND EZW

First, we compared JPEG with SPIHT (Experiment 1a); next
we compared EZW with SPIHT (Experiment 1b). Although the
JPEG standard includes a progressive mode for JPEG [1], we
did not use this, but rather created a sequence of frames at pro-
gressively higher bit rates using baseline sequential JPEG. JPEG
progressive mode uses more bits than baseline sequential does
to achieve a given level of precision on the transform coeffi-
cients, therefore using a sequence of baseline sequential JPEG
frames to simulate a progressive JPEG display will give a some-
what optimistic estimate of the actual recognition times. The
demonstrated superiority of the SPIHT algorithm is therefore a
conservative conclusion. The following experiment parameters
were used:

1) Image collections for two different questions were in-
cluded:

• “Do you see males or females in the image?” These
images contained one or more clearly visible per-
sons of various ages and races involved in a variety
of activities. All persons in the image were of the
same sex.

• “Do you see a single animal or multiple animals in
the image?” These images contained a wide range of
animals in a variety of natural settings, e.g., forest,
field, underwater.

2) Each session consisted of 118 images (59 corresponding
to each of the two questions), which required approxi-
mately 45 min per session.

3) Images were displayed on a SGI Oworkstation with a
20 monitor, in a single window against a black back-
ground.

4) All images were 256-level greyscale. Their sizes
ranged from 160 160 to 640 640 pixels, averaging
420 420.

5) Images were presented in groups of 12 in a row for a given
question, but were randomly mixed within each group
from session to session.

6) For the comparison of JPEG with SPIHT, there were five
observers, a small but adequate number, given the large
difference in recognition bit rates for these algorithms.
For the comparison of EZW with SPIHT, there were 20
observers, because we expected the difference in recog-
nition bit rates between these algorithms to be small.
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Fig. 2. (a) Scatter plot of JPEG versus SPIHT data. (b) Scatter plot of EZW
versus SPIHT data. The plots show the log of the bit rate at which recognition
occurred. Visual inspection reveals that SPIHT clearly outperforms JPEG,
whereas SPIHT and EZW are more evenly matched.

Fig. 2(a) shows the log of bit rates for the JPEG-SPIHT com-
parison. Baseline and progressive mode JPEG must transmit a
minimum number of bits (a dc value for each block) before any-
thing at all can be displayed, which results in the visible skew
of the data toward the left of the diagonal at low bit rates. In
Fig. 2(b), the data for the EZW versus SPIHT comparison are
shown. Visual examination of this plot indicates that these two
algorithms are more evenly matched.

Fig. 3. Mean bit rates for recognition, and their 95% confidence intervals.

Fig. 4. Mean bit rate ratios and their 95% confidence intervals.

When examined quantitatively, SPIHT was found to lead to
faster image recognition than either JPEG or EZW. In Fig. 3, the
mean bit rates for recognition and their confidence intervals are
shown for each of the algorithms. These values indicate for each
algorithm the approximate range at which recognition occurred
sufficient to allow the posed questions to be answered. These
bit rates can be helpful to designers of new progressive algo-
rithms for fast recognition. When such an algorithm encounters
image features judged to be important for recognition, it should
attempt to concentrate information about them below these bit
rates. The bit rate at which observers answer depends not only
on the complexity of the images and of the observation task, but
also on the parameters of the experiment. We note in Fig. 3 that
the same SPIHT-compressed images required more bits on the
average in Experiment 1a, where they were compared against
JPEG, than in the Experiment 1b, where they were compared
against EZW. Recall that in Experiment 1a, the increase in bit
rate from frame-to-frame was proportional to time, whereas in
Experiment 1b the bit rate increased logarithmically with time.
The difference in SPIHT response rates between the two exper-
iments may be explained by the fact that, in the lower bit rate
ranges, the logarithmic spacing allowed observers more time to
respond.

Fig. 4 shows the mean recognition bit rate ratios and their
confidence intervals. These values can summarize the compar-
ison. In each experiment, SPIHT was found to perform better,
in terms of observer recognition, than the algorithm with which
it was compared.

Next, the influence of observer errors is examined. The
smallest number of incorrect answers given by an observer
in a session was zero; the largest number was 16, and the
mean value was 4.84 (out of 118 images). Analyzing the
paired data with the McNemar statistic showed no difference
in correctness at the 5% significance level between algorithms
for any of the 25 observers individually, or for the observers in
each experiment pooled together. In Fig. 5, only the bit rates
for erroneous responses in the EZW-SPIHT comparison are
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Fig. 5. Bit rates of erroneous responses only, for EZW versus SPIHT. Errors
appear evenly distributed between the algorithms.

plotted. The symmetry of these errors supports our conclusion
from the McNemar analysis that errors did not significantly
influence our results.

IV. M ULTIRESOLUTION CODERS

Bandwidth limitations often lead to inconvenient delays
while accessing images on the Internet. As a result, thumbnail
images have gained wide acceptance as a means of providing
viewers with a rapidly available initial preview of a large image
[28]. The advantages of thumbnails and of progressive coding
can be combined in a spatially scalable progressive algorithm,
such that versions of the image at successively increasing
scales can be extracted from the bit stream as more bits arrive.
That is, when bits have been received, the decoder can
reconstruct an image of a small size, and when a larger number

of bits have arrived, the decoder can reconstruct an image
that is either of larger size, or of higher quality at the same
size, or perhaps of both higher quality and increased size. In
this way, no information need be sent or stored twice. Note
that, by this definition, any progressive algorithm can be made
spatially scalable simply by downsampling the output image to
the desired scale. That is, the and bits might both allow
reconstruction at a large size, but theimage could simply
be downsampled and shown at smaller scale. SPIHT and other
zerotree coders based on wavelet decompositions would not
even require a separate downsampling step, as the decoder
could simply stop the wavelet inverse transform at some level
before the final one, and the resulting low-frequency band is
essentially a coarse-scale version of the original image.

However, spatial scalability is usually taken to mean that in-
formation about detail scales is not transmitted initially. In ze-
rotree wavelet coders such as SPIHT and EZW, information on
some coefficients in higher frequency bands is sent before all

Fig. 6. Coefficient bitplanes. SPIHT describes all coefficents with magnitudes
exceeding thresholdT . MSPIHT describes only coefficients aboveT and
within scale boundaryS , deferring remaining coefficients until later.

coefficients in the lowest frequency band have been encoded.
Therefore, according to the more stringent view of spatial scal-
ability, the conventional zerotree coders are not scalable, and
even with the less stringent view, these higher frequency coeffi-
cients are not used in reconstructing the coarse-scale thumbnail,
and therefore represent wasted bits (added cost) when decoding
to the coarse-scale version of the image.

In addition to the basic advantage that spatial scalability can
lead to bandwidth savings, one might also ask whether an ad-
vantage in recognition performance can be gained by displaying
images at successive scales. That is, can objects in a small, clear
thumbnail image be recognized more readily than in the larger,
blurrier full-scale version costing the same number of bits? If so,
this would lend an embedded, spatially scalable image coder an
additional advantage over traditional full-scale coders for pro-
gressive image transmission.

By reordering the transmitted bit stream, the SPIHT algo-
rithm can be made spatially scalable [18], [29]. Compared
against SPIHT without arithmetic coding, the spatially scalable
SPIHT has no loss in performance (PSNR versus bit rate at
the final full size) and retains some progressivity. We refer to
this multiscale SPIHT algorithm as MSPIHT. We show that
viewers are able to recognize MSPIHT-compressed images
substantially earlier than images compressed by SPIHT.

A. Multiscale SPIHT (MSPIHT)

We now describe the mechanics of MSPIHT. Wavelet sub-
bands are each associated with a representation of the image
at a given scale. We define a -scale image as one where
both dimensions are the original dimensions. With a single-
level decomposition, the encoder could efficiently describe a

-scale image to the decoder by transmitting information only
about coefficients in the LL band. The remaining bands contain
information about frequencies visible in the full-scale image.
The SPIHT bit stream has coefficients ordered primarily by
magnitude, so some coefficients associated with a fine scale may
be transmitted before all coefficients from coarser scales have
been described (see Fig. 6). In MSPIHT, information about any
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Fig. 7. MSPIHT-compressed image at 0.02, 0.09, and 0.30 bpp.

such finer scale coefficients is deferred until after all coefficients
for the coarser scales have been described.

A scale schedule specifies the bit rates at which jumps to the
next larger scale occur. Since both encoder and decoder know
the schedule, no extra bits are required to manage the scale
jumps. (If the schedule were unknown to the decoder, it could
be transmitted with a negligible few bytes). For example, the
schedule might specify the initial scale as . The jump to

-scale might be scheduled to occur at 0.04 bpp, and the jump
to full scale at 0.1 bpp. An example of an MSPIHT progres-
sive display is shown in Fig. 7. Following this scale schedule,
MSPIHT begins by performing sorting and refinement passes
in the same manner as SPIHT, comparing each coefficient with
a significance threshold. However, when a coefficient is exam-

ined from a scale larger than (that is, from any of the outer
six subbands), it is declared out-of-scale and placed in a de-
ferred list. No bits are transmitted about it at this time, and
processing continues as before. When the bit rate reaches 0.04
bpp (jump to -scale), the coefficients accumulated in the de-
ferred list are reexamined; those that are now in-scale are re-
moved from the deferred list, and sorted and refined until their
significance threshold catches up with the current significance
threshold for the nondeferred coefficients. At this point, pro-
cessing resumes where it left off when the scale jump occurred.
These steps repeat for each scale jump, until the desired final bit
rate is reached.

Note that at any given point in the progression, no bits are
spent to describe coefficients from scales finer than the current
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TABLE I
SCALE SCHEDULESUSED FORTESTING MSPIHT

one. When the full scale is reached and the coefficients on the
deferred list are processed, the distortion and bit rate at that point
are precisely the same as for regular SPIHT without arithmetic
coding.

B. Experiments 2a and 2b: Comparison of
MSPIHT and SPIHT

We first wished to compare SPIHT with MSPIHT, and to de-
termine a scale schedule for MSPIHT which performed well.
For Experiment 2a, three MSPIHT scale schedules (A, B, C)
were prepared (see Table I). A series of 120 images were dis-
played progressively to each of 20 observers. Two recognition
tasks were included in the experiment. In the first, the observer
was asked, “Do you see animals or vehicles in the image?”
These images contained a wide range of animals and vehicles in
various settings, e.g., forests, underwater, and urban surround-
ings. The task was intended to represent natural image recog-
nition tasks, particularly those answerable in the lower bit rate
ranges. The image widths ranged from 320 to 699 pixels, aver-
aging 510, and the heights ranged from 250 to 576, averaging
391. In the second task, each image contained a single lower
case letter in a common font, partially concealed in a variety of
noisy and smooth artificial backgrounds. These images were all
512 512 pixels. The letters themselves were in three sizes. The
observer was asked to identify the letter. This simplified stim-
ulus set was intended to limit the recognition cues available to
the observer, and allow comparison of recognition bit rates for
stimuli of different sizes.

Response bit rates averaged over all observers are presented
in Table II. Averages were computed for each algorithm over
the sets o: 1) all images; 2) animal/vehicle images; and 3) letter
images. In all cases, SPIHT averaged the slowest recognition
(highest bit rates). For the animal/vehicle set, MSPIHT-C
yielded an average recognition bit rate 27.9% lower than
SPIHT. For the letter set, MSPIHT-C yielded an average
recognition bit rate 25.3% lower than SPIHT. For both sets
together, MSPIHT-C performed 26.3% better than SPIHT.

This experiment indicates that MSPIHT can allow earlier
recognition than SPIHT for several types of images. We
now focus on the potential causes for this improvement. Did
observers recognize objects earlier using MSPIHT because it
defers visually unusable fine-scale information until later, al-
lowing more precise coarse-scale information to be transmitted
first? Or is it instead because, with a small image that can be
mostly or entirely viewed in the foveal field [30], the observer’s
eyes do not have to jump around as much in order to scan

TABLE II
ARITHMETIC MEAN OF RECOGNITION BIT RATES FOREACH ALGORITHM, IN

bpp. BEST PERFORMANCE FOREACH IMAGE TYPE IS SHADED

Fig. 8. Difference of mean log bit rate for each pair of algorithms.

the image? If a combination of both effects was responsible,
which effect predominated? Experiment 2b was performed to
investigate these questions. The image sequences processed
by SPIHT were downsampled by block averaging to match
the image sizes produced by the MSPIHT-C scale schedule.
Since the transmitted bit stream for these downsampled SPIHT
images was not reordered to defer high frequency information,
any advantage the images might yield in recognition bit rate
was likely to be due primarily to psychophysical effects related
to the size of the objects displayed.

To compare SPIHT, MSPIHT-C, and downsampled SPIHT,
the same 120 images were displayed progressively to 21 new ob-
servers. As shown in Fig. 8, both MSPIHT-C and downsampled
SPIHT outperformed SPIHT with 5% statistical significance in
terms of mean response bit rates. The difference in mean bit
rates of MSPIHT-C and downsampled SPIHT, however, was not
significant.

In analyzing observer mistakes, two questions were of in-
terest: whether incorrect responses could have influenced the
overall performance conclusion, and whether any algorithms led
observers to make more incorrect responses than the others. To
answer the first question, the difference of means test was re-
peated after removing from consideration all images for which
any observer had provided an incorrect response (52 of the 120).
This shifted the difference-of-means statistics slightly for each
algorithm pair, but did not alter the overall conclusions as to rel-
ative performance of the algorithms. The error rate for SPIHT
was 4.5%; it was 6.8% for MSPIHT-C, and 8.5% for downsam-
pled SPIHT. A two-tailed Wilcoxon signed rank test on paired
error counts revealed that both MSPIHT-C and downsampled
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Fig. 9. Example images of PZW (left) and SPIHT (right) atPSNR = 23:97.

SPIHT yielded significantly more errors than SPIHT, but the dif-
ference in error counts between MSPIHT-C and downsampled
SPIHT was not significant. Finally, by including a fixed effect
for response correctness in the difference-of-means analysis de-
scribed above, it was seen that both MSPIHT-C and downsam-
pled SPIHT remained significantly faster than SPIHT in terms
of recognition performance, even when their greater error rates
were taken into account.

V. BLURRINESSVERSUSSPLOTCHINESS: PSNRAND

RECOGNITION TIMES

Thus far, we have considered the problem of recognition of
progressively transmitted images, where we have assumed an
ideal channel. A related problem is that of recognition of images
which have been distorted by channel errors. For this problem,
rather than the recognition bit rate, we are interested in the min-
imum quality at which images subject to channel-error distor-
tion can be recognized [31]. Image coders, such as EZW and
SPIHT, are vulnerable to channel errors, since a single bit in
error can potentially cause the decoder and encoder to lose syn-
chronization for the remainder of the bit stream. This sensitivity
to errors has been addressed in a number of different ways,
which produce distortions with very different visual appear-
ances. In [32], forward error correction (FEC) is added to the
SPIHT bit stream. When an uncorrectable error occurs in this
stream, the stream is truncated and a globally blurry image re-
sults. In the PZW coder [19], [20], the bit stream consists of in-
dependently decodable packets representing spatial patches of
the image. This algorithm produces local distortion (splotches)
when errors occur. Fig. 9 shows an example of a test image com-
pressed by PZW (and subjected to packet loss) and compressed
by SPIHT. The two images have the same PSNR of 23.97.

1) Experiment 3: PZW and FEC-Protected SPIHT:For Ex-
periment 3, we evaluate PZW and FEC-protected SPIHT by
showing an observer a sequence of degraded versions of an

image at successively increasing PSNRs, rather than at succes-
sively increasing bit rates.

A database of 68 greyscale images was collected. Half of the
images showed men, and half showed women. All images were
of size 512 512 pixels. Each of the 68 test images were com-
pressed using the PZW algorithm to a target bit rate of 0.23
b per pixel. The actual bit rate might depart slightly from the
target bit rate because of the way PZW fits information into
fixed length packets. The target rate of 0.23 bpp led to a high
quality decoded image (typically about 40 dB) and required
about 180 packets. The channel-degraded versions of these im-
ages were produced by dropping some packets and decoding the
remainder. Some packets cause more damage than others to the
PSNR when dropped. By trying many different random com-
binations of dropped packets, we created a sequence of (typi-
cally) 20 degraded versions of each test image. The sequence of
degraded versions had PSNRs ranging between 10 dB and 40
dB, with increments of at least 1 dB between successive images
in the sequence. Each image was also compressed by SPIHT at
bit rates logarithmically increasing from 0.001 bpp to 0.5 bpp.
Twenty versions of the image were saved for each image, and
PSNRs for these images also corresponded to a range from 10
dB to 40 dB.

There were 15 observers, each of whom saw each of the 68
images in exactly one sequence, either with the PZW compres-
sion or with the SPIHT compression. The selection of PZW or
SPIHT was randomized, as was the order in which the images
were displayed. Fig. 10(a) shows the number of recognitions
(observer responses) that occurred at each PSNR, versus the
PSNR, for both SPIHT and PZW. The data look approximately
normal. Fig. 10(b) shows the cumulative distribution for these
responses as a function of PSNR.

For a given image, the 20 frames compressed by SPIHT were
not matched in PSNR, frame-by-frame, to the frames generated
by PZW. The SPIHT sequences tended to run at slightly higher
PSNRs, as shown in Fig. 11(a) for one particular image in the
test set. For all test images, the SPIHT sequence started out
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Fig. 10. (a) Percentage of observer responses as a function of PSNR for SPIHT
and PZW. (b) Cumulative distribution plot of observer responses as a function
of PSNR for SPIHT and PZW.

initially at a higher PSNR. Because of this, one could wonder
whether the results displayed in Fig. 10 might merely be re-
flecting a situation in which observers take a certain more or
less fixed amount of time to recognize a given image, or to re-
spond to its display by clicking a mouse button, and that the
PZW sequences allow recognition at a lower PSNR simply be-
cause those sequences have lower PSNRs initially. That this is
not the case is shown by Fig. 11(b), in which the cumulative
distribution plot of observer responses is shown as a function
of time. It shows that people respondedsoonerin time for the
PZW sequences, despite the fact that they were observinglower
PSNR values during that time.

2) Statistical Analysis:As before, we used a mixed effects
linear model (in which the compression algorithm is treated as
a fixed effect, and observers and images are treated as random
effects) to compare the mean recognition time and PSNR for the
two algorithms. The mean PSNR for PZW responses was 25.43
dB, whereas it was 28.97 dB for SPIHT. The 95% confidence
interval for the difference of means extended from3.83 to

3.24. Since the confidence interval does not include zero, we
can conclude that the PSNR required for observers to answer

Fig. 11. (a) PSNR versus time for SPIHT and PZW for one particular image.
(b) Cumulative distribution plot of observer responses as a function of time for
SPIHT and PZW.

the question for the PZW images is significantly less than that
required for SPIHT images at the 95% confidence level. When
applied to time, the values were taken to be frame num-
bers, where frames were shown 500 ms apart. The mean time
(frame number) for PZW was 10.72, and was 11.59 for SPIHT.
The 95% confidence interval for the difference of mean time ex-
tended from 1.17 to 0.58, and again does not include zero.
Therefore, we can conclude that observers answered the ques-
tions at significantly faster time with PZW, despite the fact that
they were answering them at significantly lower PSNR.

The overall error rates for each algorithm were 5.3% for PZW
and 5.1% for SPIHT. The Wilcoxon two-sided signed-rank test
had a -value of 0.749 for the comparison of the observer er-
rors, showing that the error rates for the two different algorithms
were not significantly different. Observers were also asked for
subjective ratings; these results showed similar but not identical
trends to the recognition time results [31]. In other work on com-
pressed medical images, large discrepancies between subjective
ratings and objective recognition performance have been found
[12], [13].
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VI. CONCLUSION

With the proliferation of images on the WWW, and the
growing need for fast browsing of remote image databases,
increased interest has focussed on progressive compression.
Many algorithms explicitly target fast browsing applications
[33], [34], [35]; however, performance is still measured using
PSNR or subjective ratings, not by simulating fast browsing.
In this paper, we have laid out an experimental and statistical
framework for such simulations, and we have described the
results of a series of such experiments. There are a number of
conclusions that we make from this work.

For coders operating with very different principles, such as
PZW and SPIHT, there can be a substantial difference in the
performance measured by PSNR, subjective ratings and recog-
nition times. Progressive compression algorithms which are in-
tended to be used in a progressive display for fast browsing tasks
should be evaluated by simulating a fast browsing task, not by
PSNR or subjective ratings.

In a simulation of a fast browsing task, the SPIHT algorithm
outperforms JPEG by a substantial margin and EZW by a small
margin.

For fast browsing tasks, significantly faster recognition times
were achieved by displaying images at a small scale initially, re-
gardless of whether that small scale came from downsampling
or by deferring the large-scale information for later in the pro-
gressive bit stream.

The average bit rate required for a user to recognize an image
and make a decision on it can be quite low, e.g., on the order of
0.05–0.07 bpp for many of the algorithms and image tasks we
used. This should be considered when designing algorithms for
fast browsing. For example, in [36], detected edges are trans-
mitted first in the image header, and then a progressive wavelet
coder is used. Decoding combines the edge information and the
progressive data in a subjectively pleasing way. At 0.4 bpp and
0.1 bpp, the decoded example image is subjectively superior
to the image produced by the progressive wavelet coder alone.
However, for the example image provided, the image header
(edge map) by itself takes up 0.052 bpp, and the decoder can
display nothing during this time. It is possible that, for a fast
browsing task, the subjective superiority of this coder at 0.1–0.4
bpp might be outweighed by its initial handicap in the 0.0–0.05
bpp range where 50% of recognitions may take place.

We examined two particular algorithms that produce global
blurriness and localized distortions, and found that, at the same
PSNR and for the particular recognition tasks we used, localized
distortions allowed faster recognition.

PSNR has found widespread use as an evaluation tool largely
because it is easily and cheaply computed. The evaluation
methodology described here requires a greater investment in
time and expense. It is also most useful when tailored to the
specific application for which the compression algorithms are
to be evaluated. It is this tailoring, however, which may justify
its use for evaluation of algorithms for fast browsing: as our
experiments have shown, results obtained from PSNR may be
misleading for these applications.

In this paper, we have concerned ourselves with evaluation
of compression algorithms directed at fast browsing applica-

tions. The emphasis in these applications is on simple recogni-
tion tasks, where a decision on whether to continue viewing the
image can be made based on a few features available early in the
progressive display. In applications where decisions are made
based on finer details in the images, other compression algo-
rithms than those described here may be more appropriate. For
example, the reduced-scale images employed by MSPIHT allow
faster recognition when the image content is suited for display
at smaller scales, but this strategy may be unsuitable for written
documents. In fact, at the bit rates studied here, textual infor-
mation is poorly displayed by all of the algorithms discussed in
this paper. It is in the nature of progressive transmission that pri-
orities must be set about what information to transmit first, and
these priorities will differ depending on the target application.
While the algorithms to be evaluated may differ, we expect the
experimental methodology presented here to be useful in higher
bit rate regimes as well, where recognition of finer details or
comprehension of textual content becomes important.
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