Solution to Homework 3 (by Nafi Rashid)

1. Obtaining the histogram is fairly straight forward, | used these commands in Matlab:

P1 = imread("retinal.tif");
bw = rgb2gray(P1);

bw(bw<50) = 0;

[count 1] = imhist(bw);

count(l) = 0; %% just to ignore the black
stem(count);

G000

5000+

3000

2000+

1000+

pixels surrounding the retina

100 150

Figure 1: Histogram of P1

9000

8000

7000 -

6000 -

5000

4000 -

3000

2000

1000

0k

i
H HHH iiszlifilseeee el
200 5

000

T000 -

G000 -

5000 -

300 0 50

Figure 2 Histogram of P2

0 : ) 300

Figure 3: Histogram of P3

300

We can also observe that Obj2 has higher pixel values in the grayscale image. So, it is safe to assume that the peak near
240 in histogram of P1 and P2 corresponds to Obj2. In contrast, the histogram of P3 doesn’t have a distinct peak at higher
pixel values. By looking at the histogram, it can be said that same threshold will not work for every image. Moreover, for
P3 it would be harder to segment Obj2. This fact is verified in figure 4 wherein the segmented Obj2 of these 3 images is
shown. It is apparent that only pixel-value based segmentation didn’t work well for P3. This is because, in P3, the
background has pixels that have values closer to Obj2.



This is the command | used for thresholding:

%% thresholding
mask2 = im2bw(P1, threshold /255);
imshow(P1.*uint8(mask2));

(@) (b)

Image threshold
P1 180
P2 180
P3 160

(©
Figure 4: (a) P1 (b) P2 (c) P3 after thresholding



2. To obtain the sobel edge map | used the following command:

sobelE = edge(bw, "sobel”, edgeThreshold);
figure, imshow(sobelE);

(€)

Figure 4: Binary edge map of (a) P1 (b) P2 (c) P3

The same threshold doesn’t work for getting these three edge maps. This is dependent on the texture of the image. As
for P3, the pixels are closely distributed, so we need to use a smaller threshold.



3. Separating these two objects in the Edge map can be done in a few ways

the grayscale image.

E2 = sobelE;
[dimy dimx] = size(sobelE);
[row col] = Ffind(sobelE ==1);
for y = 1:length(row)
X=yY;
if(bw(row(y),col(x))<153)
E2(row(y),col(x)) = O;
end
end
E1l = xor(sobelE,E2);
subplot(121), imshow(E2)
subplot(122), imshow(El);

Figure 5: E1 and E2 of P1

. | used the edge map to check the boundary pixel in




Figure 6: E1 and E2 of P2

Figure 7: E1 and E2 of P3



Obtaining segmentation mask from E2 can be done in many ways. | used the following operations:

Bwl = bwareaopen(E2,10);
se = strel("disk",10);
bw2 =imclose(bwl,se);

bw3 = imFfill(bwRemove2,"holles™);

figure, imshow(bw.*uint8(bw3));

(a) (b)

(c)

Figure 7: Segmenting Obj2 using the edge map E2 of (a) P1 (b) P2 (c) P3

Comparing figure 7 with figure 4, we can see that for P3, edge-based segmentation gave better result although the
segmentation is far from perfect. Note that in contrast to pixel-value based segmentation edge extraction tend to produce

the boundary of the object.



4. For the last part of this homework, | used matlab function hough() to find the lines in E1. The strongest 5 lines
correspond to highest 5 peaks in the accumulator array return by the hough() function. Here is the code I used:

[H,T,R] = hough(El);
P = houghpeaks(H,5);
imagesc(H, "XData",T, "YData",R );

-800

200

400

600

800

-80 -60 -40 -20 0 20 40 60 80
theta
Figure 8: Accumulator array returned by the hough transform

In figure 8, we can see how the accumulator array of hough transform looks like. The red pixels indicate peaks. To obtain
the 5 strongest peaks, | used the function houghpeaks(). And finally, I used houghlines() to translate the lines back to the
original image:

P = houghpeaks(H,5);
lines = houghlines(E1,T,R,P,"FillGap”,40, "MinLength",10);
figure, imshow(bw), hold on

for k 1:length(lines)
Xy [1ines(k).pointl; lines(k).point2];
plot(xy(:,1),xy(:,2), "LineWidth",2,"Color","green®);
end



Figure 9: 5 strongest lines drawn on the image

Figure 10: 5 strongest lines drawn on the image

In figure 9, we can see that the lines indicated by Hough represent the blood vessels fairly accurately. But if we add 15%
salt and pepper noise, the Hough transform completely fails. This is because there are many random outliers in the edge
map due to noise. These outliers do not let the accumulator to have distinct peaks and thus lines cannot be detected

accurately.



