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Abstract—Determining the achievable rate region for
networks using routing, linear coding, or non-linear coding
is thought to be a difficult task in general, and few are
known. We describe the achievable rate regions for three
interesting networks and show that achievable rate regions
for linear codes need not be convex.

I. I NTRODUCTION

In this paper, anetwork is a directed acyclic multi-
graphG = (V, E), some of whose nodes are information
sources or receivers. Associated with the sources are
m generatedmessages, where theith source message
is assumed to be a vector ofki arbitrary elements of
a fixed finite alphabet,A, of size at least2. At any
node in the network, each out-edge carries a vector of
n alphabet symbols which is a function (called anedge
function) of the vectors of symbols carried on the in-
edges to the node, and of the node’s message vectors
if it is a source. Each network edge is allowed to be
used at most once (i.e. at mostn symbols can travel
across each edge). It is assumed that every network edge
is reachable by some source message. Associated with
each receiver aredemands, which are subsets of the
network messages. Each receiver hasdecoding functions
which map the receiver’s inputs to vectors of symbols
in an attempt to produce the messages demanded at
the receiver. The goal is for each receiver to deduce
its demanded messages from its in-edges and source
messages by having information propagate from the
sources through the network.

A (k1, . . . , km, n) fractional codeis a collection of
edge functions, one for each edge in the network, and
decoding functions, one for each demand of each node
in the network. A (k1, . . . , km, n) fractional solution
is a (k1, . . . , km, n) fractional code which results in
every receiver being able to compute its demands via
its decoding functions, for all possible assignments of
length-ki vectors over the alphabet to theith source
message, for alli.

Special codes of interest includelinear codes, where
the edge functions and decoding functions are linear over
a finite field, androuting codes, where the edge functions

and decoding functions simply copy specified input
components to output components.1 Special networks of
interest includemulticastnetworks, where there is only
one source node and every receiver demands all of the
source messages, andmultiple-unicastnetworks, where
each network message is generated by exactly one source
node and is demanded by exactly one receiver node.

For eachi, the ratioki/n can be thought of as the
rate at which sourcei injects data into the network. If
a network has a(k1, . . . , km, n) fractional solution over
some alphabet, then we say that(k1/n, . . . , km/n) is an
achievable rate vector, and we define theachievable rate
region2 of the network as the set

S={r ∈ Qm : r is an achievable rate vector}.

In this paper, we will sometimes restrict attention to
achievable rate regions corresponding to using only
linear codes (perhaps over certain finite field alphabets)
or only routing codes.

Determining the achievable rate region of an arbi-
trary network appears to be a formidable task. Alter-
natively, certain scalar quantities that reveal information
about the achievable rates are typically studied. For any
(k1, . . . , km, n) fractional solution, we call the scalar
quantity

1

m

(

k1

n
+ · · · +

km

n

)

an achievable average rateof the network. We define
the average coding capacityof a network to be the
supremum of all achievable average rates, namely

Caverage = sup

{

1

m

m
∑

i=1

ri : (r1, . . . , rm) ∈ S

}

.

Similarly, for any(k1, . . . , km, n) fractional solution, we

1If an edge function for an out-edge of a node depends only on
the symbols of a single in-edge of that node, then, without loss of
generality, we assume that the out-edge simply carries the same vector
of symbols (i.e. routes the vector) as the in-edge it dependson.

2Some authors in the literature refer to this region by other termi-
nology, such as the “capacity region”.
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call the scalar quantity

min

(

k1

n
, . . . ,

km

n

)

an achievable uniform rateof the network. We define
the uniform coding capacityof a network to be the
supremum of all achievable uniform rates, namely

Cuniform = sup {min(r1, . . . , rm) : (r1, . . . , rm) ∈ S} .

Note that for anyr ∈ S andr′ ∈ Rm, if each component
of r′ is nonnegative, rational, and less than or equal
to the corresponding component ofr, then r′ ∈ S. In
particular, if (r1, . . . , rm) ∈ S andri = min

1≤j≤m
rj , then

(ri, ri, . . . , ri) ∈ S, which implies

Cuniform = sup {ri : (r1, . . . , rm) ∈ S, r1 = · · · = rm} .

In other words, all messages can be restricted to having
the same dimensionk1 = · · · = km when considering
Cuniform. Also, note that

Cuniform ≤ Caverage.

The quantitiesCaverage and Cuniform are attained by
points on the boundary of the closed setS. It is known
that not every network has a capacity which is an
achievable rate [3].

If a network’s edge functions are restricted to purely
routing functions, then we write the capacities asCaverage

routing

and Cuniform
routing , and refer to them as theaverage rout-

ing capacityanduniform routing capacity, respectively.
Likewise, for solutions using only linear edge functions,
we write Caverage

linear and Cuniform
linear and refer to them as

theaverage linear capacityanduniform linear capacity,
respectively.

Given random variablesx1, . . . xi andy1, . . . , yj , we
write x1, . . . xi −→ y1, . . . , yj to mean thaty1, . . . , yj

are deterministic functions ofx1, . . . xi.

In this paper, we study three specific networks, namely
the Generalized Butterfly network, the Fano network,
and the non-Fano network. Various capacities of these
networks have been computed in [4], however, the full
achievable rate regions of these networks have not been
previously determined, to the best of our knowledge.

In this paper, we give the exact achievable rate regions
(for routing, linear coding, and non-linear coding) for
each of the Generalized Butterfly, Fano, and non-Fano
networks. The linear coding achievable rate regions
for the Fano and non-Fano networks depend on the
characteristic of the finite field alphabet used. Proofs
are given for the Generalized Butterfly network, but are
omitted due to space for the Fano and non-Fano networks
(these proofs will appear in a future publication). Finally,

a network is given that demonstrates that the achievable
rate region for linear coding need not be convex. This
latter result was motivated by a discussion in [6].

The Generalized Butterfly network (studied in Sec-
tion II and illustrated in Figure 1) has the same topology
as the usual Butterfly network, but instead of one source
at each of nodesn1 and n2, there are two sources at
each of these nodes. For each of the source nodes, one
of it’s source messages is demanded by receivern5 and
the other by receivern6. The usual Butterfly network is
the special case when messagesa andd do not exist (or
are just not demanded by any receiver). A large majority
of network coding publications mention in some context
the Butterfly network, so it plays an important role in
the field.

The Fano network (studied in Section III and illus-
trated in Figure 2) and the non-Fano network (studied in
Section IV and illustrated in Figure 6) were used in [3]
as components of a larger network to demonstrate the
unachievability of network coding capacity. Specifically,
in [3] the Fano network was shown to be solvable if
and only if the alphabet size is a power of2 and the
non-Fano network was shown to be solvable if and only
if the alphabet size is odd. In [5], the Fano and non-
Fano networks were used to build a solvable multicast
network whose reverse (i.e. all edge directions change,
and sources and receivers exchange roles) was not solv-
able. In [2], the Fano and non-Fano networks were used
to construct a network which disproved a previously
published conjecture asserting that all solvable networks
are vector linearly solvable over some finite field and
some vector dimension.

II. GENERALIZED BUTTERFLY NETWORK

Theorem II.1. The achievable rate regions for either
linear (over any finite field alphabet) or non-linear cod-
ing are the same for the Generalized Butterfly network
and are equal to the closed polytope inR4 whose faces
lie on the9 planes:

ra = 0

rb = 0

rc = 0

rd = 0

rb = 1

rc = 1

ra + rb + rc = 2

rb + rc + rd = 2

ra + rb + rc + rd = 3

Page 1 of 7
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Fig. 1. The Generalized Butterfly network. Source noden1 generates
messagesa and b, and source noden2 generates messagesc and d.
Receiver noden5 demands messagesa and c, and receiver noden6

demands messagesb andd. The symbol vectors carried on edgese1,5,
e2,4, ande3,6 are denotedx, y, andz, respectively.

and whose vertices are the12 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2) (0, 0, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (0, 1, 1, 0).

Furthermore, the coding capacities and linear coding
capacities are given by:

Cuniform = Cuniform
linear = 2/3

Caverage = Caverage
linear = 3/4.

Proof: Consider a network solution over an alphabet
A and denote the source message dimensions byka,
kb, kc, and kd, and the edge dimensions byn. Let
each source be a random variable whose components
are independent and uniformly distributed overA. Then

the solution must satisfy the following inequalities:

ka ≥ 0 (1)

kb ≥ 0 (2)

kc ≥ 0 (3)

kd ≥ 0 (4)

kb = H(b) = H(y|a, c, d) ≤ n (5)

kc = H(c) = H(y|a, b, d) ≤ n (6)

ka + kb + kc = H(a, b, c) = H(x, y|d)

≤ H(x, y) ≤ 2n (7)

kb + kc + kd = H(b, c, d) = H(y, z|a)

≤ H(y, z) ≤ 2n (8)

ka + kb + kc + kd = H(a, b, c, d) = H(x, y, z)

≤ 3n. (9)

(1)–(4) are trivial; (5) follows becausec, d, y −→
y, z −→ b, d (at noden6), and thereforea, c, d, y −→
a, b, c, d and thusH(a, b, c, d) = H(a, c, d, y); simi-
larly for (6); (7) follows becausex, y −→ a, c (at
node n5), c, d, y −→ b, d (at node n6), and there-
fore d, x, y −→ a, c, d, y −→ a, b, c, d and thus
H(a, b, c, d) = H(d, x, y); similarly for (8); (9) follows
becausex, y, z −→ a, b, c, d (at nodesn5 and n6).
Dividing each inequality in (1)–(9) byn gives the9
bounding hyperplanes stated in the theorem.

Let ra = ka/n, rb = kb/n, rc = kc/n, and rd =
kd/n, and letP denote the polytope inR4 consisting
of all 4-tuples(ra, rb, rc, rd) satisfying (1)–(9). ThenP
is bounded by (1)–(4) and (9). One can easily calculate
that each point inR4 that satisfies some set of four of
the inequalities (1)–(9) with equality must be one of the
12 points stated in the theorem. Now we show that all
12 such points do indeed lie inP , and therefore their
convex hull equalsP . The following5 points lie inP by
taking n = ka = kb = kc = kd = 1 with the following
codes over, say, the binary field:

(2, 0, 0, 1): x = y = a, z = d

(1, 0, 0, 2): x = a, y = z = d

(1, 0, 1, 1): x = a, y = c, z = d

(1, 1, 0, 1): x = a, y = b, z = d

(0, 1, 1, 0): x = b, y = b + c, z = c

and the remaining7 points are achieved by fixing certain
messages to be0.

Since the above codes are all linear, the achievable rate
regions for linear and non-linear codes are the same.

By (9), we haveCaverage ≤ 3/4, and this upper bound
is achievable by routing using the code given above for
the point (2, 0, 0, 1), namely takingx = y = a and

Page 2 of 7
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z = d. By (8), we haveCuniform ≤ 2/3; since

(2/3)(1, 1, 1, 1) = (1/3)(1, 0, 1, 1)

+ (1/3)(1, 1, 0, 1)

+ (1/3)(0, 1, 1, 0)

the upper bound of2/3 is achievable by a convex
combination of the linear codes given above for the
points(1, 0, 1, 1), (1, 1, 0, 1), and(0, 1, 1, 0), as follows.
Take k = 2 and n = 3 and use the (linear) code
determined by:

x = (a1, a2, b2)

y = (c1, b1, b2 + c2)

z = (d1, d2, c2).

Theorem II.2. The achievable rate region for routing for
the Generalized Butterfly network is the closed polytope
in R4 bounded by the9 planes in Theorem II.1 together
with the plane

rb + rc = 1

and whose vertices are the13 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)

(0, 1, 0, 1) (0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2)

(0, 0, 1, 1) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0, 1, 1)

(1, 1, 0, 1).

Furthermore, the routing capacities are given by:

Cuniform
routing = 1/2

Caverage
routing = 3/4.

Proof: With routing, in addition to the inequalities
(1)–(9), a solution must also satisfy

kb + kc ≤ n (10)

since all of the components of messagesb and c must
be carried by the edge labeledy. One can show that
each point inR4 that satisfies with equality some set
of four of the inequalities (1)–(9) and (10) must be one
of the 13 points stated in this theorem (i.e. one of the
points(1, 0, 1, 0) and(0, 1, 0, 1), together with11 of the
12 points stated in Theorem II.1 by excluding the point
(0, 1, 1, 0)). The proof of Theorem II.1 showed that all
vertices ofP except(0, 1, 1, 0) were achievable using
routing. The two new points(1, 0, 1, 0) and (0, 1, 0, 1)
are achievable using routing by forcing a message to be
0 in the codes for(1, 0, 1, 1) and(1, 1, 0, 1), respectively,

which were shown to have routing solutions in the proof
of Theorem II.1.

By (10), we haveCuniform
routing ≤ 1/2, and this upper

bound is achievable, for example, by taking a con-
vex combination of codes that achieve(1, 0, 1, 0) and
(0, 1, 0, 1), as follows. Takek = 1 and n = 2 and use
the routing code determined by:

x = (a, a)

y = (b, d)

z = (d, d).

The capacityCaverage
routing = 3/4 follows immediately from

the proof of Theorem II.1.

III. FANO NETWORK

b ac

a b c

5

7

1

9

12 13 14

2

8

10 11

4

3

6

zx

w y

Fig. 2. The Fano network. Source nodesn1, n2, and n3 generate
messagesa, b, and c, respectively. Receiver nodesn12, n13, and
n14 demand messagesc, b, and a, respectively. The symbol vectors
carried on edgese4,6, e8,10, e5,7, e9,11 are labeled asw, x, y, and
z, respectively.

Theorem III.1. The achievable rate regions for either
linear coding over any finite field alphabet of even
characteristic or non-linear coding are the same for the
Fano network and are equal to the closed polyhedron in

Page 3 of 7
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R3 whose faces lie on the7 planes (see Figure 3):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

rb + rc = 2

ra + rb = 2

and whose vertices are the8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

It was shown in [2] that for the Fano network,
Caverage = Cuniform = 1 and Cuniform

linear = 1 for all
even characteristic fields andCuniform

linear = 4/5 for all odd
characteristic fields. The calculation ofCuniform

linear = 4/5
in [2] required a rather involved computation.

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

(1,1,1)

Fig. 3. The achievable coding rate region for the Fano network is a
7-sided polyhedron with 8 vertices.

Theorem III.2. The achievable rate region for linear
coding over any finite field alphabet of odd characteristic
for the Fano network is equal to the closed polyhedron
in R3 whose faces lie on the8 planes (see Figure 4):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

ra + 2rb + 2rc = 4

2ra + rb + 2rc = 4

2ra + 2rb + rc = 4

and whose vertices are the10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(2/3, 2/3, 1) (1, 2/3, 2/3) (4/5, 4/5, 4/5).

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

(2/3,2/3,1)

(4/5,4/5,4/5)

(1,2/3,2/3)

Fig. 4. The achievable linear coding rate region over odd characteristic
finite fields for the Fano network is a8-sided polyhedron with 8
vertices.

Page 4 of 7
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Theorem III.3. The achievable rate region for routing
for the Fano network is the closed polyhedron inR3

whose faces lie on the6 planes (see Figure 5):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

ra + rb + rc = 2

and whose vertices are the7 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0).

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)

(0,0,0)

(0,2,0)
B

A

C

Fig. 5. The achievable routing rate region for the Fano network is a
6-sided polyhedron with 7 vertices.

IV. N ON-FANO NETWORK

Theorem IV.1. The achievable rate region for either
linear coding over any finite field alphabet of odd
characteristic or non-linear coding are the same for the

c cab

ba c

4

6 7

9 10 11

12 13 14 15

21 3

5

8

w x y

z

Fig. 6. The non-Fano network. Source nodesn1, n2, andn3 generate
messagesa, b, andc, respectively. Receiver nodesn12, n13, n14, and
n15 demand messagesc, b, a, andc, respectively. The symbol vectors
carried on edgese6,9, e7,10, e8,11, e4,5 are labeled asw, x, y, and
z, respectively.

non-Fano network and are equal to the closed cube in
R3 whose faces lie on the6 planes (see Figure 7):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1

and whose vertices are the8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

Theorem IV.2. The achievable rate region for linear
coding over any finite field alphabet of even character-

Page 5 of 7
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istic for the non-Fano network is are equal to the closed
polyhedron inR3 whose faces lie on the7 planes (see
Figure 8):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1

ra + rb + rc = 5/2

and whose vertices are the10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(1, 1, 1/2) (1, 1/2, 1) (1/2, 1, 1).

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)
A

C

(0,0,0)

(0,1,0)

B

(1,1,1)

Fig. 7. The achievable coding rate region for the Fano network is a
cube inR

3.

Theorem IV.3. The achievable rate region for routing
for the non-Fano network is the closed tetrahedron in

(0,0,1) (1,0,1)

(1,0,0)

(1,1,0)

(0,1,1)
A

C

(0,0,0)

(0,1,0)

B

(1,1/2,1)

(1,1,1/2)

(1/2,1,1)

Fig. 8. The achievable linear coding rate region over even charac-
teristic finite fields for the non-Fano network is a7-sided polyhedron
with 10 vertices.

R3 whose faces lie on the4 planes (see Figure 9):

ra = 0

rb = 0

rc = 0

ra + rb + rc = 1

and whose vertices are the4 points:

(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0).

V. NON-CONVEX ACHIEVABLE RATE REGION FOR

LINEAR CODES

Theorem V.1. There exists a network whose achievable
rate region for linear codes is non-convex.

(Sketch): Consider the network formed by
taking the disjoint union of the Fano and non-
Fano networks (with separate messages, so the
union is a six-message network). It can be shown
that this network’s achievable rate region for lin-
ear codes contains the points(4/5, 4/5, 4/5, 1, 1, 1)
and (1, 1, 1, 5/6, 5/6, 5/6) but not their midpoint
(9/10, 9/10, 9/10, 11/12, 11/12, 11/12), and thus is
non-convex.

Page 6 of 7
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(0,0,1)

(1,0,0) A

C

(0,0,0)

B

(0,1,0)

Fig. 9. The achievable routing rate region for the Fano network is a
tetrahedron inR3.
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