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 Medical Image Compression
 and Vector Quantization
 Sharon M. Perlmutter, Pamela C. Cosman, Chien-Wen Tseng,
 Richard A. Olshen, Robert M. Gray, King C. P. Li and Colleen J. Bergin

 Abstract. In this paper, we describe a particular set of algorithms for

 clustering and show how they lead to codes which can be used to com-
 press images. The approach is called tree-structured vector quantization
 (TSVQ) and amounts to a binary tree-structured two-means clustering,
 very much in the spirit of CART. This coding is thereafter put into the
 larger framework of information theory. Finally, we report the method-
 ology for how image compression was applied in a clinical setting, where
 the medical issue was the measurement of major blood vessels in the
 chest and the technology was magnetic resonance (MR) imaging. Mea-
 suring the sizes of blood vessels, of other organs and of tumors is fun-
 damental to evaluating aneurysms, especially prior to surgery. We argue
 for digital approaches to imaging in general, two benefits being improved
 archiving and transmission, and another improved clinical usefulness
 through the application of digital image processing. These goals seem
 particularly appropriate for technologies like MR that are inherently
 digital. However, even in this modern age, archiving the images of a
 busy radiological service is not possible without substantially compress-
 ing them. This means that the codes by which images are stored digi-
 tally, whether they arise from TSVQ or not, need to be "lossy," that is,
 not invertible. Since lossy coding necessarily entails the loss of digital in-
 formation, it behooves those who recommend it to demonstrate that the
 quality of medicine practiced is not diminished thereby. There is a grow-
 ing literature concerning the impact of lossy compression upon tasks that
 involve detection. However, we are not aware of similar studies of mea-
 surement. We feel that the study reported here of 30 scans compressed
 to 5 different levels, with measurements being made by 3 accomplished
 radiologists, is consistent with 16:1 lossy compression as we practice it

 being acceptable for the problem at hand.

 Key words and phrases: Lossy image compression; tree-structured vec-
 tor quantization; measurement accuracy; image quality; evaluation.
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 1. INTRODUCTION

 Recent years have seen an increasing use of imag-
 ing technologies such as magnetic resonance imag-
 ing (MRI) and computerized tomography (CT) that
 render images in digital format. Although such dig-
 ital images are usually reduced to hard-copy ana-
 log form for display, their digital properties hold

 promise for a significant expansion of their uses in
 diagnosis. They are amenable to signal processing,
 including image enhancement and classification, the

 combining of images obtained from different modali-
 ties, 3-D modeling and motion video. One fundamen-
 tal difficulty in working with digital medical images,
 however, is the size of individual files involved (CT,
 0.5 Mb; MR; 0.13 Mb; digitized X-rays; 8 Mb); this
 difficulty is compounded by the immense number
 of images produced. Each year Stanford University
 Medical Center alone generates some 1.2 Terabytes
 of CT and MR images that require digital storage
 on magnetic tape. Because of space constraints, the
 tapes are erased and reused after two years; images
 remain available only in analog hard-copy format if
 at all. If the digital properties of medical images are
 to be exploited, it is clear that compression will be
 needed to allow long-term and cost-efficient storage,
 as well as rapid access and transmission.

 When a standard lossless (reversible) compres-
 sion scheme such as a Lempel-Ziv algorithm is ap-
 plied to MR and CT scans, typically compression ra-
 tios of about 2: 1 are achieved. Recent studies have

 shown that, with more complex lossless compres-
 sion, compression ratios of 3: 1 or 4: 1 are possible
 [5, 6, 60, 61]. Lossless compression alone is in gen-
 eral insufficient to attain ratios better than 4:1. It
 is then natural to turn to schemes for lossy (irre-
 versible) compression that have provided excellent
 results for nonmedical images. One goal of this pa-
 per is to survey the basic theory and algorithmic
 ideas underlying lossy compression, especially the
 trade-offs between common engineering measures
 of image quality, the bit rate required for transmis-
 sion and storage, and the complexity of implement-
 ing the compression algorithms. The basic problem
 formulation and many of the techniques used to de-
 sign compression systems directly parallel ideas in
 statistical classification and regression, and these
 parallels have proved useful in designing simple and
 effective codes.

 Most compression algorithms in practice are dig-
 ital, beginning with an information source that is

 discrete in time and amplitude. If an image is ini-
 tially analog in space and amplitude, one must first
 render it discrete in both space and amplitude be-
 fore compression. Discretization in space is gener-

 ally called sampling-this consists of examining the
 intensity of the analog image on a regular grid of

 points called picture elements, or pixels. Discretiza-

 tion in amplitude is simply scalar quantization: a
 mapping from a continuous range of possible values
 into a finite set of approximating values. The term

 analog-to-digital (A/D) conversion is often used to
 mean both sampling and quantization, that is, the
 conversion of a signal that is analog in both space
 and amplitude to a signal that is discrete in both

 space and amplitude. Such a conversion is by itself
 an example of lossy compression.

 A general system for digital image compression is
 depicted in Figure 1. It consists of one or more of the
 following operations, which may be combined with
 each other or with additional signal processing:

 e Signal decomposition-The image is decomposed
 into several images for separate processing. The

 most popular signal decompositions for image pro-
 cessing are linear transformations of the Fourier
 family, especially the discrete cosine transform
 (DCT), and filtering with a subband or wavelet
 filter bank. Both methods can be viewed as trans-

 forms of the original images into coefficients with
 respect to some set of basis functions. There are
 many motivations behind such decompositions.
 Transforms tend to "mash up" the data so that
 the effects of quantization error are spread out
 and ultimately invisible. Good transforms con-
 centrate the data in the lower order transform

 coefficients so that the higher order coefficients
 can be coded with few or no bits. Good transforms
 tend to decorrelate the data with the intention

 of rendering simple scalar quantization more ef-
 ficient. The eye and ear are generally considered
 to operate in the transform domain, so that it is
 natural to focus on coding in that domain where
 psychophysical effects such as masking can be
 easily incorporated into frequency dependent
 measures of distortion. Lastly, the transformed
 data may provide a useful data structure, as do
 the multiresolution representations of wavelet
 analysis.

 * Quantization-High rate digital pixel intensities
 are converted into relatively small numbers of
 bits. This operation is nonlinear and noninvert-
 ible; it is "lossy." The conversion can operate on
 individual pixels (scalar quantization) or groups
 of pixels (vector quantization). Quantization can
 include discarding some of the components of the
 signal decomposition step. Our emphasis is on
 quantizer design.

 * Lossless compression-Further compression is
 achieved by an invertible (lossless, entropy) code
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 FIG. 1. Image compression system.

 such as run-length, Huffman, Lempel-Ziv or

 arithmetic code.

 Many approaches to systems for image compres-

 sion have been proposed in the literature and in-

 corporated into standards and products, both soft-

 ware and hardware. These differ primarily by the

 different choices made for the three basic compo-

 nents: signal decomposition; quantization; and loss-

 less coding. A variety of systems and algorithms for

 compression are described to provide context, but

 the method chosen for the current study is a com-

 promise among a variety of considerations. The al-

 gorithm used was predictive pruned tree-structured
 vector quantization [12, 32, 62, 45]. This technique

 involves fast encoding and decoding, and provides

 additional advantages such as simple progressive

 transmission and potential incorporation of other

 signal processing techniques such as classification

 [56, 57]. The algorithm does not perform a signal
 decomposition such as a DCT or wavelet, and it pro-

 duces directly a variable length code without sepa-

 rate entropy coding. Our reasons for selecting this

 algorithm are threefold. The first is simplicity; in
 particular, the compression operates directly on the
 individual pixels and produces a variable rate bit-

 stream without the need to compute transforms and
 inverse transforms or to do separate entropy cod-

 ing. This results in a simple decompression algo-

 rithm that depends mostly on table lookups with

 few arithmetic operations. The second reason is that
 the tree-structured algorithms used inherently pro-
 vide a natural progressive structure to the code,
 which incorporates the ability for progressive re-
 construction of an improved image as bits arrive.
 Finally, our emphasis in this work is on judging

 the quality and utility of lossy compressed medi-
 cal images, and the protocol for evaluating qual-
 ity does not depend on the compression algorithm

 at all.

 The purpose of the compression system is to code

 an information source, such as a sequence of pixel
 blocks making up an image, into a sequence of bi-
 nary integers or bits, which can then be decoded or

 decompressed to reproduce the original source with
 the best possible fidelity. The goal is to have the best
 possible fidelity between the reproduction and orig-

 inal subject to a constraint on the average number

 of bits transmitted or stored.

 With medical images, however, the common engi-
 neering measures of quality such as signal-to-noise

 ratio (SNR) are insufficient; in medical applications

 the primary concern is that the diagnostic accuracy

 of the lossy compressed images remain not less than
 that of the original images. Signal-to-noise ratios
 and mean squared error (MSE) may indicate di-
 agnostic accuracy, but the accuracy must be dem-
 onstrated directly. In addition, the images must

 appear nearly identical to the originals, or the ra-
 diologists will not use them no matter their other
 features. A wide variety of diagnostic tasks must be
 studied, including measurement of structures, de-

 tection of lesions and interpretation of texture. We

 have developed and implemented protocols for ex-
 perimentation by which the diagnostic accuracy of
 radiologists who make use of images, compressed

 or not, can be quantified.

 Most previous studies have focused on the effects
 of lossy compression on detection tasks [7, 16, 18,

 35, 48, 64]. We are not aware of any other studies
 on the effects of lossy compression on the accuracy

 of measurement. Measurement tasks on structures

 such as blood vessels, other organs and tumors take
 a central role in the evaluation of aneurysms, espe-

 cially prior to surgery. Abdominal aortic aneurysms
 are evaluated routinely with ultrasound; thoracic
 aortic aneurysms are evaluated by CT or MRI. The
 aortic diameter is usually measured manually with
 calipers. A measured value of diameter in excess
 of 4 cm entails a diagnosis of aneurysm. A larger
 aneurysm carries a greater risk of rupture. About
 10% of those aneurysms between 5 and 10 cm in di-
 ameter and about 50% of those with values greater

 than 10 cm do eventually rupture [41]. Because rup-
 ture is invariably fatal, measured values more than
 5 or 6 cm indicate operative repair [68, 8]. Of course
 the clinical decision depends not only on the size
 of the aneurysm but also on the clinical status of
 the patient (especially as concern pain and hemo-
 dynamic instability). Dilation less than 5 cm in di-
 ameter may be followed conservatively by serial MR
 imaging studies at 6-month intervals. Observing an

 increase in the aortic diameter of 0.5 cm over the

 course of a 6-month interval would be indication for
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 surgical repair. Comparison films are imperative for
 appropriate management of these patients.

 The goal of the study reported here was to quan-
 tify the effects of lossy compression on measurement
 accuracy through experiments that follow closely
 the clinical tasks of radiologists evaluating aortic
 aneurysms. We wished to examine whether com-
 pression maintains the information required for ac-
 curate measurements, or whether it leads to inac-
 curacies by blurring edges or distorting structures.
 The task to be studied is the measurement of four
 primary blood vessels in the mediastinum: the as-
 cending aorta, descending aorta, right pulmonary
 artery (RPA) and superior vena cava (SVC). Clearly,
 if compression at a certain bit rate caused a 0.5-cm
 error in the aortic measurement above and beyond
 any error that might typically be made on the un-
 compressed image, the compression would be unac-
 ceptable. One fundamental message readers might
 take from this paper is that what variability there
 is in the measurements of our judges (at least for
 images compressed not more than to 0.55 bits per
 pixel) is already there in measurements on uncom-
 pressed images. Although we focused on the medical
 problem of thoracic aortic aneurysms as seen on MR
 scans, the methodology developed in this research is
 broadly applicable to any medical task requiring the
 measurement of structures. Our project is divided
 into three general areas as follows:

 * establishing a protocol for obtaining measure-
 ments and subjective scores in a clinical setting;

 * establishing a "gold standard" for the "correct
 vessel sizes," selecting parameters for quanti-
 fying measurement error and choosing a set of
 statistical methods to determine to what bit rate
 these images can be compressed without loss in
 measurement accuracy;

 * determining whether subjective scores and mea-
 surement error vary similarly with decreasing bit
 rates.

 A set of 9-bit original MR chest images contain-
 ing aneurysms and normal vessels was compressed
 to five bit rates between 0.36 and 1.7 bits per
 pixel (bpp). Example images are seen in Figure 2.
 The approach to compression is through a binary
 tree-structured two-means clustering, very much
 like CART. The basic set of algorithms is called
 tree-structured vector quantization (TSVQ), and
 considerable detail is given later in the paper after
 background material provides context. Radiologists
 measured the four vessels on each image. As a
 separate task, the radiologists also rated the sub-
 jective quality of each image by assigning a score of
 1 (worst) through 5 (best) to each image.

 In our statistical analyses, we set two gold stan-
 dards, a "personal" one [16, 18], and an "indepen-
 dent" one. These are two methods of establishing the
 correct size of each blood vessel, that is, the under-
 lying "truth" of each image. The personal gold stan-

 dard is derived for individual radiologists based on
 their own measurements of the same image at the

 uncompressed level. Since the personal gold stan-
 dard defines the measurements on the originals to
 be correct (for that image and that judge), the com-
 pressed images cannot be as good as the originals
 if there is random error in the measurement pro-
 cess. For this reason, we also defined an indepen-
 dent gold standard. This is based on the consen-
 sus measurements taken by two radiologists on the
 original images. These two radiologists are differ-
 ent from the three radiologists whose judgments are
 used to determine diagnostic accuracy. This does in-
 troduce interobserver variability into that portion of
 the analysis, but it also allows the original images
 to be compared fairly with the compressed ones.

 For each of these gold standards, we quantify the
 accuracy of the measurements at each compression
 level by taking the percentage measurement error

 for each image, defined to be the difference between
 a radiologist's measurement and the gold standard,
 scaled by the gold standard measurement. This er-
 ror is reported as a function of bit rate. Other pa-
 rameters such as subjective scores and signal-to-
 noise ratios are also analyzed as functions of bit
 rate. Variabilities of the measurements by (judge,
 image) pairs are quantified by two-way analyses of
 variance in which the effects are level of compres-
 sion and structure, and there is also a (one degree
 of freedom) term for nonadditivity. These ANOVAs
 are thought of as descriptive statistics, and they are
 summarized by various box plots.

 2. SIGNAL COMPRESSION

 We review the basic notions of sources, codes,
 fidelity and optimal performance and describe
 both general and specific compression systems,
 including the particular algorithm-predictive tree-
 structured vector quantization-emphasized in the
 image quality experiments considered here.

 2.1 Source Coding

 The Shannon model for a compression system is
 a source code with a fidelity criterion [66, 67]. The
 source to be coded, {X(n); n E (?}, is considered a
 random process, where (? is the integers. The X(n)
 are assumed to take values in k-dimensional Eu-

 clidean space with marginal distribution Px. This
 distribution might be parametric, but in practice we
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 (a)

 I~

 (b) (c)

 FIG. 2. (a) Original 9.0-bpp MR chest scan; (b) same image compressed to 1.14 bpp; (c) image compressed to 0.36 bpp.

 usually work with an empirical distribution Py esti-
 mated from a training or learning set Y = {xl; 1 =

 1,.. YJ} as

 XE1 Ps()=1 1 1(x EG)

 for any event G, where 1(x E G) is the indicator
 function that equals 1 if x E G and equals 0 other-
 wise.

 The dimension k is a parameter of the particular
 application. Shannon information theory [66, 67] in-
 dicates that improved performance can be achieved
 using larger vector dimensions at the expense of
 added complexity in terms of memory and computa-

 tion. As our example of primary interest, the vectors
 are rectangular blocks of pixel intensities within a
 sampled image.

 A source code or compression code for the source
 {X(n)} consists of a pair (a, /3) of encoder and de-
 coder. An encoder a: A -+ {O, 1}* is a mapping from
 the input alphabet A (typically a subset of 5Wk) into
 the set of all binary sequences of finite length. Of

 particular importance is the range space =_ a(A),
 which we refer to as the channel codebook, the set of
 binary sequences that are stored in a digital storage
 medium or are transmitted from the transmitter to
 the receiver via a digital communication link. In or-
 der to ensure that a sequence of symbols (variable
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 length binary vectors) drawn from the channel code-

 book can be decoded uniquely if the starting point

 is known, we require that the t be prefix-free or
 satisfy the prefix condition: no word in the code-
 book is a prefix of any other word in the codebook.
 It is a standard exercise in information theory to

 demonstrate that any uniquely decodable channel

 codebook can be made into a channel codebook with
 the same codeword lengths that also satisfies the
 prefix condition, and hence no essential generality

 is lost by the assumption. (See, e.g., [19, 32].)

 The decoder /3: {0, 1}* -v e is a mapping from
 the space of finite-length binary sequences onto a

 set e _ {/,3(w); w E Y} called the reproduction
 codebook, with members called reproduction code-
 words or templates. The members of e are chosen
 from a reproduction alphabet A which typically, but
 not always, is simply the input alphabet, A. For a

 given encoder we care about the definition of /3(w)

 only for w E Y. It can be defined arbitrarily outside
 this set.

 This model of a compression system is general in
 the sense that it includes any code operating on dis-
 joint blocks of data functionally independent of past
 or future coding operations. In other words, it mod-
 els codes that have no memory of previous vectors or

 anticipation of future vectors. These codes are some-
 times referred to as block source codes to distinguish

 them from codes that can vary the dimension of in-
 put blocks or that can operate on overlapping input
 blocks in a "sliding-block" fashion.

 2.2 Quality versus Cost

 To measure the fidelity or lack thereof between an
 input vector and its reproduction, we assume that

 we have a distortion measure d(x, y) > 0 defined for
 every possible x, y; d(x, x) measures the distortion
 or loss resulting if an original input x is reproduced
 as x. The overall goal of a compression system is
 to keep distortion and bit rate small. The distortion
 measure need not be a metric, but ideally it should
 possess the following properties:

 * It should be easy to compute so that the distortion
 can be monitored easily.

 * It should be tractable for theoretical analysis so

 that performance can be predicted and optimized
 for parametric models such as Gaussian sources.

 * It should be meaningful in the desired applica-
 tion, for example, large or small average distor-
 tion should correspond to an image that looks bad
 or good, respectively, in an entertainment appli-
 cation, or to an image that lends itself poorly or
 well to further analysis, for example, recognizing
 tumor tissue in medical images.

 No single distortion measure accomplishes all of
 these goals, although the widely used squared error
 distortion defined by

 k-1

 d(x, y) = llx - yll2 E Ix, - Y11"
 1=0

 where x = (xO, x1, ..., Xk1), accomplishes the first
 two goals and occasionally correlates with the third.
 Unfortunately, distortion measures that have been
 found to be good measures of perceived quality in
 speech and images have often proved to be quite
 complicated and have usually lacked the first two
 properties [10, 69, 50, 46, 54, 51, 63]. As a result,

 the squared error distortion has dominated the lit-
 erature with relatively rare extensions to other
 measures. For particular applications, one varia-
 tion on the squared error distortion measure has
 provided a promising means of incorporating per-

 ceptually important characteristics of an image by
 incorporating knowledge of the human visual sys-

 tem while retaining much of the tractability and
 amenability to analysis. This variation is the class
 of input weighted quadratic distortion measures

 of the form d(x, x) = (x - x)'Bx(x - x), where
 Bx is a positive definite symmetric matrix which
 can depend on the input [55, 23, 33, 30, 26]. The
 Mahalonobis distance of statistics provides a sim-
 ple example where the weighting matrix does not

 depend on the specific input, so that one could,
 for example, choose a separate inverse covariance
 matrix for different classes of inputs when mea-
 suring the distortion. A simple example of input

 dependence would be to have Bx be the identity
 times the sample variance of components of the
 vector x. Thus the distortion would be increased if
 x has large variability and hence x is an "active"
 vector. The Lloyd quantizer algorithm described
 here extends to such distortion measures [34], as
 does the Bennett asymptotic quantization theory
 [30, 42] mentioned later in this paper. Since no
 single weighting matrix is considered the best,
 and such perceptually based distortion measures
 have not yet been treated in measuring quality
 in medical images, we focus on the simple squared
 error.

 The distortion resulting from applying a source
 code (a, /3) to a specific input vector x is d(x, 13(a(x))).

 A code (a, ,3) will be said to be lossless if 03(a(x)) =
 x, for all inputs x E A. For a lossless code, ,3 is the

 inverse of a. Given that d(x, y) > 0 if x 0 y, the
 code is lossless iff d(x, /3(a(x))) 0, x E A. Lossless
 codes are also called invertible codes, noiseless codes
 or entropy codes.
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 A code that is not lossless is lossy and it is usu-

 ally called a quantizer. Since the alphabet is in gen-

 eral a k-dimensional vector, the more general no-

 tion is a vector quantizer (VQ). The overall mapping

 Q: A -? e defined as the composite Q(x) = ,3(a(x))
 is often referred to as a VQ, and the term is also

 used somewhat more generally to denote any map-
 ping from a continuous or large discrete space into a

 smaller space. The smaller space is usually required

 to be finite, but sometimes it is useful to allow it to
 be countably infinite. The encoder mapping can also
 be represented in terms of a Voronoi diagram, which
 illustrates how the vector space is partitioned. Fig-

 ure 3 provides an example of a Voronoi diagram for a
 two-dimensional vector. The mapping rule of the en-
 coder is represented by the boundaries between the
 Voronoi cell. Each Voronoi cell represents the set of
 input vectors that mapped to a particular codeword.
 The codewords are represented by black dots.

 Lossless codes are an important special case of

 compression codes. When compressing a computer
 program or bank statement, for example, it is crit-
 ically important to make no errors. A single wrong

 digit could have catastrophic consequences. We ar-
 gue that in some examples, such as medical and sci-
 entific images, lossy compression may be quite use-
 ful even though the utility of the images is strongly
 related to the quality of the reproductions.

 The "cost" of encoding an input vector x in terms

 of the memory occupied by the stored channel code-
 word or the communications channel capacity re-
 quired for its transmission is taken to be the length
 of the encoded input vector a(x) in binary symbols,
 which we denote by l(a(x)). This quantity is also re-
 ferred to as the instantaneous rate r(x) = l(a(x)) in
 bits per input vector. It is convenient to normalize
 both distortion and rate into units per input symbol
 by dividing by the dimension k of the input vectors
 and to report r in terms of bits per input symbol.
 Obviously the distortion resulting from encoding an
 input vector depends on the encoder and decoder,

 FIG. 3. Voronoi diagram.

 while the instantaneous rate depends only on the
 encoder.

 The performance of a compression system is mea-
 sured by the expected values of the distortion and
 rate. The average distortion corresponding to a spe-

 cific source code applied to a specific source is de-

 noted D(a, /3) = E[d(X, /(a(X)))]. It is often re-
 ported in logarithmic form as a signal to noise ratio

 SNR = 10 1og10(DO/D) with units decibels (dB); Do
 is a reference value and is often the average distor-

 tion resulting from the optimum zero rate code. In

 the case of a squared error distortion measure, Do is
 the variance of the components of the input vector.
 Other normalizations are used, including the non-
 central second moment (energy) and the square of
 the maximum possible input value (yielding what is
 called a peak SNR (PSNR)). The average rate is de-

 fined as R(a) = E(r(X)) = E(l(a(X))) in bits per
 vector. This is usually normalized by dividing by the
 dimension k, which gives average bits per symbol
 (or pixel in the case of sampled images). The distri-
 bution with respect to which expectations are com-
 puted is always determined by context, although in
 practice it can only be a suitable empirical distri-
 bution.

 Every source code operating on a source will
 be characterized by a point in the two-dimensional
 rate-distortion plane: (R(a), D(a, /3)). Both D(a, 3)
 and R(a) can be considered as cost functions for a

 source code. All else being equal, one code is better
 than another if it has smaller D or smaller R than
 another. Thus if we were to consider a plot of all
 achievable distortion-rate pairs, the only points of
 practical interest would be those not dominated by
 any other points in the sense of having a smaller
 D (or R) given the same or smaller R (or D). This
 leads to the definitions of optimal source codes, just

 as it does to admissibility in statistics.

 2.3 Optimal Source Codes

 2.3.1 Optimality properties. The goal of source
 coding is to characterize the optimal trade-off be-
 tween average bit rate and average distortion and
 to design codes that compare well to the optimal
 performance. The optimization problem can be
 formulated in several ways. The distortion-rate
 approach constrains the average rate and mini-
 mizes the average distortion; the rate-distortion
 approach constrains the average distortion and
 minimizes the average rate; and the Lagrangian
 formulation minimizes a weighted sum of distortion
 and rate. All formulations are analogous to those

 that bear upon the construction of statistical tests,
 in Neyman-Pearson style for the first two and as
 Bayesian tests for the third. In the first approach
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 we define the optimal code (if it exists) for a given

 rate R as the (a,,/3) minimizing D(a,,/3) subject to
 R(a) < R. Define the operational distortion-rate

 function

 D(R)= inf D (a,f ).
 a, /3: R(a)<R

 The function D(R) is obviously monotonically non-
 increasing in R. The rate-distortion function is de-

 fined by reversing the roles of rate and distortion.
 The Lagrangian approach incorporates the rate

 constraint into a modified distortion measure p de-
 fined between the input vector and the channel

 codeword by

 (1) p(x, i) = d(x, /3(i)) + Al(i),

 for a Lagrange multiplier A, so that the average
 modified distortion measure is given by

 (2) E[p(X, a(X))] = D(a, /3) + AR(a).

 The constrained minimization of D is equivalent

 to an unconstrained minimization of Ep. For ev-
 ery choice of A the unconstrained minimization will
 yield a pair (D, R) in the distortion-rate plane,
 where D is the operational distortion-rate function
 evaluated at the rate R (and A proves to be the
 negative of the slope of the distortion-rate function
 at that pair [13]). We focus on the Lagrangian for-
 mulation as the more natural for the problem at
 hand.

 The case of 0 rate code is of course artificial,
 but it is useful as a step toward describing op-
 timality properties for the general case. In order
 to achieve the minimum possible average dis-
 tortion with a 0 rate codebook having a single
 word y, a y yielding the minimum average dis-
 tortion (if such exists) should be chosen as the
 output of /3 operating on the empty string 0. Thus

 ,3(0) = argminy,AE[d(X, y)]. If the minimum
 indeed exists, we have

 (3) D(O) = min E[d(X, y)].
 y

 The vector achieving this minimum is the centroid
 of the alphabet A with respect to the distribution

 Px. If the average distortion is given by the squared
 error E[ IX - y 12], then this is the expected value
 EX since, for any y, E[IIX-yH12] > E[HIX-EXIH2].
 If the distribution is an empirical distribution de-
 scribed by the training sequence, then this is simply
 the sample mean or Euclidean centroid

 lL

 - L tY Xn-
 Ln=1

 The zero rate result extends easily to describing
 the optimal decoder in general for a given encoder.

 Given an encoder a, define the encoder partition

 /= {Si; i E t} with atoms Si = {x: a(x)=i}. Given
 that a(X) = i, the best reproduction value y to rep-

 resent all input vectors in the set Si in the sense
 of minimizing the average conditional distortion

 E[d(X, y)IX E Sj] is arg minyEA E[d(X, y)IX E Si].
 For the squared error distortion, this is simply the

 conditional expectation E[X X E Si]. As in the
 zero rate case, the optimal decoder output for a
 given channel codeword is a centroid, but now of

 an encoder partition cell instead of the entire input

 space. If Pr(X E Si) = 0, then the decoder can be
 defined in an arbitrary fashion, say as the centroid
 of the entire input distribution.

 This provides a general optimality condition de-

 scribing the best decoder for a given encoder, a
 condition originally formulated by Lloyd for scalar
 (univariate) quantization in 1957 [44]: given an
 encoder a, the optimal decoder p is given by

 (4) ,3(i) = arg min E[d(X, y)la(X) = i]
 yeA

 for each i. The optimal decoder for any encoder
 is also defined for any internal nodes in the tree-
 structured representation that will be discussed,
 permitting a progressive reconstruction as the
 bits arrive. This condition has a history in both
 the engineering quantization and the statistical
 literature.

 In a similar fashion, one can define an optimal en-
 coder a for a fixed decoder /3 with respect to the La-
 grangian distortion measure. Given /3, any encoder
 a must satisfy the inequality

 E[PA(X, 1(a(X)))]

 (5) = fdPx(x)[d(x, 13(a(x))) + Al(a(X))]

 > fdPx(x)min[d(x, /3(i)) + Al(i)].
 I

 This lower bound is achievable by the minimum
 modified distortion encoder

 a (x) = argmin[d(x, /3(i)) + Al(i)].
 i

 Thus, given the reproduction codebook /3, the opti-
 mal encoder is the minimum distortion encoder with
 respect to the modified distortion measure.

 As will be discussed at more length later, it is
 often useful to place additional constraints on the
 structure of the codebook in order to simplify the
 code. Adding constraints to an optimization problem
 may of course result in a code that is suboptimal for
 the unconstrained problem, but it may have advan-
 tages that are due to simple implementation. The
 most important example of such a constraint is to
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 require the channel code to have all its binary words

 be of some fixed lenth R, in which case the channel
 codebook consists simply of all N = 2R binary R-
 tuples. In this case the instantaneous rate and the
 average rate are both given by r = k-1 log2 N = R/k
 bits per source symbol, and the code is referred
 to as a fixed rate code. The primary advantage of
 fixed rate codes is reduced complexity. Variable rate
 codes may produce symbols faster or slower than the

 transmission rate of a digital communication sys-
 tem, which necessitates the use of buffers to handle
 underflows and overflows. We here focus on vari-
 able rate schemes, which are better able to devote
 more bits to more active input vectors and fewer to
 background.

 2.3.2 The Lloyd algorithm. These optimality prop-
 erties suggest an iterative design algorithm for
 compression given an initial encoder-decoder pair.
 Any given code can be improved (at least made no

 worse) by successively applying the above two prop-
 erties. First optimize the reproduction codebook (or
 decoder) for the given encoder, then optimize the
 encoder for the given reproduction codebook and
 channel codebook. There are a wide variety of ways
 that an initial codebook can be designed. The ap-
 proach used in this study was to grow it from a 0
 rate code. The design procedure is a variation of a

 1957 algorithm of Lloyd [44] for the design of op-
 timum pulse coded modulation (PCM) systems or
 scalar quantizers with fixed rate codebooks (where
 the channel codebooks are restricted to have all en-

 tries of equal length and hence the constraint is on
 the rate).

 Lloyd's method is familiar to statisticians since
 variations have appeared in several statistical as
 well as engineering guises. In the scalar case with
 an empirical distribution, the problem of choosing
 the best set of N points minimizing a sample vari-
 ance is the "problem of optimum stratification" of
 Dalenius [21] in 1950 and Dalenius and Gurney
 [22] in 1951. The first appearance of the condi-
 tions for optimal fixed rate scalar quantization for
 a general one-dimensional distribution was in 1955
 in the work of Lukaszewicz and Steinhaus [47].
 Lloyd reported the properties along with a simple
 proof not requiring differentiability in 1957, and
 J. Max subsequently rediscovered a similar method
 in 1960 [52]. The optimal scalar quantization result
 is often referred to in the engineering literature
 as a Lloyd-Max quantizer, although it is Lloyd's
 method of proof and not Max's calculus-based min-
 imization that easily generalizes to vectors. Also
 in 1957 Cox [20] provided the same conditions for
 "grouping" equivalent to quantization and, like

 Lloyd, applied the results to the Gaussian distri-
 bution. Unlike Lloyd, Cox explicitly considered the
 two-dimensional case.

 Lloyd's method applied to vectors and multidi-
 mensional distributions is essentially equivalent to
 Forgey's 1965 algorithm [29] and MacQueen's k-
 means algorithm [49] if the distribution is an em-
 pirical distribution. Unlike the original k-means al-
 gorithm, however, Lloyd's algorithm was a "batch"
 algorithm in that each iteration was on the entire
 distribution (an empirical distribution if a training
 set is used) rather than on an incremental update
 for each training vector. (Subsequent variations of
 k-means operate in a similar fashion.) The algo-
 rithm and its variations are popular for a variety
 of clustering applications as is seen, for example, in
 [36]. Lloyd proved the quantizer optimality proper-
 ties by basic inequalities as above rather than by
 setting derivatives to zero, and hence no assump-
 tions past the existence of the centroids of sets were
 required for the algorithm to be well defined. Lloyd's
 method was explicitly applied to random vectors in
 the quantization context by several people, includ-
 ing Chen [11], Hilbert [37], and Linde, Buzo and
 Gray [43]. The algorithm was extended to the vari-
 able rate case by Chou, Lookabaugh and Gray [14].

 More recently, in 1990 the method reappeared un-
 der the name of "principal points," distinguished
 from traditional k-means by the assumption of an
 absolutely continuous distribution instead of an em-
 pirical distribution [28, 70]; these works by Flury
 alone and with colleagues ignore the quantization
 literature. It is interesting to note in particular that
 Flury observes with surprise that the optimal points
 need not be symmetric about the mean even if the
 distribution is symmetric, a fact noted in the quan-
 tization literature by Abaya and Wise in 1981 [1].

 Since distortion is nonnegative and nonincreas-
 ing, the algorithm is a descent algorithm. In gen-
 eral the algorithm converges only to a stationary
 point, and there is no guarantee that the resulting
 code will be globally optimal. (It is guaranteed to be
 globally optimal for all codebook sizes if X is uni-
 variate and the distribution is absolutely continuous
 with log concave density [71, 40]. This is equivalent
 to the distribution being strongly unimodal, that is,
 for its convolution with every univariate unimodal
 distribution to be unimodal (see [38]; see also [39]).)

 2.3.3 Source coding and quantization theory. The
 Lloyd algorithm is simply a clustering algorithm,
 and a wide variety of other clustering algorithms
 have been used to design vector quantizers. In gen-
 eral there are no guarantees that such algorithms
 will produce globally optimal codes, and the intent
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 is to produce at least a locally optimal and good

 code. It is natural to inquire if the truly optimal
 performance can be derived theoretically so that

 one can have a benchmark for comparison of differ-
 ent codes. There are two approaches to quantifying
 the optimal performance when the underlying dis-
 tributions are known, and both were developed pri-

 marily at Bell Laboratories in the late 1940s and
 1950s. The first is Shannon's information theory.

 Shannon showed that a suitably well behaved ran-
 dom process can be described by a distortion-rate
 function D(R) which is related to the previously de-
 fined operational distortion-rate function as follows.
 For dimension k let Dk(R) denote the operational

 distortion-rate function for vectors of dimension k.
 Then

 inf Dk(R) = lim Dk(R) = D(R),
 k k-?oo

 that is: (1) no codes can ever yield performance
 lower than Shannon's distortion rate function and
 (2) for dimension large enough performance arbi-

 trarily close to the Shannon distortion rate function
 can be achieved. Shannon's distortion rate func-
 tion is defined as an information theoretic mini-
 mization and it can be computed for some processes
 and distortion measures (such as Gaussian pro-
 cesses with a squared error distortion measure)
 and bounded for others. This result, known as
 Shannon's source coding theorem with a fidelity
 criterion, has the shortcoming that it is not con-
 structive; and it suggests that very large vector
 dimensions may be needed to approach the optimal
 performance. It also assumes that one knows the
 underlying distributions, which is usually not the
 case in practice.

 The alternative approach to quantifying the the-

 oretically achievable optimal performance is the
 approach developed by Bennett [4] for scalar quan-
 tization and subsequently extended to vector quan-
 tization by others [75-77, 31, 74, 53]. Instead of
 fixing a bit rate R and letting the dimension k grow,
 this approach fixes the dimension k and lets the
 rate (or number of quantization levels) get asymp-
 totically large (or the distortion asymptotically
 small). This theory has the advantage of applying
 to a fixed dimension, but requires the assumption
 of a large rate, which is usually not desirable when
 data compression is the goal and relatively small
 rates are desired. As with the Shannon theory, it
 assumes known distributions.

 We mention the theories of source coding and
 quantization only in passing as they do not yield
 useful performance bounds when coding real im-
 ages, but both theories have provided useful in-

 sights into code design and have been much used
 for benchmarking various approaches to design for
 common parametric models such as memoryless
 Gaussian and Laplacian sources.

 2.3.4 Thee-structured codes. In practice it is often
 of interest to optimize over a constrained subset of
 possible codes rather than over all of them. Uncon-
 strained codes may prove difficult or impossible to
 implement, and added structure may provide gains
 in practical simplicity that more than compensate

 for loss of optimality.
 All vector quantizers can be considered to have a

 tree-structured form since any channel codebook is
 a collection of binary words satisfying the prefix con-
 dition, and any such collection can be depicted as a
 binary tree. The entire input alphabet can be asso-
 ciated with the root node of the tree, from which de-
 scend two branches connected to two children nodes.
 One branch is labeled 0, the other 1, according to the
 first symbol in the channel codebook. Each of the

 two children nodes will be associated with all input
 vectors having channel codewords which begin with
 the branch label leading to that node. A node will
 be a terminal node or leaf of the tree if the label of

 the branch leading into the node is the final sym-
 bol in the channel codewords for all of the vectors

 associated with that node. Otherwise the node has
 two children, one for each possible next symbol in
 the channel codeword. Thus the channel codebook
 corresponds to a binary tree with terminal nodes
 corresponding to complete channel codewords and
 internal nodes corresponding to prefixes of channel
 codewords. The channel codeword can now be in-
 terpreted as providing a pathmap through the tree,
 ending in the terminal node. On arriving at a ter-
 minal node, the decoder can produce the optimal
 reproduction, the centroid of all input vectors which
 are mapped into that node by the encoder. The
 tree structure has an immediate benefit: Instead of
 waiting for the terminal node to be reached before
 producing a reproduction, the decoder could produce
 a reproduction at each interim node traversed by
 the encoder, the centroid of all input vectors which
 are associated with that interim node. This means

 that the decoder can reconstruct the input vector
 in a progressive manner that should provide an in-
 creasingly good reproduction as more bits arrive
 and as the terminal node is achieved. This progres-
 sive reconstruction can be very useful in practice as
 it means one can see an ever improving image as

 the bits arrive instead of waiting for all of the bits
 before anything is reconstructed. It also suggests
 an alternative simple, but suboptimal, means of
 encoding.
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 The optimal encoder must look at all of the termi-
 nal nodes of the tree and find the minimum distor-

 tion (or nearest neighbor) in the sense of providing
 the smallest Lagrangian combination of squared er-
 ror and channel codeword length (the depth of the
 terminal node). A simple suboptimal encoder could
 perform a greedy search of the code tree instead of
 a full search of all leaves to find the minimum mod-
 ified distortion. In this case each node is considered
 to be labeled by its optimal reproduction, and at
 each node the encoder makes a simple binary deci-
 sion comparing the distortion resulting from using
 either of the two available children nodes. Since one
 bit is added regardless of which node is selected, bits
 are not explicitly taken into account during encod-
 ing. They are taken into account when the tree itself
 is designed. The decision is therefore simply a mini-
 mum squared error selection between two available
 reproductions for a given input vector. The mini-
 mum distortion binary decision is equivalent to a
 hyperplane test or, in engineering parlance, a corre-
 lation or matched filter detector.

 The channel codeword is thus selected by a
 sequence of simple binary decisions. Vector repro-
 ductions are stored at each node in the tree. The
 search begins at the root node. The encoder com-
 pares the input vector to two possible candidate
 reproductions, chooses the one with the minimum
 distortion and advances to the selected node. If the
 node is not a terminal leaf, the encoder continues
 and chooses the best available node of the new pair
 presented. The encoder produces binary symbols
 to represent its sequence of binary decisions. The
 stored index is then a path map through the tree
 to the terminal node, which is associated with the
 final codeword. For example, if one constrains the
 code to have only fixed length codewords and there
 are N = 2kR codewords, then the optimal encoder
 must compute 2kR distortions in order to select the
 minimum distortion codeword, while the subopti-
 mal greedy tree search will make only kR binary
 comparisons. Clearly one no longer will have an
 optimal encoder for the given code, and it may be
 that a good code for an optimal search may prove
 poor for the suboptimal search. Hence it is of con-
 cern to design a code that will be good when used
 specifically with such a suboptimal encoder.

 A code with this structure of performing a se-
 quence of pairwise nearest neighbor decisions
 is called a tree-structured VQ (TSVQ). A tree-
 structured quantizer is clearly analogous to a clas-
 sification or regression tree, such as those designed
 by the CART algorithm [9]: at each successive node
 the input vector is "classified" according to the bi-
 nary nearest neighbor selection of the centroids of

 12.25 1 4.0 1
 12.375 5 1

 175 5.75 0 1 275 12.25
 12.25 5.751 S I 2.5 T601

 13.0 16.0 110.5 15.51

 3.0I5.0 1.516

 FIG. 4. Simple TSVQ example.

 the two available children nodes. The quantizer
 can also be viewed as a classical nearest neighbor
 classifier, where the nearest neighbor in a collec-
 tion (here the reproduction codebook and not the
 entire training set) is only approximated by a se-
 quence of pairwise nearest neighbor selections. The
 squared error distortion function of TSVQ becomes
 Bayes risk in a classification tree, and the cost
 might be the number of leaves or the total number
 of nodes in the channel codebook in a classifica-
 tion problem. The Euclidean minimum distortion
 binary decision rule in a TSVQ typically becomes
 a one-dimensional threshold rule on a single vec-
 tor coordinate in CART, although one can make the
 decisions multidimensional by first transforming

 the input vector, or by allowing more general hy-
 perplane splits. The fact that TSVQ and CART can

 be viewed as variations of each other suggests that
 the CART tree design methodology can be com-
 bined with the Lloyd algorithm in order to design a
 TSVQ, which is the approach that is adopted here.

 As a simple example of a TSVQ, consider the la-

 beled tree of Figure 4. This tree will be used to rep-
 resent the data in an image that is divided into 2 x 2

 blocks. Each node is labeled by the reproduction vec-
 tor used to represent any data coded to that node.

 Suppose that this tree is used to encode the image
 of Figure 5, with intensities from an alphabet of size
 8, or 3 bits per pixel (bpp). The encoder operates by
 successively encoding 2 x 2 blocks taken from the
 "image," and the decoder then reconstructs the im-

 age using the reproduction codewords indexed by
 the channel codeword. If only the root node is used
 for a zero rate code, then the average squared error

 resulting will be D0 = 7.53. If the nearest neighbor
 from the two codewords labeling the first level nodes

 0 6 3 5 3 1 2 3

 1 7 2 6 5 5 1 7

 1 5 3 3 3 2 3 7

 2 6 2 6 2 6 4 4

 FIG. 5. Example image.
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 is chosen for each input vector (or a simpler hyper-
 plane or correlation test is used to accomplish the

 same goal), then the rate is one bit per input vector
 (1/4 bpp); and the resulting average squared error is

 D = 4.19, yielding SNR = 10 log1o D0/D = 2.55 dB.
 If the complete tree is used so that the left node in

 the first level is split and each image vector reaching
 this node is further encoded by choosing the near-

 est neighbor label from the children nodes, then the
 distortion drops to 2.81 and the SNR rises to 4.3 dB,
 but the cost is an increase in the average bit rate to
 1.5 bpp.

 2.4 TSVQ Design

 Tree-structured vector quantizers, like classifica-
 tion trees, can be designed from scratch by means
 of a gardening metaphor. The trees are first grown
 from a root node by successively splitting nodes

 and running a Lloyd algorithm on the new leaf set,
 which now becomes a two-means design. As grow-
 ing may overfit the data, the resulting tree can then
 be pruned so as to optimally trade off average dis-
 tortion and rate. This trading of average distortion
 and average bit rate is simply a variation on the de-
 sign strategy for classification and regression trees
 [9] embodied in the CART algorithm. The simplest
 growing technique is to split every leaf simulta-

 neously to form a new tree. In particular, the root
 node is split and the Lloyd algorithm run to pro-
 duce a one-bit tree. Then both nodes are split and
 the Lloyd algorithm run to produce a two-bit tree
 with four leaves. The Lloyd algorithm is modified
 in that it is really two clustering algorithms with

 two codewords each rather than a single clustering
 algorithm with four words. Each Lloyd algorithm is
 run for the conditional distributions of each parent
 node. Continuing in this way will yield a balanced
 tree and fixed-rate code.

 Alternatively, nodes can be split individually and
 selectively. For example, every leaf in a code tree
 has some conditional average distortion, say D(n),
 which is the average distortion resulting when the
 input vectors coded to this node are encoded to
 the centroid of the node. If this node is split and the
 Lloyd algorithm run on the conditional node distri-

 bution, then the two children nodes, no and n1, will
 have conditional distortions D(no) and D(n1) with
 probabilities po and Pi = 1 - po, respectively. This
 will result in a new conditional distortion for input
 vectors reaching node n of

 (6) poD(nO) + p,D(nl) < D(n);

 that is, the average distortion drops due to the node
 split. On the other hand, all vectors reaching node
 n will now have an additional bit added to their

 path map so that the average rate will increase.
 Thus one strategy for splitting is to split the node

 that results in the greatest drop in average condi-
 tional distortion per average additional bit. This is
 the most common growing strategy, but it is by no

 means the only one. For example, one could split
 the node with the largest contribution to the overall
 average distortion.

 Once grown, the tree can be pruned by remov-
 ing all descendents of any internal node, thereby

 making it a leaf. This will increase average distor-
 tion, but will also decrease the rate. Once again, one
 can select for pruning the node that offers the best
 trade-off in terms of the least increase in distortion
 per decrease in bits. It can be shown that, for quite
 general measures of distortion, pruning can be done
 in optimal fashion and the optimal subtrees of de-

 creasing rate are nested.

 2.4.1 Predictive vector quantization (PVQ). One
 method for incorporating memory or context into
 coding is to predict the current vector based on its
 neighbors and then quantize the prediction resid-

 ual [32]. Predictive vector quantization (PVQ) is
 a straightforward vector extension of traditional
 scalar predictive coding [25]. The basic encoder and
 decoder structures are shown in Figure 6. The en-

 coder makes a prediction Xn of the incoming vector
 Xn based on previously encoded vectors Xn. The
 difference between the actual input vector and its

 prediction is called the residual vector en. This
 residual is vector quantized (h). Because the en-
 coder only uses the previously decoded outputs in
 making its prediction, the decoder is able to make
 the same prediction. After dequantizing the resid-
 ual vector, the decoder adds the prediction to it

 to form the reproduction vector Xn. The predic-
 tion is often a simple linear predictor that takes
 a weighted average of nearby previously encoded
 coefficients.

 In predictive TSVQ, the residual quantizer is a
 TSVQ. For each residual vector, the encoding path
 through the tree is sent to the decoder. Given the
 same tree, the decoder decodes the quantized resid-
 ual and reconstructs the pixel block by adding it to
 its prediction of the block. The selection of vector
 dimension or block size is important in predictive
 TSVQ. For the predictor, a larger block size results
 in a more tenuous prediction since pixels being pre-
 dicted are farther apart from pixels used in the
 prediction. For the residual quantizer, on the other
 hand, larger pixel blocks better exploit Shannon's
 theory on the ability of vector quantizers to asymp-
 totically outperform scalar quantizers. The block
 size choice is a trade-off among prediction accu-
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 FIG. 6. Encoder and decoder for a predictive vector quantizer.

 racy, algorithmic complexity, storage memory and
 quantization performance. While performance theo-
 retically improves with block size, large block sizes
 can introduce block artifacts into an image that can
 outweigh any improvement in quantitative perfor-
 mance. Here we have chosen the block size with an
 emphasis on achieving low complexity.

 The coefficients for the predictor have in the past
 been calculated by Wiener-Hopf techniques; that is,
 one finds the best linear unbiased estimator for pre-
 dicting one pixel block from its neighbors, assuming
 that the neighbors are known perfectly. This is
 simplistic since the prediction coefficients will in
 practice be applied to the quantized neighbors and
 not to the true neighbors. The method is simple,
 however, and has worked reasonably well exper-
 imentally. From the training set, the correlation
 matrix between the current block and its neighbors
 is estimated and inverted to obtain the prediction
 coefficients. These coefficients are thus based upon
 correlations between original pixel values and
 neighboring original pixel values. During compres-
 sion, however, the prediction coefficients are used
 with encoded values of adjacent previously encoded
 blocks rather than with original pixel values.

 Once the prediction coefficients are fixed, a train-
 ing sequence of residuals is generated from the
 training sequence of original pixel values by cal-
 culating the differences between actual values and
 predicted values. The tree-structured encoder is de-
 veloped using these residual vectors as a training
 set. By encoding the lower energy residual signal,
 fewer bits can be used to encode to a desired dis-
 tortion level than would be needed for encoding the
 original higher energy signal.

 An advantage of predictive TSVQ is that explicit
 entropy coding is not needed because the code is
 designed directly to minimize average bit rate. Ad-
 ditional compression could be achieved by not using
 the natural tree-structured code representation and
 instead designing an optimal entropy code for the
 final code indices. If this is to be done, then bet-
 ter performance could be achieved by designing the

 original TSVQ to minimize average entropy instead
 of average length.

 An additional advantage is the natural progres-

 sive character of the code: on the average distortion

 diminishes with additional bits of the path map.
 Recent work has shown that the Wiener-Hopf

 technique can be improved upon in some applica-

 tions by a variation of ridge regression [59, 2]. How-

 ever, one should not lose track of the fact that the
 goal is good ultimate codes rather than good predic-
 tion for its own sake. One can imagine prediction

 that is dreadful in an MSE sense, but that makes
 for trivial encoding of residuals. In statistical terms,
 bias is not the issue here. Instead, it is the simplic-
 ity of the range of the predictor.

 3. STUDY DESIGN

 We turn now to the particular clinical experiment
 we conducted and that was described to some extent
 earlier.

 To develop a tree-structured residual encoder and
 decoder, 20 MR chest scans were picked to be the
 training set; they included a wide range of normal
 and aneurysmal vessels. An additional 30 scans
 were chosen as test images. All images were ob-
 tained using a 1.5-T whole body imager (Signa, GE
 Medical Systems, Milwaukee, Wisconsin), a body
 coil and an axial cardiac gated Ti weighted spin
 echo pulse sequence with the following parameters:
 cardiac gating with repetition time (TR) of 1 R-R
 interval; echo time (TE) of 15-20 msec; respira-

 tory compensation, number of repetition (NEX) of
 2; 256 x 192 matrix; slice thickness of 7 mm with
 a 3-mm interslice gap. To simulate normal clinical
 practice, test images were selected from 30 sequen-
 tial thoracic MR examinations of diagnostic quality
 that were obtained after February 1, 1991. The pa-

 tients studied included 16 females and 14 males,

 with ages ranging from 1 to 93 years and an average
 age of 48..0 ? 24.7 years (mean ? s.d.). Clinical in-
 dications for the thoracic scans included suspected
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 aortic aneurysm (11), thoracic tumors (1 1), evalua-
 tion of patients before or after lung transplant (5),
 constrictive pericarditis (1) and subclavian artery
 rupture (1). From each examination, one image
 which best demonstrated all four major vessels of
 interest was selected. The training images were se-
 lected similarly from different examinations. All
 analyses are based solely on measurements made
 on the test images.

 In our study, the 256 x 256 pixel MR scans were

 broken into 2 x 4 pixel blocks for encoding and de-
 coding. The coefficients for the Wiener-Hopf linear
 predictor were calculated from the training set im-
 ages and used to produce a residual (prediction er-
 ror) training set. Using predictive TSVQ, a residual
 tree was grown to 2.25 bpp and pruned back to a
 set of optimally pruned subtrees representing bit
 rates from 0-2.25 bpp. Five subtrees were chosen
 to produce average bit rates of 0.36, 0.55, 0.82, 1.14
 and 1.70 bpp on the 30 test images and to have no
 overlap between the bit rates of the image set en-
 coded with two different subtrees. These subtrees
 and their average bit rates are termed compression
 levels 1-5. The original scans at 9.0 bpp are termed
 level 6.

 The 30 test scans compressed to 5 bit rates plus
 the originals give rise to a total of 180 images. These
 images were arranged in a randomized sequence and
 presented on separate hard-copy films to three Stan-
 ford radiologists. The viewing protocol consisted of
 three sessions held at least two weeks apart. Each
 session included 10 films viewed in a predetermined
 order with six scans on each film. The radiologists
 began viewing films at different starting points in
 the randomized sequence. To minimize the probabil-
 ity of remembering measurements from past images,
 a radiologist saw only two of the six levels of each
 image in each session, with the second level of each
 image spaced at least four films after the first.

 Following standard clinical methods for detect-
 ing aneurysms, the radiologists used calipers and
 a millimeter scale available on each image to mea-
 sure the four blood vessels appearing on each scan.
 Although the use of digital calipers might have
 allowed more accurate measurements, this would
 have violated one of our principal goals, namely, to
 follow as closely as possible actual clinical practice.
 It is the standard practice of almost all radiologists
 to measure with manual calipers. This is especially
 true for radiologists in private practice, who repre-
 sent more than 90% of the radiologist population
 in the United States. Even in a tertiary referral
 setting, manual calipers are used routinely. We
 asked radiologists to make all measurements be-
 tween the outer walls of the vessels along the axis
 of maximum diameter. It is this maximum diam-

 eter measurement that is used to make clinical de-
 cisions. If measurements were made only in the
 straight anterior-posterior direction or the orthog-
 onal transverse direction, it would not be possible
 to determine whether compression has an impact
 on clinical decisions. Both the measurements and
 axes were marked on the film with a grease pen-
 cil. A subjective score of 1 (worst) through 5 (best)
 was also assigned to each image based on the ra-
 diologist's opinion of the quality of that image for
 the measurement task. The subjective scores were
 used purely as a measure of subjective quality and
 not as a measure of diagnostic accuracy. Relation-
 ships among subjective score, SNR and diagnostic
 accuracy are further elaborated in [17] and [15].

 4. UNIVARIATE ANALYSES

 4.1 Measurement Standards
 and Error Parameters

 In order to quantify the accuracy of measure-
 ments at each level of compression, we set two
 "gold standards" to represent the "correct measure-
 ment" for each vessel. One gold standard was set
 by having two expert radiologists, not the judges,
 come to an agreement on vessel sizes on the un-
 compressed scans. This provides an "independent
 standard." The two radiologists first independently
 measured the vessels on each scan. For those ves-
 sels on which they differed, they remeasured until
 an agreement was reached. The average measure-
 ment of the gold standard judges, pooled across
 structures, was 20.44 mm with standard deviation
 5.86 mm. We lack data on what any separate ini-
 tial measurements may have been. Test judges had
 averages that varied across levels from averages
 of about 20 mm to about 27 mm. Standard devi-
 ations ranged from about 5 mm to about 6 mm.
 A "personal standard" was also derived for each
 judge by taking their own measurements on the
 uncompressed image to be the gold standard for
 corresponding measurements on the compressed
 scans. Comparison with the personal gold stan-
 dard quantifies individual consistency, or lack of it,
 over bit rates rather than performance relative to
 "absolute truth."

 Once the gold standard measurement for each
 vessel in each image was assigned, the analysis of
 a radiologist's performance was made by comparing
 the errors made on compressed and on uncom-
 pressed images. The measurement error can be
 quantified in a variety of ways. If z is the radi-
 ologist's measurement and g represents the gold
 standard measurement, then some potential error
 parameters are (z - g), log(z/g), (z - g)/g and
 (z - g)/gl. These parameters have obvious invari-
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 ance properties that bear upon understanding the
 data. For simplicity and appropriateness in the
 statistical tests carried out, the error parameters
 chosen for this study are percentage measurement
 error (z - g)/g x 100% and absolute percentage

 measurement error i (z - g)/g I x 100%, both of
 which scale the error by the gold standard mea-
 surement to give a concept of error relative to the
 size of the vessel being measured.

 4.2 Parameters and Tests

 The differences in error achieved at each bit rate

 for our paired data could be quantified in many
 ways. We use both the t and Wilcoxon signed rank
 tests. The measurements are paired in a compar-
 ison of two bit rates since the same vessel in the

 same image is measured by each radiologist at both
 bit rates. We also accounted for the multiplicity of
 comparisons. If x1 is the measurement of a ves-
 sel at bit rate 1, x2 its measurement at bit rate 2
 and g the vessel's gold standard measurement, then
 the percentage measurement errors at bit rates 1
 and 2 are (x1 - g)/g x 100% and (x2 - g)/g x

 100%, and their difference is (x1 -X2)/ x 100%. In
 such a two-level comparison, percentage measure-
 ment error more accurately preserves the difference
 between two errors than does absolute percentage
 measurement error. A vessel that is overmeasured

 by a% (positive) on bit rate 1 and under-measured
 by a% (negative) on bit rate 2 will have an error
 distance of 2a% if percentage measurement error
 is used but a distance of zero if absolute percent-
 age measurement is used. Therefore both the t-test
 and the Wilcoxon signed rank test were computed
 using only percentage measurement error. Absolute
 percentage measurement error is used to present a
 more accurate picture of average error across the 30
 test images plotted against bit rate.

 The size of our data set (4 vessels x 30 images x
 6 levels x 3 judges = 2,160 data points) makes a
 formal test for normality nearly irrelevant since
 Gaussian approximations to sampling distributions
 are quite adequate for our purposes; Q-Q plots
 of percentage measurement error differences that
 were made for comparisons of other levels exhibit
 varying degrees of linearity. In general, the Q-Q
 plots indicate a moderate fit to a Gaussian model.

 5. RESULTS

 5.1 Distortion-Rate Performance

 Figure 7 shows SNR (10log10(D0/D)) versus bit
 rate for the 30 test images compressed to the five bit
 rates. A quadratic spline with a single knot at 1.0
 bpp was fitted through the data points to show the

 35
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 FIG. 7. Signal-to-noise ratio as a function of bit rate: the x's in-

 dicate data points for all images, pooled across judges and com-

 pression levels; the solid curve is a quadratic spline fitted to the
 data with a single knot at 1.0 bpp.

 general trend. Generally, images with lower visual
 distortion have higher SNR.

 5.2 Results Using the Independent Gold Standard

 Figures 8-11 are plots of trends in measurement

 error as a function of bit rate. In all cases, the gen-
 eral trend of the data is indicated by fitting the
 data points with a quadratic spline having one knot
 at 1.0 bpp. The "o" symbols indicate the 95% con-
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 FIG. 8. Mean percentage measurement error versus mean bit rate
 using the independent gold standard: the dash-dotted, dotted and
 dashed curves are quadratic splines fitted to the data points for
 Judges 1, 2 and 3, respectively; the solid curve is a quadratic
 spline fitted to the data points for all judges pooled. The splines
 have a single knot at 1.0 bpp; 95% BCa confidence intervals [24]
 are displayed separately for each judge and bit rate.
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 the data points for Judges 1, 2 and 3, respectively; the solid curve
 is a quadratic spline fitted to the data points for all judges pooled.
 The splines have a single knot at 1.0 bpp; 95% BCa confidence
 intervals are displayed separately for each judge and bit rate.

 fidence intervals obtained from the bootstrap BCa
 method [24]. Our approach here has been to apply
 this bias-adjusted, accelerated percentile method to
 data that come from the spline fits at fixed bit rates.
 Images were the sampling units in all computations.
 Figure 8 is a plot of the average percentage mea-

 surement error against the mean bit rate for all ra-
 diologists pooled (i.e., the data for all radiologists,
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 FIG. 11. Absolute percentage measurement error versus actual

 bit rate using the independent gold standard: the x's indicate

 data points for all images, pooled across judges and compresssion

 levels; the solid curve is a quadratic spline fitted to the data with

 a single knot at 1.0 bpp.

 images, levels and structures, with each radiolo-
 gist's measurements compared to the independent

 gold standard) and for each of the three radiolo-

 gists separately. In Figure 9, the percentage mea-

 surement error versus actual achieved bit rate is
 plotted for all data points. The relatively fiat curve
 begins to increase slightly at the lowest bit rates,
 levels 1 and 2 (0.36, 0.55 bpp). It is apparent that,

 except for measurement at the lowest bit rates, ac-

 curacy does not vary greatly with lossy compression.
 Possibly significant increases in error appear only at

 the lowest bit rates, whereas at the remaining bit
 rates measurement accuracy is similar to that ob-

 tained with the originals. The average performance

 on images compressed to level 5 (1.7 bpp) is actually

 better than performance on originals.
 While the trends in percentage measurement er-

 ror versus bit rate are useful, overmeasurement.
 (positive error) can cancel undermeasurement (neg-
 ative error) when these errors are being averaged

 or fitted with a spline. For this reason, we turn
 to absolute percentage measurement error, which
 measures the error made by a radiologist regard-

 less of sign. Figure 10 is a plot of average absolute
 percentage measurement error versus average bit
 rate for each radiologist and for all radiologists

 pooled. Figure 11 shows actual absolute percentage

 measurement error versus actual bit rate achieved.
 These plots show trends similar to those already

 seen. The original level has about the same abso-

 lute percentage measurement error as compression
 levels 3, 4 and 5 (0.82, 1.14, 1.7 bpp). Levels 1 and 2
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 (0.36, 0.55 bpp) show slightly higher measurement
 error.

 The t-test was used to test the null hypothesis

 that the "true" percentage measurement error be-
 tween two bit rates is zero. None of the levels down
 to the lowest bit rate of 0.36 bpp was found to have
 a significantly higher percentage measurement er-
 ror (at the 5% significance level) when compared

 to the error of measurements made on the origi-
 nals. Among the compressed levels, however, level
 1 (0.36 bpp) was found to be significantly different
 from level 5 (1.7 bpp). As was mentioned, the perfor-

 mance on level 5 was better than that on all levels,
 including the uncompressed level.

 When using the Wilcoxon signed rank test to
 compare compressed images against the originals,
 only level 1 (0.36 bpp) differed significantly (at
 the 5% significance level) in the distribution of
 percentage measurement error. Within the levels
 representing the compressed images, levels 1, 3

 and 4 (0.36, 0.82, 1.14 bpp) had significantly differ-
 ent percentage measurement errors than those at
 level 5 (1.7 bpp). Since measurement accuracy is

 determined from the differences with respect to the
 originals only, a conservative view of the results of
 the analyses using the independent gold standard
 is that measurement accuracy is retained down to

 0.55 bpp (level 2).

 5.3 Results Using the Personal Gold Standard

 As previously described, the personal gold stan-
 dard was set by taking a radiologist's recorded
 vessel size on the uncompressed image to be the
 correct measurement for judging performance on

 the compressed images. Using a personal gold stan-
 dard in general accounts for a measurement bias
 attributed to an individual radiologist, thereby
 providing a more consistent result among the
 measurements of each judge at the different com-
 pression levels. The personal gold standard thus
 eliminates the interobserver variability present
 with the independent gold standard. However, it
 does not allow us to compare performance at com-
 pressed bit rates to performance at the original bit
 rates since the standard is determined from the

 original bit rates. As before, we first consider visual
 trends.

 Figure 12 shows the average percentage measure-
 ment error versus mean bit rate for the five com-

 pressed levels for Judge 1 and for the judges pooled.
 Figure 13 shows the corresponding information for

 Judges 2 and 3. Figure 14 is a display of the ac-
 tual percentage measurement error versus actual
 achieved bit rate for all the data points. The data
 for the judges pooled are the measurements from all
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 FIG. 12. Mean percentage measurement error versus mean bit
 rate using the personal gold standard: the dash-dotted curve is
 a quadratic spline fitted to the data points for Judge 1; the solid
 curve is a quadratic spline fitted to the data points for all judges
 pooled. The splines have a single knot at 1.0 bpp; 95% BCa con-
 fidence intervals are displayed separately for each bit rate for
 Judge 1.
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 FIG. 13. Mean percentage measurement error versus mean bit
 rate using the personal gold standard: the dotted and dashed

 curaes are quadratic splines fitted to the data points for Judges

 2 and 3, respectively. The splines have a single knot at 1.0 bpp;
 95% BCa confidence intervals are displayed separately for each
 judge and bit rate.

 judges, images, levels and vessels, with each judge's
 measurements compared to her or his personal gold
 standard. In each case, quadratic splines with a sin-
 gle knot at 1.0 bpp were fitted to the data. Fig-
 ures 15, 16 and 17 are the corresponding figures for
 the absolute percentage measurement error. As ex-

 pected, with the personal gold standard, the errors
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 using the personal gold standard: the x's indicate data points for
 all images, pooled across judges and compression levels; the solid
 curve is a quadratic spline fitted to the data with a single knot at
 1.0 bpp.
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 FIG. 16. Mean absolute percentage measurement error versus
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 FIG. 17. Absolute percentage measurement error versus actual
 bit rate using the personal gold standard: the x's indicate data
 points for all images, pooled across judges and compresssion lev-
 els; the solid curve is a quadratic spline fitted to the data with a
 single knot at 1.0 bpp.

 The results of the Wilcoxon signed rank test on per-
 centage measurement error using the personal gold
 standard are similar to those obtained with the in-

 dependent gold standard. In particular, only level 1
 at 0.36 bpp differed significantly from the originals.
 Furthermore, levels 1, 3 and 4 were significantly
 different from level 5.
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 With Bonferroni considerations, the percentage
 measurement error at level 4 (1.14 bpp) is not sig-
 nificantly different from the uncompressed level.
 The simultaneous test indicates that only level
 1 (0.36 bpp) has significantly different percentage
 measurement error from the uncompressed level.
 This agrees with the corresponding result using

 the independent gold standard. Thus, percentage
 measurement error at compression levels down to
 0.55 bpp does not seem to differ significantly from
 the error at the 9.0 bpp original.

 5.4 Subjective Score

 In the previous sections, we looked at how mea-
 surement performance changes with bit rate in
 terms of the distribution of percentage measure-
 ment error. In addition to characterizing such
 objective aspects of error, we would like to examine
 the effect of compression on subjective opinions. In

 particular, does a radiologist's perception of image
 quality change with bit rate, and does it change in
 a manner similar to the way percentage measure-
 ment error changes? At the time of measurement,
 radiologists were asked to assign subjective scores
 of 1 (worst) through 5 (best) to each image based
 on "its usefulness for the measurement task." The
 term "usefulness" was defined as "your opinion of
 whether the edges used for measurements were
 blurry or distorted, and your confidence concern-
 ing the measurement you took." The question was
 phrased in this way because our concern is whether
 measurement accuracy is in fact maintained even
 when the radiologist perceives the image quality as
 degraded.

 We do not know whether radiologists are incul-
 cated during their training to assess quality visually
 based on the entire image, or whether they rapidly
 focus on the medically relevant areas of the image.
 Indeed, one might reasonably expect that radiolo-
 gists would differ on this point, and a question that
 addressed overall subjective quality would therefore
 produce a variety of interpretations from the judges.
 By focusing the question on the specific measure-
 ment and the radiologists' confidence in it, regard-
 less of what portion of the image contributed to that
 confidence level, we hoped to obtain data relevant to
 the question of whether radiologists can be asked to
 trust their diagnoses made on processed images in
 which they may lack full confidence.

 Figures 18 and 19 show the general trend of mean
 subjective score versus mean bit rate. A spline-like
 function that is quadratic from 0 to 2.0 bpp and lin-
 ear from 2.0 to 9.0 bpp was fitted to the data. The
 splines have knots at 0.6, 1.2 and 2.0 bpp; 95% confi-
 dence intervals are obtained from the bootstrapped
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 FIG. 19. Mean subjective score versus mean bit rate: the dotted
 and dashed curves are splines fitted to the data points for Judges
 2 and 3, respectively; the "o" symbols and solid bars represent the
 95% BCa confidence intervals for Judge 2; the "x" symbols and
 dotted bars represent the corresponding confidence intervals for
 Judge 3.

 BCa method. Figure 20 shows a spline fit of subjec-
 tive score plotted against actual bit rate for the com-
 pressed levels only. The general conclusion from the
 plots is that the subjective scores at level 5 (1.7 bpp)
 and level 6 (9 bpp) were quite close (with level 6
 slightly higher) but at lower levels there was a steep
 drop-off of scores with decreasing bit rate.

 The Wilcoxon signed rank test shows that the sub-
 jective scores at all of the five compression levels
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 the solid curve is a quadratic spline fitted to the data with a single
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 differ significantly from the subjective scores of the
 originals at p < 0.05 for a two-tailed test. The sub-
 jective scores at all the compression levels also differ

 significantly from each other.
 Although the subjective impressions of the radiol-

 ogists were that the accuracy of measurement tasks
 degraded rapidly with decreasing bit rate, their ac-

 tual measurement performance on the images as

 shown by both the t-test and Wilcoxon signed rank
 test (or the Bonferroni simultaneous test) remained
 consistently high down to 0.55 bpp. It is evident
 (and hardly surprising) that analyses not reported
 here indicate radiologist performance tends to be

 slightly better on images they like better. Thus,
 their subjective opinion of an image's usefulness for
 diagnosis was not a good predictor of measurement
 accuracy.

 6. ANALYSIS OF VARIABILITY

 Most analyses presented thus far were based on
 data for which judges, vessels, and images were
 pooled. Other analyses in which the performances
 of judges on particular vessels and images are sep-
 arated demonstrate additional variability. Judges
 seem to have performed significantly differently
 from each other. Judges 2 and 3 consistently over-

 measured. As a result, the Wilcoxon signed rank
 test using the independent gold standard indicates
 significant differences between the gold standard
 and the measurements of Judges 2 and 3 at all

 compression levels, including the original. Judge
 1, however, does not have any significant perfor-
 mance differences between the gold standard and
 any compression levels. In addition, certain vessels

 and images had greater variability in percentage
 measurement error than others.

 We turn now to matters of describing variabili-
 ties we cite. Whether compression degrades clinical
 performance is of fundamental importance to policy.
 We believe that at least within broad ranges it does
 not. However, this is not to obscure the finding that
 radiologists themselves are different. They are dif-

 ferent in the impact compression has on their per-

 formance. They are different in how they measure
 vessels, on compressed or original images. And they
 differ in how compression may degrade their per-
 formance for different vessels, to the extent that it
 does.

 The outcome here is percentage measurement
 error relative to an independent gold standard.
 One approach to this analysis might have been
 a (necessarily complex) random or mixed effects
 analysis of variance. Inferences therefrom tend
 to be heavily dependent upon Gaussian assump-
 tions, and even when they hold, distributions of
 some relevant statistics have been computed only
 approximately. A bootstrap approach would be un-
 necessarily complicated. In fact, the "signals" in

 our data are simple to describe and can be summa-
 rized well with a far simpler approach. Thus, we
 fix (Judge, image) pairs, of which there are 90 in
 all, and analyze them by fixed effects two-way anal-

 yses of variance with one observation per cell in
 which there are two fixed effects: levels and struc-

 tures. Although we are not ordinarily entitled from
 such data to make inferences on interactions, we
 compute Tukey's one degree of freedom for nonaddi-

 tivity [72, 65]. If yij is the percentage measurement
 error, i refers to levels and j to structures, then we

 model yij = /+ai +8j +yij+8ij, where ?ij are taken
 to be iid mean 0 and constant variance, although
 not constant across judges or images; i = 1, ... , 6;
 j = 1, ... ,4. We assume the usual constraints,

 that is, 'i ai 0 ji8 = Yij= jyij=_, and
 further that yij = Gaif8j for some constant G.
 Gaussian assumptions on the ?ij are not in force
 here, for we view the F-statistics and residual mean

 squares as descriptive statistics that are summa-
 rized by the box plots of Figures 21-24. Details of

 the computations are given in [65, Section 4.8].
 The box plots are self-explanatory-and dra-

 matic! Clearly Judge 2 was affected by compression
 more than was Judge 3, who was affected more
 than was Judge 1, whose F-statistics surround
 the null value 1. Variability obviously increased
 by judge as the impact of compression increased.
 Structures differed less for Judge 1 than for the
 others, and variability was less, too. The influence
 of structure upon variability in level was less for
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 FIG. 22. Box plots of F for structures.

 FIG. 24. Box plots of F for residual mean squares.

 Judge 1 than for the others, yet residual variabil-
 ity was less for Judge 2 than for Judge 1, and was

 highest for Judge 3. Although we are reluctant to
 infer much by way of performance from our study,
 it does appear that Judge 1 fared better than did
 the others of our capable judges.

 7. DISCUSSION

 There are a number of issues to consider in or-

 der to determine which gold standard is preferable.

 One disadvantage of an independent gold standard
 is that since it is determined by the measurements

 of radiologists who do not judge the compressed im-
 ages, significant differences between a compressed
 level and the originals may be due to differences

 between judges. For example, a judge who tends to
 overmeasure at all bit rates may have high percent-
 age measurement errors that are not entirely re-
 flective of the effects of compression. In our study,

 we determined that two judges consistently over-
 measured relative to the independent gold standard.
 This is not an issue with the personal gold standard.
 A personal gold standard also has the advantage of
 reducing percentage and absolute percentage mea-

 surement error at the compressed levels, one result
 being a clarification of trends in a judge's perfor-
 mance across different compression levels. Differ-
 ences are based solely on compression level and not
 on differences between judges.

 One disadvantage with the personal gold stan-
 dard, however, is that by defining the measurements
 on the original images to be "correct" we are not
 accounting for the inherent variability of a judge's
 measurement on an uncompressed image. For ex-

 ample, if a judge makes an inaccurate measure-
 ment on the original and accurate measurements on
 the compressed images, these correct measurements
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 will be interpreted as incorrect. Thus the method
 is biased against compression. An independent gold

 standard reduces the possibility of this situation oc-
 curring since we need an agreement by two inde-
 pendent radiologists on the "correct" measurement.

 8. CONCLUSIONS

 Evaluating the quality of images is an important
 and expanding area of research. In recent years con-

 siderable attention has been given to the use of
 perceptually based computational metrics for eval-
 uating quality of compressed images [27, 3]. How-
 ever, human observer studies such as the one re-
 ported here remain the method of choice for many
 applications. The development of international stan-
 dards for still-image and video compression relies on
 human observer studies to determine quality [58].
 Similarly, the development and validation of meth-
 ods for comparing medical images also rely on stud-
 ies of human observers to examine diagnostic util-
 ity because the relationship between computational

 metrics for quality, even sophisticated ones based on
 properties of the human visual system, and diagnos-

 tic accuracy remains elusive. Most human observer
 studies have focused on subjective quality and on
 the objective detection of tumors, for example. We

 believe that, in the future, studies will involve more
 diverse and clinically representative tasks including
 measurement of the sizes of vessels and the funda-
 mental issue of managing patients.

 The highly litigious nature of American society
 has caused many people to question whether lossy
 compression can ever be used here in a medical
 context, despite encouraging results regarding the
 maintenance of diagnostic accuracy. These doubts
 are heard less frequently today. The distortion-rate
 performance of algorithms for compression has
 improved enormously over the past decade. The
 quantity of medical images to be handled by picture
 archiving systems has increased greatly, outstrip-
 ping gains in the capabilities of storage media.
 Thus the gains to be had from compression are now
 more important than they were previously. Possi-
 ble areas of application for compression of medical
 images have proliferated. They include wireless
 emergency medical services, battlefield and ship-
 board surgery and medicine, progressive browsing
 of databases, medical teaching archives and others.
 Today, full-field digital mammography is poised to
 emerge as an important new technology within the
 medical imaging industry. The United States Food
 and Drug Administration has been in the position
 of defining the protocols that will be used to test the
 hypothesis that the new digital technology is not

 worse in clinical practice than conventional film-
 screen analog mammography. These protocols could
 equally well be used to test the hypothesis that

 compressed digital mammograms are not worse
 than conventional analog mammograms. Medical
 image compression today is thus at an unusually
 important juncture, with the emergence of a major
 new digital imaging modality occurring at a time

 when the techniques for digital image compression
 are mature and used widely in other fields.

 The goal of this paper was to quantify the effects

 of lossy compression on measurement accuracy. The
 fundamental ideas of lossy signal compression were
 thus presented and the particular algorithm used,
 predictive tree-structured vector quantization, was

 described in detail. The task chosen was the mea-
 surement of the diameters of four principle blood
 vessels in the chest, and both independent and per-
 sonal gold standards were established. With both
 the t-test and the Wilcoxon signed rank test, the

 percentage measurement error at compression rates
 down to 0.55 bpp did not differ significantly from
 the percentage measurement error at the 9.0-bpp
 original. We thus conclude that compression with
 predictive TSVQ is not a cause of significant mea-

 surement error at bit rates ranging from 9.0 bpp
 down to 0.55 bpp.
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