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Abstract—This paper develops a joint hashing/watermarking
scheme in which a short hash of the host signal is available to a
detector. Potential applications include content tracking on public
networks and forensic identification. The host data into which
the watermark is embedded are selected from a secret subset
of the full-frame discrete cosine transform of an image, and the
watermark is inserted through multiplicative embedding. The
hash is a binary version of selected original image coefficients.
We propose a maximum likelihood watermark detector based on
a statistical image model. The availability of a hash as side infor-
mation to the detector modifies the posterior distribution of the
marked coefficients. We derive Chernoff bounds on the receiver
operating characteristic performance of the detector. We show
that host–signal interference can be rejected if the hash function
is suitably designed. The relative difficulty of an eavesdropper’s
detection problem is also determined; the eavesdropper does not
know the secret key used. Monte Carlo simulations are performed
using photographic test images. Finally, various attacks on the
watermarked image are introduced to study the robustness of
the derived detectors. The joint hashing/watermarking scheme
outperforms the traditional “hashless” watermarking technique.

Index Terms—Authentication, Chernoff bounds, content-based
retrieval, detection theory, eavesdropping, image hashing, image
watermarking, likelihood ratio test.

I. INTRODUCTION

THE DESIRE and ability to hide information without in-
voking suspicion have been present in society for thou-

sands of years. Throughout generations, the techniques used to
accomplish these covert goals have varied and, with the current
prevalence of digital multimedia data, these methods continue to
evolve. In particular, digital watermarking is a current technique
which offers a means by which information can be inserted into
digital data. To assist in the watermark embedding process, a
key is often utilized. For example, the key could specify the lo-
cation within the digital content at which the watermark is to be
inserted. In many applications, invisible watermarking is em-
ployed, causing the watermark to be imperceptible in the host
data. However, the watermark should also be resistant to attacks,
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creating a tradeoff between invisibility and robustness. The re-
maining element of the watermarking process is a watermark
detector, which assesses whether or not an input object is wa-
termarked. To maximize detection efficiency, it is beneficial to
use the original content in making the decision. This framework
is termed private watermarking and is rather expensive in terms
of storage and computation. Consequently, blind or public wa-
termarking is also possible, where no portion of the original data
is present at the detector.

A common application of the watermarking process is within
a content protection system. In such a setting, the owner of an
original digital object desires the ability to manage its distri-
bution. Increasingly often, the case is being made that, indeed,
this responsibility should lie with the content owner or provider,
since manufacturers of media players have no commercial in-
terest in implementing security solutions as part of their devices
[1]. To achieve the goal of the protection system, watermarks
can be utilized to distinguish unauthorized and authorized in-
stances of the content. A typical content protection system fea-
tures a large number of audio–visual objects, users, and secret
keys. Thus, subversion attempts beyond traditional signal pro-
cessing attacks are a concern.

1) If multiple images are marked using the same key, tradi-
tional blind watermarking schemes display security weak-
nesses to attacks such as the Holliman-Memon attack [2].
To overcome attempts of this nature, different keys should
be utilized for different images.

2) Copy attacks, as studied by Kutter et al. [3], in which
a user illegally embeds a watermark derived from one
image into a new image, can be attempted to compromise
the integrity of the system.

3) If the attacker has access to a detector, repeated queries
can be made, thereby permitting the development of a suc-
cessive approximation strategy (sensitivity analysis attack
[4]) to modify the content such that it is outside the accep-
tance region.

4) If preloaded, static keys are utilized, any breach of secu-
rity in the system is inherently difficult to repair, leaving
the system open to further attacks.

In order to combat these attacks, it is desirable to have image-de-
pendent keys and a detector that either is operated by the con-
tent provider or that at least requires communication with the
content provider. Such desirable features are present in a new
generation of watermarking systems that allow content tracking
and forensic tracking and identification [5], [6]. In a typical con-
tent-tracking application, the content provider watermarks each
file sold with a digital signature establishing ownership. The
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content provider also scans public networks to detect the pos-
sible presence of unauthorized copies.

Applications, such as content protection systems, motivate
the development of reliable watermarking schemes which
adhere to these guidelines. A preferable alternative to the
expenses of private watermarking would be a process in which
the detector need only store a short hash of the original image,
where a hash is a function of the original data and a crypto-
graphic key, producing a secret, simplified representation of
the content. This solution will be referred to as hash-aided wa-
termarking and may be thought of as an intermediary between
private watermarking and public watermarking. In this context,
the hash is very small, dramatically decreasing storage require-
ments relative to a private watermarking system. Perceptual
image hashes have previously been used in applications such
as authentication, registration, and retrieval. The presence of
a hash effectively introduces image-dependent keys, as well
as requires communication over a side channel between the
content provider and the detector.

The concept of hash-aided watermarking has been discussed
by Voyatzis and Pitas in 1999 [7] but has not received much at-
tention in the literature, a recent exception being work by Roy
and Chang [8] in the context of database watermarking. This
void in the literature prompted the initiation of a quantitative
performance study of hash-aided watermarking. A preliminary
version of this work appeared in the first author’s M.S. thesis [9].
This paper will demonstrate that, when combined with a statisti-
cally optimal detection test, the hash function may be designed
to dramatically enhance detection performance and, in partic-
ular, offer host-signal rejection capabilities. The watermark em-
bedding utilized in the development is multiplicative [10]; how-
ever, extensions to additive embedding are straightforward.

This paper first reviews the basic image hashing problem
(Section II) and the statistical watermark detection problem
(Section III). The new, hash-aided watermarking system is
then formulated, and statistical signal detection theory is em-
ployed to derive an optimal watermark detector (Section IV).
Performance bounds are derived to evaluate this detector (Sec-
tion V). The difficulty of the watermark detection problem
as seen from the perspective of an eavesdropper is also con-
sidered (Section VI). Attacks are briefly considered and are
specialized to multiplicative white noise (Section VII). The
problem of nuisance parameters at the detector is discussed
(Section VIII). The watermarking system is evaluated using
real-world test images (Section IX). From these analyses and
experiments, conclusions are drawn regarding the effectiveness
of the hash-aided watermarking framework (Section X).

Notation: Random variables are denoted by capital letters,
and their individual values by lowercase letters. Boldface nota-
tion is used for vectors. The probability density function (pdf)
of a random variable is denoted by , and

denotes the probability of a set under this dis-
tribution. We denote by the indicator function of a set

. The asymptotic equality relation as
means that . The notation for specific
variables is summarized below.

Original host image.
Watermarked image.

Received image.
Original image coefficients.
Watermarked image coefficients.
Attacker’s noise.
Received image coefficients.
Binary hash values.
Binary hash function.

, , , Natural logarithm of , , , .
Secret key known to embedder and detector.
Pseudorandom sequence known to em-
bedder and detector.
Watermark vector.
Empirical distribution of .
Watermark embedding strength.
Secret subset of image coefficients used for
watermarking.
Subset of associated with hash function .
Total number of coefficients in public subset
of image coefficients.
Number of image coefficients in set .
Number of watermarked image coefficients.

.
Chernoff exponent.

II. HASHING

An image hash applied to an image with a secret
key is a short binary string [11], [12]. To verify authenticity
of a received image , one compares with the stored
value . The image hash function should have the
following two properties.

1) Robustness: if is perceptually sim-
ilar to .
2) Resistance to Collisions: The random strings and

are nearly independent if and are unrelated.

Hence, the hash function should extract robust, randomized fea-
tures of the image.

Authenticity may be assessed via the hypothesis test

is perceptually similar to

is not perceptually similar to

A typical decision rule is

(2.1)

where denotes Hamming distance, is the length of the
hash, and is the threshold of the test; typical values
are and .

III. MULTIPLICATIVE IMAGE WATERMARKING

This section first summarizes the standard multiplicative
blind image watermarking problem [13]. A statistical image
model is then described, and the corresponding likelihood ratio
test for watermark detection is derived.
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A. Basic Image Watermarking Problem

The basic image watermarking problem consists of an em-
bedding process, an attack process, and a detection process. The

vector of host data into which the watermark is to be in-
serted is derived from the host image

. A common source of host data is image transform coeffi-
cients, and the watermark is inserted into a subset of these co-
efficients. The discrete cosine transform (DCT) is selected for
use in this paper for simplicity, and the full-frame transform
is employed to increase robustness against image resizing and
other geometric attacks [14], [15]. A specific watermark vector

is to be embedded into the host
vector. The multiplicative watermark embedding method gen-
erates each element of the watermarked data according to the
formula [10]

(3.1)

where is the strength of the watermark embedding. We assume
without loss of generality that

then typically . Denote by the empirical distri-
bution of the , namely

(3.2)

For the commonly used binary symmetric distribution, we have
with equal frequency. Thus, for

, and for . The water-
marked data are reinserted into the image to form a water-
marked image .

With the watermark now embedded into the host data, the
watermarked image is released into the public domain. The de-
tector has no knowledge of the manipulations performed on
the image, which could include simple image processing oper-
ations, or an attacker’s attempts to remove the watermark.

When supplied with an image , the task of the detector is to
determine whether or not the watermark vector has been em-
bedded. The detector produces a statistic indicating the degree
of certainty that the given watermark is present. This statistic is
then compared against a threshold to determine a yes or no re-
sult.

B. Host Data Modeling

To derive a detector based upon statistical detection theory,
a realistic, probabilistic representation of the host data must be
determined. First, the DCT coefficients are assumed to be inde-
pendent. Then, the zero-mean power exponential (PE) distribu-
tion (also called the generalized Gaussian distribution) is com-
monly used to model the distribution of the DCT coefficients
of an image [16]. The PE distribution contains two parameters

and , with relating to the variance and relating
to the heaviness of the distribution tails. The distribution itself
is given by

(3.3)

where is the Gamma function. The parameters and are
frequency dependent; the value of usually ranges between 1.5
and 2.2 [15], [16]. In this paper, we assume that the selected
DCT coefficients can be grouped into frequency regions with
homogeneous statistics, e.g., the 16 regions described by Barni
et al. [15], [16].

A slightly better (and also often used) model is the Weibull
distribution

(3.4)

where and .
Similar results may be derived under both models by noting

that they are exponential families [17]

(3.5)

where , , and

Weibull

C. Statistical Detection for Basic Image Watermarking

Statistical decision theory can be used to formulate a water-
mark detector based upon a binary hypothesis test, indicating
the presence or absence of a particular watermark. The likeli-
hood ratio test is an optimal binary hypothesis test [17], and,
thus, is employed in this paper. Watermark detectors using this
technique have previously been developed, specifically for use
with the Weibull pdf [13].

The detection problem is formulated as a choice between
two hypotheses (the image does not contain the specific
watermark) and (the image contains the specific watermark).
Each hypothesis has associated with it a distribution for the
data, respectively, and , where are the
possibly watermarked coefficients. The likelihood ratio test
takes the form

(3.6)

where is the threshold of the likelihood ratio test.
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Fig. 1. General joint hashing/watermarking process.

The threshold value can be chosen based on a
Neyman–Pearson hypothesis test [17].1 The probability of false
alarm (falsely detecting a watermark) is given by

choosing is true

(3.7)

where is the distribution of under . Thus, if
is specified, (3.7) can be solved for .

The likelihood ratio test detector is now specialized to the
case when the PE or Weibull distribution is used to model the
host coefficients. In this situation, the two hypotheses can be
written as

Observe that remains in the original family of distributions
(PE or Weibull) for all values of . Using (3.5), the
distributions under and are, respectively

(3.8)

(3.9)

These distributions take a product form because the data
are independent. The log-likelihood ratio is given by

(3.10)

1While optimality in the Neyman–Pearson sense may require the use of a ran-
domized likelihood ratio test, the family of nonrandomized tests (3.6) is optimal
in all problems considered in this paper.

to be compared against the threshold . The detector that imple-
ments this test will be referred to as the PE or Weibull detector.
For the typical case of small , a first-order Taylor series expan-
sion of (3.10) around yields

(3.11)

i.e., for both the PE and Weibull models, the test statistic is
a correlation between the sequence and the transformed
data . We have and for PE and
Weibull, respectively.

IV. JOINT IMAGE HASHING/WATERMARKING PROBLEM

In this section, the basic watermarking problem is altered
to include side information at the detector, resulting in a joint
image hashing/watermarking scheme and a new likelihood ratio
test. In Section III-A, the data available at the detector are the
possibly watermarked image and the watermark vector .
This system can be modified to include side information at
the detector to increase system performance, as shown in Fig. 1.
Note that yields the basic system of Section III-A, com-
monly referred to as blind watermarking. Furthermore, when

, the original, unmarked image is present at the detector,
and the watermarking system is said to be private. Any interme-
diate case (such as in this paper, where is a hash)
can be thought of as semi-blind watermarking.

A. System Description

Our DCT-based joint hashing/watermarking system is dia-
grammed in Fig. 2. Its main features are described below.

1) Candidate Set: The DCT coefficients to be watermarked
come from a publicly known region of size , as depicted by
the trapezoidal region in Fig. 3. To increase the security of the
watermarking system, a secret subset of the DCT coefficients is
defined, and forms a set of candidate locations for embed-
ding. These locations are known by both the embedder and the
detector. Let denote the fraction of coefficients in-
cluded in the candidate set. Note that in the majority of current
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Fig. 2. Our DCT-based hashing/watermarking system.

watermarking schemes , indicating that no secret candi-
date set is employed.

2) Hash Function: In our joint image hashing/watermarking
system, a hash vector of length is utilized, where each
takes the form of a 1-bit hash of a corresponding original image
coefficient , . Specifically

where is a subset of , typically a union of intervals

(4.1)

such that . The coef-
ficients for which form the host data set and will be
watermarked. Fig. 3 contains a conceptual representation of the
different sets involved in the construction of .

Onemaythinkof asabitplaneinaparticularbinarydecom-
positionoftheoriginalimagecoefficients .Theexpectedfrac-
tion of DCT coefficients in the set is
(in our original system design [9], was a semi-infinite interval

, where is a significance threshold). To increase
the resistance of the scheme to eavesdroppers, the set should
depend on the secret key , in which case need also be av-
eraged over . Referring to our conditions in Section II for a good
image hashing system, we need:

1) sufficiently wide intervals so that similar images
map to similar hash values;

2) sufficiently large to ensure that each feature is percep-
tually significant;

3) small to provide adequate resistance against
collisions.

Example 4.1: The specific choice used in our experiments is
as follows. Choose a significance threshold for the magnitude
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Fig. 3. Conceptual formation of a length N host vector s. The host DCT
coefficients are drawn from the trapezoidal region, of size N . The locations
marked � represent DCT coefficients in the candidate set C (of size N =
10 in this example). The locations marked 
 indicate elements of C whose
magnitudes are in the set S (N = 3).

of the DCT coefficients to be watermarked. Select and
. Select randomly in the interval , ac-

cording to a uniform distribution with a generating seed known
to both the encoder and the detector. For all , let
and . Typical parameter values are ,

, and . For the Weibull distribution with
and , this choice of parameters leads to
(averaging over ).

3) Operating Methods: Two operational strategies are pos-
sible for the joint hashing/watermarking system.

1) The parameters and are fixed. The number
is, thus, image dependent

and key dependent. These dependencies influence the con-
struction of the watermark itself. One specification tech-
nique is for the embedder to be given a sequence (where
the followthedistribution )of thesamesize
as the candidate set, . Each element of this sequence is as-
sociated with a coefficient in . Those elements of coin-
ciding with the coefficients of are denoted by . Thus,
is of length and forms the actual watermark which will
be embedded in the image. With the specification of the key
used to generate the candidate set, the key used to generate
the set , the hash vector , the sequence , and the pos-
sibly watermarked image , the detector is able to extract
the appropriate vector of coefficients , which is a suffi-
cient statistic for the detection test.

2) The parameter is fixed but is image dependent and
key dependent. The embedder implementation is as fol-
lows. A length vector is obtained by a pseudorandom
scrambling of the original coefficients. The binary
hash sequence is obtained by successively applying
the function to the components of this scrambled
vector, starting from the first component. This process is
terminated when the th “1” in the sequence is ob-
tained. The length of the hash vector at this point is .
The watermark is then embedded in the coefficients
for which . The watermark detector knows , the

key used for the scrambling algorithm, the key used to
generate , and the hash vector. It can, thus, extract ,
the vector of coefficients for which .

The first method is slightly more difficult to analyze statistically,
hence the second method is used throughout this paper. Note that
the second method fails in the case when fewer than coeffi-
cients in the original size dataset have magnitude in the set

. Under our statistical assumptions on the coefficients, this
probability is guaranteed to be very small if .

B. Statistical Detection for Joint Image Hashing/Watermarking

The appropriate likelihood ratio test must now be derived, in-
corporating the side information in addition to the possibly
watermarked coefficients . The pair has a joint distribu-
tion under (no watermark present) and a joint
distribution under (watermark present). The
likelihood ratio is now written as

(4.2)

where is the threshold of the test.

C. Pulse-Modulated Distribution

Since the PE and Weibull distributions are well suited to
modeling the DCT coefficients of an image, either one is a
tempting choice for modeling the coefficients when designing
the detector. However, in the joint hashing/watermarking
scheme, these distributions are not representative of the coef-
ficients selected for watermarking. Here, only the coefficients
with magnitudes in the set are watermarked, as specified
by the hash. Thus, a new, pulse-modulated (PM) distribution is
derived to correctly represent the actual posterior distribution
of the chosen coefficients.

Denote by the prior distribution of an unmarked coef-
ficient and consider the binary hash

After observing , the posterior distribution of becomes

(4.3)

The PM distribution (4.3) is shown in Fig. 4 for the case when
is a PE distribution.

To evaluate the likelihood ratio (4.2), we derive

(4.4)

and

(4.5)
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Fig. 4. Pulse-modulated PE distribution whose pulse support set S is a union
of six intervals.

Hence, the log-likelihood ratio is given by

(4.6)

where

if and

if and

if and
.

(4.7)

These results are quite intuitive. In the first case, when the
set conditions and are satisfied,

is the same as under the PE and Weibull models.
When one of the set membership conditions is met but the other
is not, one of the hypotheses is impossible, which is indicated
by the presence of infinities in the statistic. Note that the proba-
bility of having the range conditions fail under both hypotheses
is zero. Fig. 5 illustrates the three regions present in the decision
statistic when is a semi-infinite interval, . The
likelihood ratio test based upon (4.6) will be referred to as the
PM detector.

D. Host-Signal Rejection

In conventional spread–spectrum blind watermarking
systems, the host signal is a substantial source of noise which
adversely affects detection performance. In the case of Gaussian
hosts for instance, the probability-of-error exponents are in-
versely proportional to the variance of the host [18].

In our hash-aided system, the set can be advantageously
designed to reduce host-signal interference. Consider Fig. 6,
which shows the PM distribution versus the
scaled PM distribution

for a fixed value of . Roughly speaking, the ability to dis-

criminate between and is enhanced when the overlap
of these two pdfs is reduced, which occurs when is decreased.
However, small also results in a lack of robustness against
attacks, so the choice of is a tradeoff. The relative overlap
of and depends weakly on the variance of the host
signal’s pdf, which could even be infinite. A more precise study
of the probability of error appears in the next section.

The ability to reduce host–signal interference is reminis-
cent of the well-known quantization index modulation (QIM)
technique, which has a similar property. The hash information
tells the PM detector that the host signal belongs to a partic-
ular subset of signal space (a union of disjoint cells), and the
detector tests for the presence of the watermark conditioned
on that information. In contrast, the QIM embedding scheme
preconditions the host signal so as to concentrate its distribu-
tion on a subset of signal space (typically a union of disjoint
cells); the QIM detector must then infer whether the received
signal belongs to a particular subset of signal space (also a
union of disjoint cells). It is worth noting that the hash-aided
watermarking scheme achieves host-signal rejection without
preconditioning the host signal.

V. CHERNOFF BOUNDS

Binary hypothesis testing using a likelihood ratio test forms
a conceptually simple statistical detector. However, detector
performance analysis can often be quite complex. Thus, bounds
on the probability of detection (correct detection of a
watermark) and the probability of false alarm are often
sought. Here, we consider Chernoff bounds [17], [19], which
are large-deviation bounds and are asymptotically tight in the
exponent. The bound provided for is an upper bound,
while the bound provided for is a lower bound. These two
bounds yield a useful lower bound on the receiver operating
characteristic (ROC) curve ( versus , parameterized
by the test threshold ). This bound may be used to evaluate
detector performance without the need for the large Monte
Carlo simulations which are required when error probabilities
are very low. Moreover, the Chernoff bounds may be used to
appropriately design the hash function. In this section, Chernoff
bounds are formulated for the general case of multiplicative
watermarking, and then specialized to the likelihood ratio test
detectors based on exponential and PM distributions. Finally,
the bounds are evaluated numerically.

A. Chernoff Bounds for Multiplicative Watermarking

As noted earlier, when multiplicative watermarking is em-
ployed to insert a watermark into a set of host data, the distri-
bution of each element of the output under is a scaled
version of the corresponding distribution under

(5.1)

This property allows Chernoff bounds to be constructed in a
general sense, and later specialized to individual distributions.

The Chernoff distance between and is defined as
[17]

(5.2)
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Fig. 5. Regions utilized in the likelihood ratio test statistic for the PM distribution with S = [�;1) (a) m > 0 and (b) m < 0.

for all . The tightest bounds on and
are obtained when maximizes the function

. Due to the conditional independence of
the , the Chernoff distance is additive over the components

(5.3)

Using (5.1)–(5.3), the Chernoff distance can be written in terms
of

(5.4)

where the nonnegative functional

(5.5)

is introduced to simplify the notation, and the distribu-
tion is defined in (3.2). The value
that maximizes is found numer-
ically by solving a convex programming problem [17].
Note that and that

by
concavity of the Chernoff distance with respect to . Hence,
the optimal Chernoff exponent is as if the
distribution is symmetric around .

The Chernoff bounds on the various probabilities of error are
[17], [19]

(5.6)

(5.7)

for all values of between and ,
where denotes Kullback–Leibler divergence from a dis-
tribution to another distribution . Assuming that the empir-
ical distribution in (3.2) converges to a limit, the Chernoff
bounds are tight in the exponent as for [17],
[19]. The decision threshold is generally chosen to be propor-
tional to . Then, it follows from (5.4), (5.6), and

Fig. 6. Unmarked and positively marked PM-Weibull distributions.

(5.7) that and vanish exponentially with , with re-
spective rates

(5.8)

(5.9)

The Chernoff bounds may now be specialized for a specific
modeling distribution simply by substituting the desired
into the functional defined in (5.5).

B. Exponential Distributions

For any exponential distribution of the form (3.5), direct eval-
uation of the Chernoff integral yields

(5.10)
The distributions and for our likelihood ratio test may
be written as

and

with and . Define

(5.11)
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For the Weibull distribution, we have , and so
(5.10) becomes

(5.12)

with . The Chernoff distance (5.4)
becomes

(5.13)
For the PE distribution, we have , and so

(5.10) becomes

(5.14)

C. PM Distributions

In this subsection, we find the Chernoff distance for PM dis-
tributions, which can be derived from the Chernoff distance
associated with each individual pulse. Assume the minimum-
pulse-width condition for . Let

denote the probability of pulse
and

denote the probability of under , conditioned on pulse
being used. For , the Chernoff distance
(5.5) is given by

(5.15)

i.e., it is a geometrical average of the
. Given , the ability to discriminate between the two dis-

tributions and depends strongly on the size
of the support set of . In fact, tends to infinity
as . Hence one can achieve host
signal rejection by making the pulses more narrow, as illustrated
by the example below.

Example 5.1: Consider a piecewise-constant PM distribu-
tion with pulses. Let , where
satisfies the minimum-pulse-width condition. Then,

. For , we have

(5.16)

which is independent of . Hence, (5.15) becomes

(5.17)

achieving host-signal rejection. For , we
use , where the right side is
evaluated using (5.17).

Example 5.2: Consider a PM unit exponential distribution,
where again. Thus,

. For , we have

(5.18)

For , we use
, where the right side is evaluated using (5.18). Again,

we obtain host-signal rejection.
Observe that if is small, the pdf is approximately

constant over its support, and the result coincides with that in
Example 5.1.

Example 5.3: Consider a PM-Weibull distribution, where
again. The problem can be reduced to Example

2 using the transformation , in which case the
transformed variable follows a unit exponential distribution.
Then, we also define , , ,
and . We obtain using (5.18)
with , , and in place of , , and .

D. Convexification of Chernoff Bounds

For each value of the exponent , the Cher-
noff bounds (5.6) and (5.7), in which is viewed as a
variable, define a lower bound on the
ROC curve . This lower bound is a con-
cave function. The upper envelope of these functions

is a lower bound
on the ROC curve as well. However, this envelope function is
not necessarily concave. Denote by the concave hull
of the function . Since
(where the last inequality is due to the concavity of ), the
convexified function serves as an improved lower bound on
the ROC when is nonconcave. We found this technique to be
useful for detection problems involving PM distributions, as
detailed in the experiments in Section IX.

E. Evaluation of Chernoff Bounds

The Chernoff bounds for the Weibull and PM-Weibull distri-
butions are now compared. For simplicity, a binary symmetric
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Fig. 7. Error exponents E and E for (a) the Weibull detector and (b) the PM-Weibull detector. Here � = 0:1135, � = 2, and S = [0:0881; 0:1145] [
[0:1488;0:1935][[0:2515;0:3270].

watermark distribution is employed, with .
Typical values and are used (see Sec-
tion IX). The set that defines the hash function is given
by , so

, while the embedding strength is selected
to be 0.1. Figs. 7(a) and (b) show the error exponents (5.8)
and (5.9) as a function of the normalized detection threshold

for the Weibull and PM-Weibull detectors, respectively.
Clearly, the error exponents are vastly different for the Weibull
and PM-Weibull cases. Moreover, in the latter case,
(respectively, ) as (respectively, )
due to the presence of infinities in the log-likelihood ratio (4.7).

For both the Weibull and the PM-Weibull cases, the threshold
maximizes the total-probability-of-error exponent

. The normalized Chernoff distances are com-
puted for each coefficient model, using threshold and
embedding strength . For the Weibull distribution,
this normalized distance is approximately 0.05 while for the
PM-Weibull distribution it is approximately 4.88, demon-
strating the huge advantage of the PM-Weibull model over the
Weibull model. That is, the same detection performance may
be achieved using approximately 100 times fewer coefficients
for watermarking.

VI. EAVESDROPPER’S DETECTION PROBLEM

Another problem worthy of study is the relative difficulty of
the image watermark detection problem as seen by the detector
compared to that seen by an eavesdropper. This eavesdropping
situation can arise when watermarking techniques are employed
in a distributed security system. For example, an eavesdropper
may wish to detect watermarked images on the Internet. In an-
other application, a security agency may insert a watermark to
flag a suspicious image for further scrutiny by another agency.
This mark should be difficult for the intended recipient of the
image to detect. In both applications, the eavesdropper attempts
to determine whether an object is watermarked without knowing
the secret key and hash values.

If our watermarking algorithm is utilized, the eavesdropper
knows neither the candidate region nor the sequence .
When Operating Method 2 of Section IV-A is used, the eaves-
dropper knows but not . The eavesdropper ob-
serves coefficients ( of which are pos-
sibly marked) and evaluates two hypotheses: which states
the data are marked and which states they are not. Under ,
the distribution of the output is simply given by a product
of Weibull distributions. However, under , since the eaves-
dropper does not know , she assumes a mixture distribution

of marked and unmarked coefficients. The mixture is ob-
tained by averaging over all choices of and . To formulate
the distribution , a number of probability distributions are
first defined

unmarked distribution

unmarked complementary PM

unmarked PM

marked PM conditioned on

mixture marked PM

mixture distribution for in

Typically, the two mixture components of are well separated
(they overlap only on the boundaries of the intervals forming

). An independent and identically distributed (iid) distribu-
tion is assumed for in order to simplify the exposition
(and maximize the difficulty of the eavesdropper’s detection



CANNONS AND MOULIN: HASH-AIDED IMAGE WATERMARKING SYSTEM 1403

problem). With the notation above, the distribution of as seen
by the eavesdropper under is given by

(6.1)

with . The Chernoff dis-
tance between the distributions under and for the eaves-
dropper is given by

(6.2)
As described in Section V, the situation is different for the

actual detector, which has knowledge of and the sequence
. Thus, for each coefficient, the detector knows which pair

of distributions to consider for the two hypotheses. The Chernoff
distance (5.4) as seen by the detector can be written as

(6.3)

A comparison may now be made between the Chernoff dis-
tances (6.2) and (6.3) seen by the eavesdropper and the detector,
to provide insight into the relative difficulty of the detection
problems. With the above formulations and by the concavity of
Chernoff distance [17], it is clear that

i.e., the detection problem is more difficult for the eavesdropper
than for the detector.

To quantify this effect, the Chernoff distances are evaluated
over a range of possible values using the same parameters as in
Section V-E. For ease of comparison, the Chernoff distances are
normalized with respect to . Again using a binary symmetric
watermark distribution, the resulting normalized Chernoff dis-
tance curves are given in Fig. 8. The eavesdropper observes a
significantly smaller Chernoff distance than the informed de-
tector (approximately an order of magnitude) and, hence, is
much less able to detect the watermark.

VII. ATTACKS

This section considers the effect of attacks on system perfor-
mance. To illustrate the idea, consider the following multiplica-
tive noise model for attacks:

(7.1)

where are iid distributed random variables following a
distribution and are independent of . It is conve-
nient to use a logarithmic transformation to map the problem
into an additive model, , where the tilde symbol
indicates variables in the log domain ( , etc.). Then,

and , etc. Also, de-
fine . The binary hypothesis test can be
written as

(7.2)

Also, recall that Chernoff distance is invariant to invert-
ible transformations of the data, so

.

Fig. 8. Normalized Chernoff distances as seen by the detector and
eavesdropper as a function of �� , the normalized size of the candidate set
C. The system parameters are the same as in Fig. 7.

The PM distributions assumed in the absence of attacks must
be replaced with convolutions with . In particular, from (4.3)
and (7.2), we obtain and

(7.3)

(7.4)

The Chernoff distance is therefore given by (5.4), where
. Greater blurring of the original,

discontinuous due to will yield a smaller Chernoff
distance.

To illustrate this problem, it is useful to consider attacks of
the form , where is any normalized
pdf, and is a scale parameter; the attack becomes benign as

. Consider, for instance, the triangular pdf

whose support set is [ 1,1]. Fig. 9 gives the Chernoff distance
in the presence of this attack as a function of .

VIII. NUISANCE PARAMETERS

As well as the noise introduced by the attacker, there may be
a small number of additional parameters that are unknown to
the detector. For instance, the scale parameter of the PE or
Weibull distribution is generally not known to the detector, nor
is a possible fixed scaling parameter introduced by the attacker
(in terms of the attack model in the previous section, we would
have , where is an unknown constant).

We propose using a noncoherent version of our likelihood
ratio detector (4.2), treating unknown parameters such as and

as nuisance parameters. The detector is a generalized likeli-
hood ratio test

(8.1)

where is the threshold of the test. This approach can be used
if additional nuisance parameters are present, e.g., a parametric
description of a point operation used by the attacker.
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Fig. 9. Chernoff distance in the presence of a multiplicative white triangular
noise attack, as a function of attack scale parameter �.

IX. IMAGE WATERMARKING EXPERIMENTS

The previous sections examined the design of optimal detec-
tors and the derivation of performance bounds. Now, these de-
tectors are applied to standard photographic test images to as-
certain how well they perform on coefficients which do not nec-
essarily follow the idealized distributions assumed in this paper.

A. Implementation Details

We selected the standard 512 512 Lena and Baboon im-
ages as test images and applied the full-frame DCT transform
to them. For watermarking we considered only a trapezoidal re-
gion of coefficients in the low-mid frequencies: the union of Re-
gions 6, 7, 8, 10, 11, and 12 (using the notation of [15], [16]),
which has a total of 5286 elements. We chose for both
Lena and Baboon. The Weibull and PM-Weibull distributions
are both considered for modeling the DCT coefficients at the de-
tector. A fixed value of is utilized (similar to [15], [16]);
however, the detector must estimate the distribution parameter

. A maximum likelihood estimate is employed within each of
Regions 6, 7, 8, 10, 11, and 12, and the resulting distribution
parameters are given in Table I.

To determine the set , the method described in Example
4.1 is utilized. Since the parameters must be estimated at the
detector, the parameter defined in Example 4.1 is taken to be
a coarsely quantized version of the average of the parameters
over the regions considered. The detector, knowing the candi-
date values for , can reliably retrieve the value of selected by
the encoder. The resulting set is given by

.
Referring to our description of Operating Method #2 in Sec-

tion IV-A, is image dependent and key depen-
dent. We obtained on average for Lena (yielding

) and for Baboon (yielding ). In
other words, typically 0.75% and 1.05% of the transform coef-
ficients were used for watermarking Lena and Baboon, respec-
tively.

For each detector considered, a Monte Carlo simulation was
used to determine the detection and false alarm probabilities

TABLE I
ESTIMATED � PARAMETERS FOR THE DCT COEFFICIENTS (� = 2)

and . The simulations were performed over a range
of thresholds, with runs for each threshold. A binary sym-
metric watermark distribution was utilized, and a new water-
mark and key were generated for each trial.

B. Simulation Results

To present the detection results for the image data, two types
of figures are considered for each detector-image pair. The first
shows the distribution of the test statistic and the second plots

and for an embedding strength of .
The distributions of the test statistics are shown for the

Weibull and PM-Weibull distributions in Fig. 10 for Lena. For
the PM-Weibull distribution, the infinite values which may
be present in the statistics are represented pictorially using

. For the Weibull distribution, the distributions of the
statistics under and are not well separated, indicating
the difficulty in choosing between the two hypotheses. On
the other hand, the distributions resulting from the use of the
PM-Weibull distribution are extremely well separated, with the
majority of the trials yielding . The results for
the Baboon image were quite similar, suggesting that detector
performance should not be highly dependent on the choice of
image.

The and curves based on the Monte Carlo sim-
ulations are shown in Fig. 11 along with the corresponding
convexified Chernoff bounds (refer to Section V-D). Perfor-
mance is similar for the Lena and Baboon images for both the
Weibull detector and the PM-Weibull detector. For both im-
ages, the PM-Weibull detector produces detection probabilities
within the range [0.99,1] for false alarm values in the range
[0,0.01]. The performance using the conventional Weibull
detector is dramatically worse.

Fig. 11 also provides the ROC for synthetic data generated
from the Weibull distribution assumed for Lena and Baboon.
The slight discrepancy between the ROC for the synthetic data
and for the image data is due to the imperfections of the Weibull
model for images.

C. Image Watermarking Experiments With Attacks

This section considers the detection of watermarks in the
presence of attacks. Since the development of the detectors of
Section IV-B did not include a model of an attack, these detec-
tors are no longer optimal. Therefore, the robustness of these
detectors in the presence of attacks is now studied. Two at-
tack methods are considered: multiplicative white triangular
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Fig. 10. Distribution of the test statistic for the Lena image using the (a) Weibull and (b) PM-Weibull distributions.

Fig. 11. ROC curves for the Lena, Baboon, and synthetic data, and the convexified Chernoff bounds, for the (a) Weibull and (b) PM-Weibull distribution. Here,
N = 10, � = 2, and � = 0:1.

noise (MWTN) (see Section VII), and JPEG compression. The
MWTN attack is limited to Regions 6, 7, 8, 10, 11, and 12, since
the sequence is known to be embedded in a subset of these coef-
ficients; however, the JPEG attack is applied to the entire image.
For the MWTN attack, a more robust version of the PM-Weibull
detector is used, namely the infinities in the test statistic are re-
placed with finite constant values, which are selected as 1 in
the experiments.

To evaluate the performance of the detectors based on the
PM-Weibull and Weibull distributions, Monte Carlo simulations
are performed with the Lena image using 5000 and 1000 trials
for each of the attack types, respectively. The mean squared
error (MSE) introduced through watermarking is denoted by

, while that introduced by the attack is denoted by . The
MSE for both attacks is large: . To illustrate detector

performance, plots of the test statistic distributions and ROC
curves are included.

The distributions of the test statistics for both modeling dis-
tributions are given in Figs. 12 and 13 for MWTN and JPEG
compression, respectively. Little change in the Weibull statistic
distributions is present, for either attack type, from the corre-
sponding distributions when no attack is present, as seen in
Fig. 10. Thus, the performance of the Weibull detector is not
significantly affected by the MWTN or JPEG compression at-
tacks. For the PM-Weibull case, the clipping of infinities in the
MWTN case significantly alters the distribution of the test sta-
tistics; however, a strong separation under and is still
present. Conversely, for the JPEG attack, the majority of the dis-
tribution mass is again located at the infinity points. The small
influence of the JPEG attack is expected, since the attack is ap-
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Fig. 12. Distribution of the test statistic for Lena under a MWTN attack for the (a) Weibull and (b) PM-Weibull distributions.

Fig. 13. Distribution of the test statistic for Lena under a JPEG compression attack for the (a) Weibull and (b) PM-Weibull distributions.

plied to the entire image, causing the marked coefficients to be
altered less for a fixed .

To further quantify the performance of these detectors, ROC
curves are plotted in Fig. 14. The curves for the Weibull de-
tector are virtually identical to those for the unattacked case,
given in Fig. 11. On the other hand, a slight decrease in per-
formance is present for the PM-Weibull case (particularly for
the MWTN) when compared with the data resulting from no at-
tack, Fig. 11. This decrease is consistent with the change in the
statistic distribution previously observed. However, the perfor-
mance of the PM-Weibull detector remains notably superior to
that of the Weibull detector.

X. CONCLUSION

Statistical modeling and signal detection theory provide a
structured framework in which optimal watermarking systems

can be developed and studied. The encouraging results obtained
clearly reveal the potential of joint image hashing/watermarking
as a viable means of information protection.

In the setup considered in this paper, the detector has access
to side information about the original image in the form of an
image hash (1 bit of information for each original DCT coeffi-
cient at secret locations), creating a joint hashing/watermarking
system. The inclusion of the side information permits the devel-
opment of detectors which offer extremely high performance,
even for very short watermarks . A pulse-mod-
ulated (PM) distribution for modeling the selected coefficients
was developed as a consequence of the particular hash selected,
and the Neyman–Pearson detector was formulated.

Chernoff bounds were derived to analyze the performance of
this detector. Evaluation of the bounds revealed tremendous in-
creases in detection performance over hash-free systems. The
Chernoff distance as seen by an eavesdropper attempting to de-
tect the watermark was evaluated and found to be low; this result
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Fig. 14. ROC curves for the MWTN and JPEG compression attacks for the (a) Weibull and (b) PM-Weibull distributions (D = 10D ).

quantifies the increase in difficulty for the eavesdropper’s detec-
tion problem.

Monte Carlo simulations were employed to analyze the per-
formance of the detectors using data gathered from real-world
test images. The PM-Weibull detector displayed vastly supe-
rior performance over the Weibull detector, offering decreases
of over 95% in false alarm probabilities, for the same detection
probability.

Experiments were also conducted to study the effect of
multiplicative white triangular noise and JPEG compression.
The Weibull detector is nearly unaffected by the introduction
of an attack, while the PM-Weibull detector is slightly hin-
dered. However, the PM-Weibull detector still significantly
outperforms the Weibull detector. It is likely that further im-
provements can be obtained by taking attacks into account in
the design of the watermark detector; this enhancement is a
topic of future research.
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